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Abstract—We investigate a game-theoretic power allocation
scheme and perform a Nash equilibrium analysis for a multistatic
multiple-input multiple-output radar network. We consider a net-
work of radars, organized into multiple clusters, whose primary
objective is to minimize their transmission power, while satisfying
a certain detection criterion. Since there is no communication be-
tween the distributed clusters, we incorporate convex optimization
methods and noncooperative game-theoretic techniques based on
the estimate of the signal-to-interference-plus-noise ratio (SINR) to
tackle the power adaptation problem. Therefore, each cluster ego-
tistically determines its optimal power allocation in a distributed
scheme. Furthermore, we prove that the best response function of
each cluster regarding this generalized Nash game belongs to the
framework of standard functions. The standard function property
together with the proof of the existence of the solution for the game
guarantees the uniqueness of the Nash equilibrium. The mathemat-
ical analysis based on Karush–Kuhn–Tucker conditions reveals
some interesting results in terms of the number of active radars
and the number of radars that over satisfy the desired SINRs.
Finally, the simulation results confirm the convergence of the al-
gorithm to the unique solution and demonstrate the distributed
nature of the system.

Index Terms—MIMO radar, power allocation, game theory,
multistatic radar, Nash equilibrium, noncooperative game.

I. INTRODUCTION

R ECENT advances in digital signal processing and the con-
stant development of computational capabilities suggest

that it may be feasible for next generation radar systems to in-
corporate multiple-input multiple-output (MIMO) technology.
The superiority of a MIMO radar against other radar schemes
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lies in its waveform diversity, which in essence means that a
MIMO radar can simultaneously emit several diverse, possibly
linearly independent waveforms via multiple antennas, in con-
trast to existing radar systems that transmit scaled versions of
the same, predefined waveform [1]. In particular, there are two
principal types of MIMO radar, those that incorporate colocated
antennas [2] and systems equipped with widely separated anten-
nas (bistatic, multistatic) [3]. MIMO radar technology provides
direct applicability of adaptive beamforming [4], waveform de-
sign and power allocation, higher angular resolution, ability to
acquire the target’s geometrical characteristics through the radar
cross section (RCS) and multiple target detection [1]. However,
in order to combat multiple source interference in a radar field,
while achieving high detection performance using minimum
power consumption, the system should adopt an optimal re-
source allocation strategy. A centralised approach to resource
allocation is possible using convex optimization techniques for
example. Nevertheless, centralised control may not be desirable
or will have implementation difficulties in a multistatic radar
network and thus it is preferred to consider autonomous decen-
tralised resource allocation schemes. A natural and efficient tool
to achieve this is game theory, which provides a framework for
analyzing coordination and conflict between rational but selfish
players.

Recently, game-theoretic techniques have been extensively
explored within the radar research community to tackle sev-
eral issues and to improve and optimize various radar parame-
ters. Specifically, the authors in [5] and [6] formulated a non-
cooperative game to address the power optimization problem
with a predefined SINR constraint. Furthermore, to extend the
study in [5], a signal-to-disturbance ratio (SDR) estimation tech-
nique was applied in [7]. Three different game theoretic tech-
niques were applied in [8] to address a distributed beamforming
and power allocation problem for a radar system in the pres-
ence of multiple targets. Specifically, a strategic non-cooperative
game, a partially cooperative game and a Stackelberg game were
applied to obtain the optimal resource allocation strategy, while
satisfying a certain SINR criterion for each of the targets. A two-
player, non-cooperative, zero-sum game was considered in [9] to
investigate the interaction between a radar and a jammer. Non-
cooperative MIMO radar and jammer games were also applied
in [10], where the utility functions were formulated using the
mutual information criterion. The authors in [11] studied the

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0003-0651-3926
https://orcid.org/0000-0002-5820-6509


6398 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 24, DECEMBER 15, 2017

problem of polarimetric waveform design by forming a zero-
sum game between a target and a radar engineer. Moreover,
in [12], the power allocation problem of a distributed MIMO
radar was tackled using a cooperative game approach through
maximizing the Bayesian-Fisher information matrix (B-FIM)
and exploiting the Shapley value solution. Potential game the-
ory techniques were exploited in [13] for optimal waveform
design and maximization of the detection performance. A proof
of the uniqueness of the Nash equilibrium of a potential game
waveform design problem was presented in [14]. Finally, the au-
thors in [15] proposed a water filling method for optimal power
distribution using a Stackelberg game-theoretic framework.

In this paper, motivated by the results in [5] and [7], we re-
visit the power allocation problem of a distributed, multistatic
radar network, where multiple MIMO radars are organized into
clusters. It should be emphasized that this problem is particu-
larly attractive to tracking radars where we have certain belief
on the approximate location of the target, but we will require
fine detection to retrieve further information regarding the tar-
get’s exact position and characteristics. The primary goal of
each cluster is to secure a certain detection criterion, in terms
of signal-to-interference plus noise (SINR) ratio, while allo-
cating the minimum possible power to each radar. Hence, we
formulate a generalized Nash game (GNG), where there is no
communication between the clusters of the network, despite the
fact that they belong to the same organization. Such a scheme
could be deployed in a scenario, where the opponent incorpo-
rates electronic warfare methods to intercept information about
the location of the radars. In this case, in order to apply the
game-theoretic algorithm, we require estimation of the SINR,
as there is no coordination between the clusters and thus no
information on the inter-cluster channel gains.

The main contribution of this work lies in the proof of the
uniqueness of the Nash equilibrium of the game-theoretic power
allocation problem described above. Specifically, we demon-
strate that the best response function of each cluster in this
GNG belongs to the family of standard functions by using con-
vex optimization techniques and by analyzing the Lagrangian
dual of the initial optimization problem. Moreover, through the
game-theoretic analysis, we have characterized the behavior of
the radars in a cluster. Specifically, the theoretical results based
on Karush-Kuhn-Tucker conditions showed that in a cluster, the
number of radars that exactly achieve the desired SINR is equal
to the number of radars that are actively transmitting. This pow-
erful result has facilitated the proof of uniqueness of the Nash
equilibrium. Furthermore, the simulation results confirm the
convergence of the algorithm to the unique Nash equilibrium.

This paper is organized as follows. Section II introduces the
decentralized radar network as the system model. In Section III
we present the game-theoretic formulation of the problem and
the definition of the generalized Nash game (GNG) considered
in this paper. The SDR estimation technique utilized in this work
is demonstrated in Section IV. The analysis on the existence and
uniqueness of the Nash equilibrium is performed in Section V.
Finally, the simulation results and the concluding remarks are
presented in Sections VI and VII, respectively.

Fig. 1. A distributed MIMO radar network with K clusters and their corre-
sponding channel gains.

Notation: We use bold lower-case letters and bold uppercase
letters to denote column vectors and matrices, respectively. aH

gives the Hermitian of the vector a and aT denotes its transpose.
A(i, j) corresponds to the element located on the ith row and
jth column of matrix A. IM stands for the M ×M identity
matrix. The Euclidean norm is denoted by || · ||. AnN × 1 vec-
tor of ones is indicated by 1N . Finally, any inequalities among
vectors are considered element-wise.

II. SYSTEM MODEL

We consider a decentralized, multistatic radar network that
consists of K separate clusters C = {C1 , . . . , CK } each con-
sisting of M radars, i.e. Ck = {Rk1 , . . . , RkM } for all k =
1, . . . ,K. Such a radar network with a possible target is shown
in Fig. 1. The primary aim for each radar in every cluster is to
attain a predefined detection criterion, consuming the minimum
possible transmission power. In the considered framework of
noncooperative games, each cluster performs the power mini-
mization autonomously. There is communication and coordina-
tion among the radars within the same cluster, whereas there
is no coordination between different clusters in the network.
Consequently, each cluster possesses full information regard-
ing the channel gains of its respective radars, whereas it has no
knowledge of the inter-cluster cross channel gains. Neverthe-
less, this scenario is not competitive and the radars should avoid
causing interference to the rest of the clusters of the network
intentionally, since they belong to the same organization.

In order to identify the desired target, each one of the M
radars in the kth cluster transmits the respective element of the
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predesigned waveform vector ψk (t) = [ψk1(t), . . . , ψkM (t)]T

of size M × 1, which satisfies the orthogonality condition∫
T0
ψk (t)ψ

H
k (t)dt = IM , where T0 is the radar pulse width

and t refers to the time index within the radar pulse. Hence,
we exploit the waveform diversity of the MIMO architecture,
since the waveforms corresponding to different radars of the
same cluster are orthogonal, i.e.,

∫
ψki(t)ψkj (t)dt = 0, where

i �= j. On the other hand, waveforms emitted from radars be-
longing to different clusters may not be orthogonal and thus
could induce considerable inter-cluster interference. We assume
that each cluster determines the presence of a target, by apply-
ing a binary hypothesis testing on the received signal based on
the generalized likelihood ratio test (GLRT) [5]. The sampled
pulses of the received signal for radar i in cluster k Rki , under
the two hypotheses H0 and H1 of target being absent and target
being present respectively, are written as the complex N × 1
vectors as:

H0 : xki = iki + dki (no target present) (1)

H1 : xki =
M∑

j=1

αkjiskij + iki + dki (target present) (2)

where skij = √
pkjψkj (n) � akij denotes the desired received

signal at radar Rki corresponding to the transmission of radar
Rkj , which incorporates the Doppler shift introduced by the
target. The parameter αkji denotes the channel gain, in-
cluding the geometrical signature of the target, i.e. its radar
cross section (RCS), from radar Rkj to radar Rki , akij =
[1, ej2πfD , k , i , j , . . . , ej2π (N−1)fD , k , i , j ]T is the Doppler steering
vector, fD,k,i,j denotes the normalized Doppler shift at radar
Rki originating from the target’s movement when reflecting the
transmitted signal from radarRkj ,N is the number of signal re-
turn samples that the radars receive at each time step of duration
T0 and pkj stands for the transmission power of radar Rkj . The
inter-cluster interference experienced by radar Rki due to the
emissions from radars belonging to all other clusters is denoted
as

iki =
K∑

�=1
� �=k

M∑

j=1

β�jki
√
p�jψ�j (n) � 1N

+
K∑

�=1
� �=k

M∑

j=1

φ�jki
√
p�jψ�j (n) � ai�jki

+
K∑

�=1
� �=k

M∑

j=1

φc�jki
√
p�jψ�j (n) � ac�jki

where β�jki describes the direct cross-channel gain from radar
R�j to radar Rki , which depends on the respective characteris-
tics of the antennas and the distance between the radars. Since
all the radars are considered stationary in the proposed model,
there is no relative Doppler frequency regarding the direct cross-
channel interference, hence the Doppler based steering vec-
tor associated with the waveform vector transmitted from the
radars in clusters other than k is shown as an N × 1 vector

of all ones 1N . The term φ�jki stands for the target reflection
gain at radar Rki originating from the signal transmitted from
radar R�j , ai�jki = [1, ej2πf

i
D , � , j , k , i , . . . , ej2π (N−1)f iD , � , j , k , i ]T

describes the Doppler steering aspects of the target at radar
Rki arising from the reflected signal from radar R�j and
fiD,�,j,k ,i is the corresponding Doppler frequency shift. The
term φc�jki denotes the clutter reflection gain at radar Rki orig-
inating from the signal transmitted from radar R�j , ac�jki =
[1, ej2πf

c
D , � , j , k , i , . . . , ej2π (N−1)f cD , � , j , k , i]T describes the Doppler

steering vector of the target at radar Rki arising from the re-
flected signal from radar R�j and fcD,�,j,k ,i is the correspond-
ing Doppler frequency shift. The last components of the re-
ceived signal in (2) are the noise and the clutter introduced by
the waveforms transmitted by the radars in cluster k denoted
by the parameter dki =

∑M
j=1 ckji

√
pkjψkj (n) � ackij + n,

where ckji includes the signal propagation loss and the ge-
ometrical characteristics of the clutter, in other words its
RCS, ackij = [1, ej2πf

c
D , k , i , j , . . . , ej2π (N−1)f cD , k , i , j ]T denotes

the Doppler steering vector at radarRki associated with the clut-
ter and fcD,k,i,j denotes the normalized Doppler shift at radar
Rki arising from the clutter’s movement when reflecting the
transmitted signal from radar Rkj and each element of n is
white Gaussian noise (WGN) with variance σ2

n .
The received signal xki is subsequently sent to a bank

of matched filters, matching each of the orthogonal wave-
forms and incorporating the Doppler effect as ψki(n) � akij ,
i = 1, . . . ,M . Subsequently, the corresponding energy at the
output of the matched filter is accumulated. Hence, the expected
energy of the signal originating from the target direction for
radar Rki can be given by:

‖yexp(ki)‖2 =
M∑

j=1

E{|αkji |2}pkj =
M∑

j=1

hkjipkj (3)

where αkji ∼ CN (0, hkji), hence hkji denotes the variance
of the desired channel gain, which includes the information
on the target’s RCS. As observed from Fig. 1 and equation
(2) the detection of a target is deteriorated by direct inter-cluster
interference, in addition to the clutter effect and the noise power.
Therefore, the expected power of the accumulated interference
and noise for radar Rki can be modeled as:

‖yinterf (ki)‖2 =
M∑

j=1

νkjipkj

+
K∑

�=1
� �=k

M∑

j=1

(μ�jki + ε�jki + εc�jki)p�j + σ2
n (4)

where σ2
n denotes the noise power, ckji ∼ CN (0, νkjiξkji) and

νkji defines the variance of the accumulated clutter channel
gains, embedding information on the clutter’s RCS, ξkji ac-
counts for the correlation factor associated with the difference
of the Doppler frequencies between the target and the clutter. For
the rest of this paper, we include the Doppler correlation factor
ξkji in the term νkji for simplicity. β�jki ∼ CN (0, μ�jki��jki)
and μ�jki��jki describes the variance of the accumulated direct
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cross-channel gain, aggregating a non-zero correlation factor
��jki between the waveform vector emitted from radar R�j and
the matched filtering waveform at radar receiver Rki . With-
out loss of generality, we assimilate the waveform correlation
factor ��jki and consider the whole term as μ�jki in the se-
quel. φ�jki ∼ CN (0, ε�jki �̃�jki) and ε�jki is the variance of the
accumulated inter-cluster target reflection gain, including in-
formation on the target’s RCS and �̃�jki is the correlation fac-
tor between the target reflected waveform emitted from radar
R�j and the matched filtering waveform at radar receiver Rki .
φc�jki ∼ CN (0, εc�jki �̃

c
�jki) and εc�jki describes the variance of

the accumulated inter-cluster clutter reflection gain and �̃c�jki
is the correlation factor between the clutter reflected waveform
emitted from radar R�j and the matched filtering waveform at
radar receiver Rki . We assume that the variances of the inter-
cluster target and clutter reflection gains are significantly smaller
when compared to the variance of the direct cross-channel gain
and hence ε�jki and εc�jki are neglected for the rest of this work.
Also, as we do not assume any prior knowledge of the interfer-
ence coming from radars in other clusters but we only estimate
it, these terms can also be absorbed in μ�jki .

Based on the above definitions, the expected SINR for the ith
radar in the kth cluster is written as

SINRki =

∑M
j=1hkjipkj

∑M
j=1 νkjipkj +

∑K
�=1
� �=k

∑M
j=1μ�jkip�j + σ2

n

. (5)

In order to design an efficient detector for the hypothesis test-
ing we utilize the GLRT. Assuming the clutter and interference
contribution is considered as Gaussian noise, the probability
density functions of xki under hypothesis H0 and H1 respec-
tively, can be given by:

fH0 (xki ;σ
2
H0

) =
1

(2π)N/2σNH0

e
− ‖x k i ‖2

2 σ2
H0 (6)

fH1 (xki ;aki ,σ
2
H1

) =
1

(2π)N/2σNH1

e
−

‖x k i −
∑M

j = 1
α k j i sk i j ‖2

2 σ2
H1

(7)

where aki = [αk1i , . . . , αkM i ]T . The maximum likelihood
(ML) estimate of noise variance under the hypothesis H0 , when
there is no target present, can be obtained by σ̂2

H0
= ‖xk i ‖2

/N .
Subsequently, by keeping σ2

H1
fixed and differentiating fH1

with respect to αkji , the ML estimate for αkji∀i = 1, . . . ,M is

given by α̂kji = sHk i j xk i/N . After obtaining the ML estimate for
αkji , we substitute it in (7) and maximize with respect to σ2

H1

to derive the maximum likelihood estimate for σ2
H1

as:

σ̂2
H1

=
‖xki −

∑M
j=1 α̂kjiskij‖2

N

Let λki ∈ [0, 1] denotes the detection threshold for the hypoth-
esis testing for each radar i = 1, . . . ,M in cluster k and thus
the GLRT can be reformulated as:

fH1

fH0

=

∑M
j=1 |sHkijxki |2
‖xki‖2N

H1

≷
H0

λki (8)

The performance and efficiency are generally assessed in
terms of the probabilities of detection Pd and false alarm Pfa
for each radar. It is shown in [16] that as the number of samples
approaches infinity, the performance of the GLRT is similar to
that of the Neyman-Pearson detector. Consequently, the thresh-
old for hypothesis testing λki can be obtained from the desired
probability of false alarmPfa [6], [17]–[19]. However, the prob-
ability of detection will depend on the threshold and the SINR
associated with the received signal. Hence, for a given Pfa ,
and a desired Pd , it is possible to determine the desired SINR
γ∗ki [6], [17]–[19]. Hence, we formulate our game-theoretic re-
source allocation problem as optimizing transmission power
while achieving a desired SINR, as presented in the next sec-
tion.

III. GAME-THEORETIC FORMULATION

As described in the previous sections, the main goal for each
cluster is to decide the optimal power allocation for its respective
radars, while attaining a specific detection criterion. As we ob-
serve from the SINR equation (5), although increased power al-
location at a specific cluster improves the detection performance,
it induces higher interference to the environment and conse-
quently to the remaining radars of the network. Therefore, by
exploiting noncooperative game-theoretic techniques, we model
this interaction as a generalized Nash game. The set of clusters
C = {C1 , . . . , CK } are considered to be the players of the game.
The action set of the kth player is Pk = Pk1 × . . .× PkM with

Pki = {pki ∈ R+}, ∀i ∈ {1, . . . ,M}
The acceptable strategy set of the GNG depends both on the
action of the kth player Pk and the actions of all other players
P−k and is defined as

Sk (p−k ) = {pk ∈ Pk | SINRki ≥ γ∗k , ∀i = 1, . . . ,M} (9)

where p−k denotes the power allocation adopted by all other
players except player k. Let us also define pk = [pk1 , . . . ,
pkM ]T as the power allocation vector of cluster k. It is evi-
dent from equation (5), that the SINR is a function of the power
allocation of allK players. Thus, the interdependency of the ad-
missible strategies is clearly stated through the constraints in (9).
The game model is completed by defining the utility function
as uk (p−k ,pk ) =

∑M
i=1 pki , which represents the total trans-

mission power of cluster k. At this point, we can summarize the
game as:

G =< C, (Pk )k∈{1,...,K }, (Sk )k∈{1,...,K }, (uk )k∈{1,...,K } >

In this GNG, player k greedily minimizes its transmission
power, while all radars belonging to cluster k attain the target
SINR, given the power allocation strategies of all the other
players. Therefore, the best action for the kth player is given by
the following set, denoted by BRk :

BRk (p−k ) = {p∗
k ∈ Pk |

uk (p−k ,p∗
k ) ≤ uk (p−k ,pk ),∀pk ∈ Sk (p−k )}

Recalling the action set of player k, the above set can
be determined by solving the following convex optimization
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problem:

min
pk ∈Pk

uk (p−k ,pk ) (10)

s.t. SINRki ≥ γ∗ki , ∀i = 1, . . . ,M

pk ≥ 0

It is apparent that for any cluster of radars, if the optimization
problem in the absence of inter-cluster interference and noise
is infeasible, then the optimization in the presence of the inter-
cluster interference and noise is also infeasible. Hence, it is
important to ensure that the SINR targets are set such that the
following signal-to-intra-cluster interference ratio (SICIR) is
achievable:

SICIRki =

∑M
j=1hkjipkj

∑M
j=1νkjipkj

≥ γ∗ki , ∀i = 1, . . . ,M (11)

It can be deduced from (11) that for certain values of hkji and
νkji , (10) could become infeasible for high SINR targets. In
such cases, when low SINR targets are required for ensuring
feasibility, we could rely on increasing the dwell time of the
radar on the target. In other words, by increasing the number
of signal return samples N , a lower SINR target γ∗ki can be
used for detection, as shown in [6]. Hence, in this work, we
assume that the SINR targets are appropriately chosen, such
that for the given target and clutter channel realizations, namely
hkji and νkji , the constraints in (11) are achievable, i.e. the
convex optimization problem (10) is feasible in the absence
of inter-cluster interference and noise. However, if the prob-
lem is feasible in the absence of inter-cluster interference and
noise, then the problem is also feasible in the presence of
inter-cluster interference and noise as stated by the following
proposition.

Proposition 1: If the convex optimization problem in (10) in
the absence of inter-cluster interference and noise is feasible,
then the problem is also feasible in the presence of inter-cluster
interference and noise.

Proof: The proof is based on showing that there exists a
positive scaling factor for the power allocation such that the
SICIRs and the SINRs asymptotically approach the same values
as demonstrated in [20]. Let the inter-cluster plus noise term be
denoted as r−ki =

∑K
�=1
� �=k

∑M
j=1 μ�jkip�j + σ2

n . Since r−ki is

strictly positive by definition, the SINRs of the general case
model are strictly lower than the SICIRs in the absence of r−ki ,
namely

∑M
j=1hkjipkj

∑M
j=1νkjipkj + r−ki

<

∑M
j=1hkjipkj

∑M
j=1νkjipkj

for every radar in the system. However, by scaling the power
allocation pk to βpk for appropriately large β > 0 and divid-
ing both the numerator and the denominator of the left hand
side of the above inequality, then as the term r−k i/β approaches
zero for arbitrarily large β, the SINRs approach the SICIRs
within a required accuracy. Since the optimization problem with
SICIR constraints is feasible, the power allocation vector pk is

non-negative. Hence, there exists a scaled non-negative power
allocation vector that also renders the problem in the presence
of inter-cluster interference and noise feasible. �

A crucial part of a game-theoretic analysis is to investigate
whether the game G converges to a stable solution, where no
player can benefit by unilaterally deviating its power allocation
strategy. Such a solution defines the Nash Equilibrium and for
the game G describes the strategy profile (p∗

−k ,p
∗
k ) when:

uk (p∗
−k ,p

∗
k ) ≤ uk (p∗

−k ,pk ), ∀pk ∈ Sk (p∗
−k ),∀k ∈ C.

It is evident from the constraints of (10) and the definition
of SINR (5), that each radar in cluster k requires knowledge
of the inter-cluster interference plus noise term, r−ki , in order
to determine its optimal power allocation. However, since we
assume no communication between the clusters, it is difficult
to obtain the required information and thus we overcome this
deficiency by using the estimate of the instantaneous SINR γ̂ki
using a similar approach as discussed in [6]. Section V de-
scribes the power allocation optimization based on the estimate
of SINR.

IV. EXISTENCE AND UNIQUENESS OF THE NASH EQUILIBRIUM

A. Existence

The existence of a generalized Nash equilibrium (GNE) fol-
lows from the result in [21] on abstract economies. According
to this result, a GNE exists if the following hold: for all play-
ers k = 1, . . . ,K the set Pk is compact and convex, the utility
function uk (p−k , pk ) is continuous on P and quasi-convex in
pk . For every p−k the set-valued function Sk is continuous with
closed graph and for every p−k the setSk (p−k ) is non-empty and
convex. For our problem, these requirements can be straightfor-
wardly established using analytic notions, hence there exists a
GNE for our game.

B. Uniqueness of the Solution Through Duality Analysis

The main contribution of this paper lies in the analysis and
the derivation of the proof of the uniqueness of the Nash equi-
librium for the strategic noncooperative game G. According to
the result in [22] and since the existence of a GNE is secured,
our primary objective is to prove that the best response of each
cluster is a standard function, which is a sufficient condition
for the uniqueness of the solution. By exploiting the convexity
of the optimization problem (10) we derive the respective La-
grangian, the Karush-Kuhn-Tucker (KKT) conditions and the
Lagrangian dual problem. The analysis of the KKT conditions
is necessary for the equilibrium analysis as some of the radars
may achieve the desired SINR with inequality, i.e. could over
satisfy the SINR requirement. First, we reproduce the definition
of a standard function [22] as follows:

A function F(x) is standard if for all x ≥ 0, the following
properties hold:
• Positivity: F(x) > 0
• Monotonicity: If x ≥ x′, then F(x) ≥ F(x′)
• Scalability: ∀a ≥ 1, aF(x) ≥ F(ax)
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In order to prove that the best response function of each clus-
ter is a standard function, we will consider the optimization
problem of the kth cluster as defined in (10). By rearranging the
constraints in matrix form and explicitly imposing constraints
for non negative radar power, we have the following minimiza-
tion problem for the kth cluster:

min
pk ∈Pk

M∑

i=1

pki

s.t. Gpk + r−k ≤ 0

− pk ≤ 0 (12)

where r−k = [r−k1 , . . . , r−kM ]T is the inter-cluster interfer-
ence plus noise vector, which can be written as r−k =∑K

� �=k M�p� + 1σ2
n , where the cross-channel matrix Mi is

given by:

M� =

⎡

⎢
⎣

μ�1k1 . . . μ�M k1
...

. . .
...

μ�1kM . . . μ�M kM

⎤

⎥
⎦

and M ×M matrix G is written as:

G = −

⎡

⎢
⎢
⎢
⎣

hk 1 1
γ ∗
k 1

− νk11 . . . hk M 1
γ ∗
k 1

− νkM 1

...
. . .

...
hk 1M
γ ∗
k M

− νk1M . . . hk M M

γ ∗
k M

− νkMM

⎤

⎥
⎥
⎥
⎦

For the multi-static scenario considered in this paper, it is pos-
sible that some of the radars in a cluster may not illuminate any
signals, however, they may use the signals generated by other
peer radars (within the same cluster) as signals of opportunity
to achieve the desired SINR and to detect the target. When all
radars are active, it is straightforward to establish uniqueness of
the GNE as will be shown in the forthcoming analysis, however,
when at least one of the radars in a cluster is inactive, the es-
tablishment of the Nash equilibrium requires further analysis in
terms of the KKT conditions, as presented later in the section.
Hence, we define the Lagrangian L associated with the problem
(12) as:

L(pk ,λa ,λb) =
M∑

i=1

pki+ λ1(G11pk1 + . . .+G1M pkM + r−k1)

. . .

+ λM (GM 1pk1 + . . . +GMM pkM + r−kM )

−m1pk1 −m2pk2 − . . . −mM pkM

= λTa r−k + (1 + GT λa − λb)T pk (13)

where λa = [λ1 , . . . , λM ]T and λb = [m1 , . . . ,mM ]T are the
Lagrange multipliers associated with the inequality constraints
of (12). Let (p∗

k ,λ
∗
a ,λ

∗
b) be the primal and dual optimal points

of (12). Then, the KKT conditions on convexity must be satisfied

[23]. In particular we have:

∂L
∂pk1

= 1 + λ1G11 + . . . + λMGM 1 −m1 = 0

. . .
∂L
∂pkM

= 1 + λ1G1M + . . . + λMGMM −mM = 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(14)

λ1(G11pk1 + . . . +G1M pkM + r−k1) = 0
. . .

λM (GM 1pk1 + . . . +GMM pkM + r−kM ) = 0

⎫
⎬

⎭
(15)

m1pk1 = 0, . . . ,mM pkM = 0 (16)

In order to investigate all of the potential outcomes of the
game G, we consider three different cases with respect to the
values of the Lagrange multipliersλa , associated with the SINR
constraints. In particular, firstly we study the case when all of
the radars achieve the SINR target with equality. In this case, all
of the corresponding Lagrangian multipliers are non zero and
the uniqueness is proved straightforwardly using the definition
of the standard function. The second case is when all of the
Lagrangian multipliers are zero. It is shown that this case is
impossible. The final case is when certain radars achieve the
desired SINR with equality while the remaining radars in the
cluster over satisfy the SINR target. In this case, we have both
zero and non-zero Lagrangian multipliers. For this case, we
resort to the analysis of the Lagrange dual problem and the
derivation of the Lagrangian function and the KKT conditions
to establish the GNE. The mathematical analysis of the proof of
the uniqueness of the solution considering all possible cases is
presented below:

Case 1: λi �= 0,∀i = 1, . . . ,M . In this case, the set of equal-
ities (15) from the KKT conditions implies that all of the SINR
inequality constraints are active and must be satisfied with equal-
ity. Hence, by reformulating (15) in a matrix form we have
Gp∗

k = −r−k . Following Proposition 1, we assume that the op-
timization problem (12) is always feasible ∀r−k > 0, hence G
must be invertible and p∗

k = −G−1r−k > 0. This case corre-
sponds to the scenario when all of the radars are active and
actually transmit signals. As a result, by replacing the interfer-
ence vector, the best response function can be stated as:

BRk (p−k ) = p∗
k = −G−1

⎛

⎝
K∑

� �=k
M�p� + 1σ2

n

⎞

⎠ (17)

Lemma 1: The best response function (17) is a standard func-
tion.

Proof: Following [24], the best response strategy (17) satis-
fies the following necessary properties for all p−k ≥ 0:

a) Positivity: The best response of the kth cluster p∗
k is

always positive, as r−k =
∑K

� �=k M�p� + 1σ2
n > 0 and

p∗
k = −G−1r−k > 0 is feasible ∀rk > 0.

b) Monotonicity: Letp−k ,p′
−k ∈ Pk withp−k ≥ p′

−k , then:

BRk (p−k) −BRk (p′
−k) = −G−1

⎛

⎝
K∑

� �= k

M� (p� − p′
�)

⎞

⎠≥ 0



DELIGIANNIS et al.: GAME-THEORETIC POWER ALLOCATION AND THE NASH EQUILIBRIUM ANALYSIS FOR A MULTISTATIC MIMO RADAR 6403

c) Scalability: For all a > 1, aBRk (p−k) > BRk (ap−k).
Indeed:

aBRk (p−k) −BRk (ap−k) = −(a− 1)G−11M σ2
n > 0.

�
This concludes the proof on the uniqueness for Case 1, where

all of the SINR constraints are satisfied with equality.
Case 2: The Lagrangian multipliers corresponding to the

SINR constraints are zero, i.e. λ1 = λ2 = . . . = λM = 0. We
prove this case does not exist, as follows.

Assuming λ1 = λ2 = . . . = λM = 0, then from (14) we
have that m1 = . . . = mM = 1. By substituting in (16), we
obtain pk1 = . . . = pkM = 0 which indicates that all the radars
in cluster k are inactive. Consequently, the constraints of the
optimization problem (12) can be restated as:

r−k1 , . . . , r−kM ≤ 0

which is a contradiction, since the inter-cluster interference plus
noise terms are always positive, i.e. r−k1 , . . . , r−kM > 0. As a
result, at least one of the radars in the cluster must be active in
order for the optimization problem (12) to be feasible.

Case 3: Here, we investigate the case when at least one of
the radars in the kth cluster achieves the SINR target with
equality and the remaining radars with inequality. Without loss
of generality, suppose that the first n radars satisfy the SINR
constraint with equality. Hence from (15) λ1 , . . . , λn > 0 and
λn+1 = . . . = λM = 0. The Lagrangian function in this case
becomes:

L̃(pk ,λa ,λb) =
M∑

i=1

pki + λ1(G11pk1 + . . .+G1M pkM + r−k1)

. . .

+ λn (Gn1pk1 + . . . +GnM pkM + r−kn )

−m1pk1 −m2pk2 − . . . −mM pkM

= λ̃
T

a r̃−k + (1 + GT λ̃a − λb)T pk (18)

where λ̃a = [λ1 , . . . , λn , 0, . . . , 0]T , r̃−k = [r−k1 , . . . , r−kn ,
0, . . . , 0]T and λb is the same as that in (13).

Theorem 1: In the case when exactly n radars in cluster k
achieve the SINR constraints with equality, then at leastM − n
radars in cluster k remain inactive and do not generate any
signals.

Proof: In order to investigate the interdependence among the
number of radars that satisfy the SINR constraint with equality
and the number of the radars that are active and actually gen-
erate illuminating waveforms in cluster k, a critical analysis on
the Lagrange multipliers λb is essential. Hence, we obtain the
Lagrange dual function g as:

g(λ̃a ,λb) = inf
pk

L̃(pk ,λa ,λb)

= λ̃
T

a r̃−k + inf
pk

(1 + GT λ̃a − λb)T pk (19)

It is straightforward from (18) that the Lagrangian is an affine
function of pk and is bounded below only when 1 + GT λ̃a −
λb = 0. Thus, it follows

g(λ̃a ,λb) =

{
λ̃
T

a r̃−k , if 1 + GT λ̃a − λb = 0

−∞, otherwise
(20)

Next, we formulate the Lagrange dual problem as:

max g(λ̃a ,λb)

s.t. λ̃a ≥ 0

λb ≥ 0

By excluding the case when g is infinite and changing the sign of
the objective function and by exploiting the fact that from (20),
λb = 1 + GT λ̃a , we can rewrite the aforementioned maximiza-
tion problem as the following minimization problem:

min −λ̃Ta r̃−k

s.t. 1 + GT λ̃a ≥ 0

λ̃a ≥ 0 (21)

�
Proposition 2: For any feasible optimization problem (12),

at least one of the elements in each row of matrix G must be
negative.

Proof: If every element in any row of G is positive, the left
hand side of the corresponding SINR constraint Gpk + r−k ≤
0 in (12) will always be positive, since pk ≥ 0 and r−k is strictly
positive. Hence, the constraints Gpk + r−k ≤ 0 are violated
and the convex problem (12) is rendered infeasible. �

The overall aim of the dual problem (21) is to obtain the largest
possible λ̃a in order to minimize the cost, while satisfying
λb = 1 + GT λ̃a ≥ 0. However, λ̃a can not grow unbounded,
because this will violate the constraint 1 + GT λ̃a ≥ 0, since at
least one element per row of G (or column of GT ) is negative.
Consequently, in order to minimize the objective (i.e. maximize

λ̃
T

a r̃−k ), λ̃
T

a will grow until exactly n elements of the vector
1 + GT λ̃a are equal to zero. In other words, due to n degrees
of freedom (i.e. number of non-zero elements of the Lagrangian
multipliers vector λ̃a ), it is possible to obtain λ̃a such that ex-
actly n rows of the constraints 1 + GT λ̃a ≥ 0 will be satisfied
with equality and the rest with strict inequality (there are n
linear combinations to constitute n constraints equal to zero).
Subsequently, from (20), one has:

λb = 1M + GT λ̃a (22)

It is evident from (22) that exactly n elements of the Lagrangian
multipliers vector λb are equal to zero and the remaining M −
n elements are positive. Due to the complementary slackness
condition denoted in (16), at leastM − n values of vector pk are
zero, i.e. at least M − n radars in the respective cluster would
opt to remain silent and would not transmit any signals. �

Corollary 1: The indices of the radars that are inactive in
a cluster are determined only by the target and clutter channel
characteristics of the corresponding cluster and the target SINR,
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and are independent of the actions of the other clusters and the
corresponding cross-clutter channel interference.

Proof: It comes straightforwardly from the proof of
Theorem 1 and equation (22) that the indices of the radars that
remain silent in a cluster depend solely on the matrix G, whose
elements are functions of the channel gains and the target SINR
of the corresponding cluster. �

The finding in Corollary 1 is very important for the Nash
equilibrium analysis. When a subset of radars is inactive in
a cluster, the action set in terms of the power allocation of a
cluster is reduced to the power allocation of those radars that
will eventually be active. In other words, determining indices
of radars that are inactive is not part of the action set of the
game as it will not be influenced by the action of other clusters.
Hence the best response function for standard function analysis
should include only the power allocation of active radars. Fur-
thermore, the distributed nature of Corollary 1 strengthens the
decentralized approach of the considered model.

By revisiting equation (15) from the KKT conditions of the
convex optimization problem (12), the SINR constraints cor-
responding to λ1 , . . . , λn �= 0, are satisfied with equality. All
other SINR constraints will be satisfied with inequality. Hence,
the optimal power allocation can be obtained only by using the
SINR equations that achieve equality. At this setting, other radar
receivers will automatically satisfy the SINR constraints with
inequalities. Therefore, we consider only the active antennas
and the receivers that achieve the SINR target with equality and
obtain the following reduced dimensional matrix equation:

Gredq∗
k = −rred

−k (23)

where q∗
k = [p11 , . . . , p1n ]T , rred

−k = [r−k1 , . . . , r−kn ]T and the
reduced square n× n matrix Gred is defined as:

Gred =

⎡

⎢
⎣

G11 . . . G1n
...

. . .
...

Gn1 . . . Gnn

⎤

⎥
⎦

It is straightforward that the solution of this set of n equations
solely depends on matrix Gred, which is determined from the
channel gains regarding cluster k and from the target SINR.
Hence, as the problem is always feasible (Proposition 1) ∀rred

−k >
0, Gred must be invertible and the best response function of
cluster k in this case can be defined as:

BRk (p−k ) = q∗
k = −G−1

redr
red
−k (24)

When Gred from (24) is full rank and when n radars in cluster
k attain the SINR with equality, then exactlyn radars in cluster k
will be active and actually transmitting, whereas the remaining
(M − n) radars will remain inactive. However, it is possible
theoretically to have certain channel gains, clutter gains and
target SINR such that n radars could attain SINR with equality
but with fewer than n radars being active. This happens when
Gred is rank deficient or when any column of Gred is co-linear
with rred

−k . In the latter case for example, we may have all n
radars achieving SINR with equality, however, only one radar
will be transmitting. Although this may happen with almost
zero probability, the following Lemma is still applicable to this

scenario as well with a reduced size Gred. Hence, without loss
of generality, we consider the case of full rank Gred.

Lemma 2: The best response function (24) is a standard func-
tion.

Proof: Following Lemma 1, the best response strategy (24)
satisfies the following necessary properties for all p−k ≥ 0:

a) Positivity: The best response of the kth cluster q∗
k is al-

ways positive, as rred
−k > 0 and q∗

k = −G−1
redr

red
−k is feasible

∀rred
−k > 0.

b) Monotonicity: for p−k ≥ p′−k , we have from Lemma
1 that r−k ≥ r′−k element wise and consequently rred

−k ≥
r′−k red. As a result:

BRk (p−k ) −BRk (p′
−k ) = −G−1

red

(
rred
−k − r′−k red

) ≥ 0

c) Scalability: Using the same approach as Lemma 1, for all
a > 1, we must show that aBRk (p−k ) > BRk (ap−k ).
Indeed:

aBRk (p−k ) −BRk (ap−k ) = −(a− 1)G−1
red1nσ

2
n > 0.

�
Lemma 2 completes the uniqueness of the Nash equilibrium

of the GNG G, considering all possible cases.

V. SINR ESTIMATION

In order to obtain the power allocation values, each radar
needs to perform the optimization as in (12). This requires es-
timation of the inter-cluster interference plus noise variance r̂k .
However, using (17), we could write the estimate of inter-cluster
interference plus noise variance in terms of the estimate of SINR
as follows:

r̂−ki = −Ĝpk (25)

where the matrix Ĝ is constructed as:

Ĝ = −

⎡

⎢
⎣

hk 1 1
γ̂k 1

− νk11 . . . hk M 1
γ̂k 1

− νkM 1
...

. . .
...

hk 1M
γ̂k M

− νk1M . . . hk M M

γ̂k M
− νkMM

⎤

⎥
⎦

where γ̂ki is the estimate of instantaneous value of SINR, which
was obtained using a similar approach as in [6]:

γ̂ki =

∑M
j = 1 |sHk j xk i |2

N − ||xk i ||2
N

||xki ||2 −
∑M

j = 1 |sHk j xk i |2
N

(26)

Hence, by replacing the estimated inter-cluster interference
plus noise term into the constraints of (12), the power mini-
mization problem for cluster k at time t can be reformulated
as:

min
pk ∈Pk

M∑

i=1

p
(t)
ki

s.t. Gp(t)
k ≤ Ĝp(t−1)

k

− p(t)
k ≤ 0 (27)
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Fig. 2. Power allocation of the network when K = 2 and M = 6 (p1 =
0.01 × 1M , p2 = 0.02 × 1M ).

Fig. 3. Power allocation of the network when K = 2 and M = 6 (p1 =
0.01 × 1M , p2 = 0.05 × 1M ).

where p(t−1)
k is the power allocation vector at the previous

iteration (t− 1), and p(t)
k is the power allocation at the current

iteration provided by the optimization problem (27). By utilizing
the SINR estimation (26), the proposed system can perform
power minimization in a totally distributed manner, without the
need for any communication among the clusters. It should be
highlighted that this power allocation problem is particularly
attractive for tracking radars where we have certain belief on
the approximate location of the target, but we will require fine
detection to track the exact location. In this case, we aim to
obtain optimum power allocation to maintain particular SINR
hence probability detection. However, in the case there is no
target, (26) will provide on average approximately − 1

N as the
estimated SINR. This is because the waveform is matched to
a particular delay and Doppler corresponding to approximate
location and velocity of the target. Hence, in the absence of a
target,

∑M
j=1 |sHkjxki |2 goes to a small value, thus the dominant

term ||xki ||2 in the numerator and denominator will cancel each
other and we will obtain − 1

N . As this is a negative number,
the optimization problem will be indicated as infeasible and as
a result we will have to resort to a standard power allocation,

Fig. 4. Convergence of power allocation of player 1 for different starting
strategies when K = 4 and M = 3, first simulation (different linestyles corre-
spond to different initial strategies for player 1).

Fig. 5. Convergence of power allocation of player 1 for different starting
strategies when K = 4 and M = 3, second simulation (different linestyles
correspond to different initial strategies for player 1).

where each radar will be allocated to some minimum level of
power to perform general surveillance. In the next section, we
present simulation results to support the mathematical analysis.

VI. SIMULATION RESULTS

In this section, we present simulation and numerical results
to illustrate the convergence of the algorithm to the unique solu-
tion and to demonstrate the distributed structure of the network.
Initially, we consider a network consisting of two clusters, each
with six radars. In every time step, each radar receives N = 32
signal samples. We also set the maximum number of iterations
at T = 30 to investigate the convergence of the game. For a
predefined target channel gain hkji , we set the values of the
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TABLE I
TOTAL POWER CONSUMPTION IN EACH CLUSTER FOR THREE DIFFERENT SYSTEM REALIZATIONS

Fig. 6. Total power consumption at cluster 1, comparing the proposed GNG
with the uniform power allocation GNG, for different system scenarios.

cross-channel and clutter gain as μljki = hk j i/20 and νkji =
hk j i/10 . The channel gains for the simulations were chosen
following a uniform distribution in the range [0, 1]. Finally,
the Doppler shift is considered to be fD,k,i,j = 0.1 for all
k = 1, . . . ,K, i = 1, . . . ,M and the noise power is set to
σ2
n = 0.01.
Before the initialization of the game, we should first de-

cide the detection criterion for all radars, namely the desired
SINR γ∗ki . We consider that the covariance matrix of the in-
tercluster plus clutter plus noise interference at radar Rki is
denoted as E[n̂n̂H ] = B, where n̂ = iki + dki and is posi-
tive definite. For a given B, we may use (15) and (16) of
[19] to determine the desired SINR for specific probabilities
of false alarm and detection, Pfa and Pd . In the considered
model, we set the desired probabilities of false alarm and de-
tection at Pfa = 0.0099 and Pd = 0.999, respectively, and we
obtain the corresponding detection threshold and SINR target,
λki = 0.001 and γ∗ki = 2.1599, respectively, for every radar.

In order to study the convergence of the GNG, Figures 2 and
3 demonstrate the power allocation update of all the radars in
the network for two different initial power allocations in cluster
2. The channel gains remain the same in both simulations. First,
it is evident that the number of active radars in both clusters is
the same in both examples, regardless of the initial power allo-
cation. Furthermore, power values in both simulations converge
to the same Nash equilibrium, as expected. The efficiency of
the algorithm is evident, as the process converges to the optimal
power allocation within 6 iterations. This result confirms Theo-
rem 1, suggesting convergence to the unique Nash equilibrium
regardless of the initial strategy.

In the second example we consider a network of four
clusters. Each cluster consists of three radars. Figure 4 de-
picts the convergence to the optimal solution for player 1 for

Fig. 7. Power allocation in the second cluster using the true and the estimated
value of the SINR when K = 2 and M = 4.

seven different initial strategies, when the rest of the players
initialize the game with p2 = [0.2855, 0.6874, 0.8295], p3 =
[0.3217, 0.4094, 0.4947] and p4 = [0.7034, 0.0840, 0.2690].
Similarly to this, in Figure 5 we consider the same setup, with
the difference that the rest of the players begin the game with
p2 = [0.8080, 0.5531, 0.7784], p3 = [0.8942, 0.7354, 0.9214]
and p4 = [0.7888, 0.6853, 0.7785]. The results highlight that
regardless of the starting point of the players, the game con-
verges to the unique Nash equilibrium.

In order to assess the efficiency of the proposed power alloca-
tion technique, we compare the results of the proposed method
with the case when uniform power allocation is considered
among the radars of the same cluster. Uniform power alloca-
tion has been studied in [25], [26] when a fixed system power
budget is considered. By imposing an additional constraint in
the optimization problem (10), which allocates uniformly the
power among the radars in the same cluster, we obtain the
resource allocation for the uniform power allocation GNG. To
facilitate a fair comparison, we set the same SINR target in both
cases and we simulated three different radar system scenarios,
the first consisting of two clusters each with two radars, the sec-
ond consisting of two clusters each with six radars and the last
one considering three clusters each consisting of three radars.
Table I presents the total power consumption in each cluster
for each scenario comparing the proposed GNG to the uniform
resource allocation case. It is apparent that the proposed game-
theoretic technique outperforms the uniform power allocation
in all cases, in terms of the total power consumption in each
of the clusters. In order to illustrate the aforementioned result,
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Fig. 6 presents a histogram of the total power consumption at
cluster 1, comparing the two methods for the three different
radar network cases. It is yet again evident, that the total power
consumption for the proposed scheme is much lower than the
uniform power allocation to achieve the same set of SINRs for
all system scenarios simulated.

Final example considers a scenario where we used estimates
of interference arising from other clusters (instead of the true
values) for the game-theoretic algorithm. We assume a network
of two clusters, each consisting of four radars. Fig. 7 shows the
power allocation of the radars in the first cluster throughout the
convergence process using the true and the estimated SINR from
(26). It is evident that the estimation is sufficiently accurate and
the convergence based on the estimation of the SINR follows the
convergence trajectories of the power allocation game obtained
using the true SINR values.

VII. CONCLUSION

We have studied game-theoretic power allocation for a dis-
tributed MIMO radar system. By defining a GNG and exploit-
ing convex optimization techniques and duality properties, we
presented an extended Nash equilibrium analysis, concluding
with the proof of the existence and uniqueness of the solution.
Through this analysis, we also derived important properties of
the system. In particular, we proved that the number of active
radars in a cluster that actually transmit signals is exactly the
same as the number of radars in the same cluster that satisfy
the SINR constraint with equality. In addition, the number of
active radars and the optimal strategy of a cluster are depen-
dent only upon the channel gains and the target SINR and are
totally independent of the other players’ power allocation. This
contribution strengthens the decentralized and distributed na-
ture of the system. Finally, the simulation results support the
mathematical analysis of the convergence and the study of the
existence and uniqueness of the Nash equilibrium.
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