267 research outputs found

    Game-theoretic power allocation and the Nash equilibrium analysis for a multistatic MIMO radar network

    Get PDF
    CCBY We investigate a game-theoretic power allocation scheme and perform a Nash equilibrium analysis for a multistatic multiple-input multiple-output (MIMO) radar network. We consider a network of radars, organized into multiple clusters, whose primary objective is to minimize their transmission power, while satisfying a certain detection criterion. Since there is no communication between the distributed clusters, we incorporate convex optimization methods and noncooperative game-theoretic techniques based on the estimate of the signal to interference plus noise ratio (SINR) to tackle the power adaptation problem. Therefore, each cluster egotistically determines its optimal power allocation in a distributed scheme. Furthermore, we prove that the best response function of each cluster regarding this generalized Nash game (GNG) belongs to the framework of standard functions. The standard function property together with the proof of the existence of solution for the game guarantees the uniqueness of the Nash equilibrium. The mathematical analysis based on Karush-Kuhn-Tucker conditions reveal some interesting results in terms of number of active radars and the number of radars that over satisfy the desired SINRs. Finally, the simulation results confirm the convergence of the algorithm to the unique solution and demonstrate the distributed nature of the system

    Use of Pattern Classification Algorithms to Interpret Passive and Active Data Streams from a Walking-Speed Robotic Sensor Platform

    Get PDF
    In order to perform useful tasks for us, robots must have the ability to notice, recognize, and respond to objects and events in their environment. This requires the acquisition and synthesis of information from a variety of sensors. Here we investigate the performance of a number of sensor modalities in an unstructured outdoor environment, including the Microsoft Kinect, thermal infrared camera, and coffee can radar. Special attention is given to acoustic echolocation measurements of approaching vehicles, where an acoustic parametric array propagates an audible signal to the oncoming target and the Kinect microphone array records the reflected backscattered signal. Although useful information about the target is hidden inside the noisy time domain measurements, the Dynamic Wavelet Fingerprint process (DWFP) is used to create a time-frequency representation of the data. A small-dimensional feature vector is created for each measurement using an intelligent feature selection process for use in statistical pattern classification routines. Using our experimentally measured data from real vehicles at 50 m, this process is able to correctly classify vehicles into one of five classes with 94% accuracy. Fully three-dimensional simulations allow us to study the nonlinear beam propagation and interaction with real-world targets to improve classification results

    Multibeam radar system based on waveform diversity for RF seeker applications

    Get PDF
    Existing radiofrequency (RF) seekers use mechanically steerable antennas. In order to improve the robustness and performance of the missile seeker, current research is investigating the replacement of mechanical 2D antennas with active electronically controlled 3D antenna arrays capable of steering much faster and more accurately than existing solutions. 3D antenna arrays provide increased radar coverage, as a result of the conformal shape and flexible beam steering in all directions. Therefore, additional degrees of freedom can be exploited to develop a multifunctional seeker, a very sophisticated sensor that can perform multiple simultaneous tasks and meet spectral allocation requirements. This thesis presents a novel radar configuration, named multibeam radar (MBR), to generate multiple beams in transmission by means of waveform diversity. MBR systems based on waveform diversity require a set of orthogonal waveforms in order to generate multiple channels in transmission and extract them efficiently at the receiver with digital signal processing. The advantage is that MBR transmit differently designed waveforms in arbitrary directions so that waveforms can be selected to provide multiple radar functions and better manage the available resources. An analytical model of an MBR is derived to analyse the relationship between individual channels and their performance in terms of isolation and phase steering effects. Combinations of linear frequency modulated (LFM) waveforms are investigated and the analytical expressions of the isolation between adjacent channels are presented for rectangular and Gaussian amplitude modulated LFM signals with different bandwidths, slopes and frequency offsets. The theoretical results have been tested experimentally to corroborate the isolation properties of the proposed waveforms. In addition, the practical feasibility of the MBR concept has been proved with a radar test bed with two orthogonal channels simultaneously detecting a moving target

    Radar sensing for ambient assisted living application with artificial intelligence

    Get PDF
    In a time characterized by rapid technological advancements and a noticeable trend towards an older average population, the need for automated systems to monitor movements and actions has become increasingly important. This thesis delves into the application of radar, specifically Frequency Modulated Continuous Wave (FMCW) radar, as an emerging and effective sensor in the field of "Activity Recognition." This area involves capturing motion data through sensors and integrating it with machine learning algorithms to autonomously classify human activities. Radar is distinguished by its ability to accurately track complex bodily movements while ensuring privacy compliance. The research provides an in-depth examination of FMCW radar, detailing its operational principles and exploring radar information domains such as range-time and micro-Doppler signatures. Following this, the thesis presents a state-of-the-art review in activity recognition, discussing key papers and significant works that have shaped the field. The thesis then focuses on research topics where contributions were made. The first topic is human activity recognition (HAR) with different physiology, presenting a comprehensive experimental setup with radar sensors to capture various human activities. The analysis of classification results reveals the effectiveness of different radar representations. Advancing into the domain of resource-constrained system platforms. It introduces adaptive thresholding for efficient data processing and discusses the optimization of these methods using artificial intelligence, particularly focusing on the evolution algorithm such as Self-Adaptive Differential Evolution Algorithm (SADEA). The final chapter discusses the use of Long Short-Term Memory (LSTM) networks for short-range personnel recognition using radar signals. It details the training and testing methodologies and provides an analysis of LSTM networks performance in temporal classification tasks. Overall, this thesis demonstrates the effectiveness of merging radar technology with machine learning in HAR, particularly in assisted living. It contributes to the field by introducing methods optimized for resource-limited settings and innovative approaches in temporal classification using LSTM networks

    Multiple-Target Tracking in Complex Scenarios

    Get PDF
    In this dissertation, we develop computationally efficient algorithms for multiple-target tracking: MTT) in complex scenarios. For each of these scenarios, we develop measurement and state-space models, and then exploit the structure in these models to propose efficient tracking algorithms. In addition, we address design issues such as sensor selection and resource allocation. First, we consider MTT when the targets themselves are moving in a time-varying multipath environment. We develop a sparse-measurement model that allows us to exploit the inherent joint delay-Doppler diversity offered by the environment. We then reformulate the problem of MTT as a block-support recovery problem using the sparse measurement model. We exploit the structure of the dictionary matrix to develop a computationally efficient block support recovery algorithm: and thereby a multiple-target tracking algorithm) under the assumption that the channel state describing the time-varying multipath environment is known. Further, we also derive an upper bound on the overall error probability of wrongly identifying the support of the sparse signal. We then relax the assumption that the channel state is known. We develop a new particle filter called the Multiple Rao-Blackwellized Particle Filter: MRBPF) to jointly estimate both the target and the channel states. We also compute the posterior Cramér-Rao bound: PCRB) on the estimates of the target and the channel states and use the PCRB to find a suitable subset of antennas to be used for transmission in each tracking interval, as well as the power transmitted by these antennas. Second, we consider the problem of tracking an unknown number and types of targets using a multi-modal sensor network. In a multi-modal sensor network, different quantities associated with the same state are measured using sensors of different kinds. Hence, an efficient method that can suitably combine the diverse information measured by each sensor is required. We first develop a Hierarchical Particle Filter: HPF) to estimate the unknown state from the multi-modal measurements for a special class of problems which can be modeled hierarchically. We then model our problem of tracking using a hierarchical model and then use the proposed HPF for joint initiation, termination and tracking of multiple targets. The multi-modal data consists of the measurements collected from a radar, an infrared camera and a human scout. We also propose a unified framework for multi-modal sensor management that comprises sensor selection: SS), resource allocation: RA) and data fusion: DF). Our approach is inspired by the trading behavior of economic agents in commercial markets. We model the sensors and the sensor manager as economic agents, and the interaction among them as a double sided market with both consumers and producers. We propose an iterative double auction mechanism for computing the equilibrium of such a market. We relate the equilibrium point to the solutions of SS, RA and DF. Third, we address MTT problem in the presence of data association ambiguity that arises due to clutter. Data association corresponds to the problem of assigning a measurement to each target. We treat the data association and state estimation as separate subproblems. We develop a game-theoretic framework to solve the data association, in which we model each tracker as a player and the set of measurements as strategies. We develop utility functions for each player, and then use a regret-based learning algorithm to find the correlated equilibrium of this game. The game-theoretic approach allows us to associate measurements to all the targets simultaneously. We then use particle filtering on the reduced dimensional state of each target, independently

    One Tone, Two Ears, Three Dimensions: An investigation of qualitative echolocation strategies in synthetic bats and real robots

    Get PDF
    Institute of Perception, Action and BehaviourThe aim of the work reported in this thesis is to investigate a methodology for studying perception by building and testing robotic models of animal sensory mechanisms. Much of Artificial Intelligence studies agent perception by exploring architectures for linking (often abstract) sensors and motors so as to give rise to particular behaviour. By contrast, this work proposes that perceptual investigations should begin with a characterisation of the underlying physical laws which govern the specific interaction of a sensor (or actuator) with its environment throughout the execution of a task. Moreover, it demonstrates that, through an understanding of task-physics, problems for which architectural solutions or explanations are often proposed may be solved more simply at the sensory interface - thereby minimising subsequent computation. This approach is applied to an investigation of the acoustical cues that may be exploited by several species of tone emitting insectivorous bats (species in the families Rhinolophidae and Hipposideridae) which localise prey using systematic pinnae scanning movements. From consideration of aspects of the sound filtering performed by the external and inner ear or these bats, three target localisation mechanisms are hypothesised and tested aboard a 6 degree-of-freedom, binaural, robotic echolocation system.In the first case, it is supposed that echolocators with narrow-band call structures use pinna movement to alter the directional sensitivity of their perceptual systems in the same whay that broad-band emitting bats rely on pinnae morphology to alter acoustic directionality at different frequencies.Scanning receivers also create dynamic cues - in the form of frequency and amplitude modulations - which very systematically with target angle. The second hypothesis investigated involves the extraction of timing cues from amplitude modulated echo envelopes

    Virtual aids to navigation

    Get PDF
    There are many examples of master, bridge crew and pilot errors in navigation causing grounding under adverse circumstances that were known and published in official notices and records. Also dangerous are hazards to navigation resulting from dynamic changes within the marine environment, inadequate surveys and charts. This research attempts to reduce grounding and allision incidents and increase safety of navigation by expanding mariner situational awareness at and below the waterline using new technology and developing methods for the creation, implementation and display of Virtual Aids to Navigation (AtoN) and related navigation information. This approach has widespread significance beyond commonly encountered navigation situations. Increased vessel navigation activity in the Arctic and sub-Arctic regions engenders risk due, in part, to the inability to place navigational aids and buoys in constantly changing ice conditions. Similar conditions exist in tropical regions where sinker placement to moor buoys in sensitive environmental areas with coral reefs is problematic. Underdeveloped regions also lack assets and infrastructure needed to provide adequate navigation services, and infrastructure can also rapidly perish in developed regions during times of war and natural disaster. This research exploits rapidly developing advances in environmental sensing technology, evolving capabilities and improved methods for reporting real time environmental data that can substantially expand electronic navigation aid availability and improve knowledge of undersea terrain and imminent hazards to navigation that may adversely affect ship operations. This is most needed in areas where physical aids to navigation are scarce or non-existent as well as in areas where vessel traffic is congested. Research to expand related vessel capabilities is accomplished to overcome limitations in existing and planned electronic aids, expanding global capabilities and resources at relatively low-cost. New methods for sensor fusion are also explored to vi reduce overall complexity and improve integration with other navigation systems with the goal of simplifying navigation tasks. An additional goal is to supplement training program content by expanding technical resources and capabilities within the confines of existing International Convention on Standards for Training, Certification and Watchkeeping for Seafarers (STCW) requirements, while improving safety by providing new techniques to enhance situational awareness
    • …
    corecore