8,384 research outputs found

    Matching under Preferences

    Get PDF
    Matching theory studies how agents and/or objects from different sets can be matched with each other while taking agents\u2019 preferences into account. The theory originated in 1962 with a celebrated paper by David Gale and Lloyd Shapley (1962), in which they proposed the Stable Marriage Algorithm as a solution to the problem of two-sided matching. Since then, this theory has been successfully applied to many real-world problems such as matching students to universities, doctors to hospitals, kidney transplant patients to donors, and tenants to houses. This chapter will focus on algorithmic as well as strategic issues of matching theory. Many large-scale centralized allocation processes can be modelled by matching problems where agents have preferences over one another. For example, in China, over 10 million students apply for admission to higher education annually through a centralized process. The inputs to the matching scheme include the students\u2019 preferences over universities, and vice versa, and the capacities of each university. The task is to construct a matching that is in some sense optimal with respect to these inputs. Economists have long understood the problems with decentralized matching markets, which can suffer from such undesirable properties as unravelling, congestion and exploding offers (see Roth and Xing, 1994, for details). For centralized markets, constructing allocations by hand for large problem instances is clearly infeasible. Thus centralized mechanisms are required for automating the allocation process. Given the large number of agents typically involved, the computational efficiency of a mechanism's underlying algorithm is of paramount importance. Thus we seek polynomial-time algorithms for the underlying matching problems. Equally important are considerations of strategy: an agent (or a coalition of agents) may manipulate their input to the matching scheme (e.g., by misrepresenting their true preferences or underreporting their capacity) in order to try to improve their outcome. A desirable property of a mechanism is strategyproofness, which ensures that it is in the best interests of an agent to behave truthfully

    Sub-channel Assignment, Power Allocation and User Scheduling for Non-Orthogonal Multiple Access Networks

    Full text link
    In this paper, we study the resource allocation and user scheduling problem for a downlink nonorthogonal multiple access network where the base station allocates spectrum and power resources to a set of users. We aim to jointly optimize the sub-channel assignment and power allocation to maximize the weighted total sum-rate while taking into account user fairness. We formulate the sub-channel allocation problem as equivalent to a many-to-many two-sided user-subchannel matching game in which the set of users and sub-channels are considered as two sets of players pursuing their own interests. We then propose a matching algorithm which converges to a two-side exchange stable matching after a limited number of iterations. A joint solution is thus provided to solve the sub-channel assignment and power allocation problems iteratively. Simulation results show that the proposed algorithm greatly outperforms the orthogonal multiple access scheme and a previous non-orthogonal multiple access scheme.Comment: Accepted as a regular paper by IEEE Transactions on Wireless Communication

    Hire the Experts: Combinatorial Auction Based Scheme for Experts Selection in E-Healthcare

    Full text link
    During the last decade, scheduling the healthcare services (such as staffs and OTs) inside the hospitals have assumed a central role in healthcare. Recently, some works are addressed in the direction of hiring the expert consultants (mainly doctors) for the critical healthcare scenarios from outside of the medical unit, in both strategic and non-strategic settings under monetary and non-monetary perspectives. In this paper, we have tried to investigate the experts hiring problem with multiple patients and multiple experts; where each patient reports a preferred set of experts which is private information alongwith their private cost for consultancy. To the best of our knowledge, this is the first step in the direction of modeling the experts hiring problem in the combinatorial domain. In this paper, the combinatorial auction based scheme is proposed for hiring experts from outside of the hospitals to have expertise by the preferred doctors set to the patients.Comment: 7 Page

    Pairwise Kidney Exchange

    Get PDF
    The theoretical literature on exchange of indivisible goods finds natural application in organizing the exchange of live donor kidneys for transplant. However, in kidney exchange, there are constraints on the size of feasible exchanges. Initially, kidney exchanges are likely to be pairwise exchanges, between just two patient-donor pairs, as these are logistically simpler than larger exchanges. Furthermore, the experience of many American surgeons suggests to them that preferences over kidneys are approximately 0-1, i.e. that patients and surgeons should be largely indifferent among healthy donors whose kidneys are compatible with the patient. This is because, in the United States, transplants of compatible live kidneys have about equal graft survival probabilities, regardless of the closeness of tissue types between patient and donor. We show that, although the pairwise constraint eliminates some potential exchanges, there is a wide class of constrained-efficient mechanisms that are strategy-proof when patient-donor pairs and surgeons have 0-1 preferences. This class of mechanisms includes deterministic mechanisms that would accomodate the kinds of priority setting that organ banks currently use to allocate cadaver organs, as well as stochastic mechanisms that allow distributive justice issues to be

    Smoothed and Average-Case Approximation Ratios of Mechanisms: Beyond the Worst-Case Analysis

    Get PDF
    The approximation ratio has become one of the dominant measures in mechanism design problems. In light of analysis of algorithms, we define the smoothed approximation ratio to compare the performance of the optimal mechanism and a truthful mechanism when the inputs are subject to random perturbations of the worst-case inputs, and define the average-case approximation ratio to compare the performance of these two mechanisms when the inputs follow a distribution. For the one-sided matching problem, Filos-Ratsikas et al. [2014] show that, amongst all truthful mechanisms, random priority achieves the tight approximation ratio bound of Theta(sqrt{n}). We prove that, despite of this worst-case bound, random priority has a constant smoothed approximation ratio. This is, to our limited knowledge, the first work that asymptotically differentiates the smoothed approximation ratio from the worst-case approximation ratio for mechanism design problems. For the average-case, we show that our approximation ratio can be improved to 1+e. These results partially explain why random priority has been successfully used in practice, although in the worst case the optimal social welfare is Theta(sqrt{n}) times of what random priority achieves. These results also pave the way for further studies of smoothed and average-case analysis for approximate mechanism design problems, beyond the worst-case analysis

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing

    On the conditions for efficient interoperability with threads: An experience with PGAS languages using Cray communication domains

    Get PDF
    Today's high performance systems are typically built from shared memory nodes connected by a high speed network. That architecture, combined with the trend towards less memory per core, encourages programmers to use a mixture of message passing and multithreaded programming. Unfortunately, the advantages of using threads for in-node programming are hindered by their inability to efficiently communicate between nodes. In this work, we identify some of the performance problems that arise in such hybrid programming environments and characterize conditions needed to achieve high communication performance for multiple threads: addressability of targets, separability of communication paths, and full direct reachability to targets. Using the GASNet communication layer on the Cray XC30 as our experimental platform, we show how to satisfy these conditions. We also discuss how satisfying these conditions is influenced by the communication abstraction, implementation constraints, and the interconnect messaging capabilities. To evaluate these ideas, we compare the communication performance of a thread-based node runtime to a process-based runtime. Without our GASNet extensions, thread communication is significantly slower than processes - up to 21x slower. Once the implementation is modified to address each of our conditions, the two runtimes have comparable communication performance. This allows programmers to more easily mix models like OpenMP, CILK, or pthreads with a GASNet-based model like UPC, with the associated performance, convenience and interoperability advantages that come from using threads within a node. © 2014 ACM

    Auctions and bidding: A guide for computer scientists

    Get PDF
    There is a veritable menagerie of auctions-single-dimensional, multi-dimensional, single-sided, double-sided, first-price, second-price, English, Dutch, Japanese, sealed-bid-and these have been extensively discussed and analyzed in the economics literature. The main purpose of this article is to survey this literature from a computer science perspective, primarily from the viewpoint of computer scientists who are interested in learning about auction theory, and to provide pointers into the economics literature for those who want a deeper technical understanding. In addition, since auctions are an increasingly important topic in computer science, we also look at work on auctions from the computer science literature. Overall, our aim is to identifying what both these bodies of work these tell us about creating electronic auctions. © 2011 ACM.This work was funded in part by HP under the “Always on” grant, by NSF IIS-0329037 “Tools and Techniques for Automated Mechanism Design”, and by IEA (TIN2006-15662-C02-01), OK (IST-4-027253-STP), eREP(EC-FP6-CIT5-28575) and Agreement Technologies (CONSOLIDER CSD2007-0022, INGENIO 2010).Peer Reviewe
    • …
    corecore