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ABSTRACT OF THE DISSERTATION

Multiple-Target Tracking in Complex Scenarios

by

Srinivas Phani Kumar Chavali

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, December 2013

Professor Arye Nehorai, Chair

In this dissertation, we develop computationally efficient algorithms for multiple-

target tracking (MTT) in complex scenarios. For each of these scenarios, we develop

measurement and state-space models, and then exploit the structure in these models

to propose efficient tracking algorithms. In addition, we address design issues such

as sensor selection and resource allocation.

First, we consider MTT when the targets themselves are moving in a time-varying

multipath environment. We develop a sparse-measurement model that allows us to

exploit the inherent joint delay-Doppler diversity offered by the environment. We then

reformulate the problem of MTT as a block-support recovery problem using the sparse

measurement model. We exploit the structure of the dictionary matrix to develop a

computationally efficient block support recovery algorithm (and thereby a multiple-

target tracking algorithm) under the assumption that the channel state describing

the time-varying multipath environment is known. Further, we also derive an upper

bound on the overall error probability of wrongly identifying the support of the sparse

xi



signal. We then relax the assumption that the channel state is known. We develop a

new particle filter called the Multiple Rao-Blackwellized Particle Filter (MRBPF) to

jointly estimate both the target and the channel states. We also compute the posterior

Cramér-Rao bound (PCRB) on the estimates of the target and the channel states and

use the PCRB to find a suitable subset of antennas to be used for transmission in

each tracking interval, as well as the power transmitted by these antennas.

Second, we consider the problem of tracking an unknown number and types of targets

using a multi-modal sensor network. In a multi-modal sensor network, different quan-

tities associated with the same state are measured using sensors of different kinds.

Hence, an efficient method that can suitably combine the diverse information mea-

sured by each sensor is required. We first develop a Hierarchical Particle Filter (HPF)

to estimate the unknown state from the multi-modal measurements for a special class

of problems which can be modeled hierarchically. We then model our problem of

tracking using a hierarchical model and then use the proposed HPF for joint initia-

tion, termination and tracking of multiple targets. The multi-modal data consists of

the measurements collected from a radar, an infrared camera and a human scout. We

also propose a unified framework for multi-modal sensor management that comprises

sensor selection (SS), resource allocation (RA) and data fusion (DF). Our approach

is inspired by the trading behavior of economic agents in commercial markets. We

model the sensors and the sensor manager as economic agents, and the interaction

among them as a double sided market with both consumers and producers. We pro-

pose an iterative double auction mechanism for computing the equilibrium of such a

market. We relate the equilibrium point to the solutions of SS, RA and DF.

Third, we address MTT problem in the presence of data association ambiguity that

arises due to clutter. Data association corresponds to the problem of assigning a

xii



measurement to each target. We treat the data association and state estimation as

separate subproblems. We develop a game-theoretic framework to solve the data as-

sociation, in which we model each tracker as a player and the set of measurements as

strategies. We develop utility functions for each player, and then use a regret-based

learning algorithm to find the correlated equilibrium of this game. The game-theoretic

approach allows us to associate measurements to all the targets simultaneously. We

then use particle filtering on the reduced dimensional state of each target, indepen-

dently.
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Chapter 1

Introduction

Multiple target tracking (MTT) [1], [2], [3], [4], [5] first originated in the 1970s, and

since then it has been one of the most challenging research areas with applications in

many critical real-world tasks. In the initial years, the research was driven by military

applications such as estimating the positions and speeds of the airborne vehicles

using ground radars. Later, as the research in the area evolved, tools developed

for the original application were extended to several other domains including image

processing [6], [7], video surveillance [8], mobile robotics [9], [10], finance [11], [12]

and biomedicine [13].

Sensor systems, such as radar, lidar or a camera, collect noisy measurements originat-

ing from the objects of interest, referred to as targets (sometimes the measurements

can originate from clutter or spurious detections). In a military task, the targets cor-

respond to the airborne vehicles or missiles and the measurement collected by a radar

corresponds to a back-propagated and filtered electromagnetic waveform. The prob-

lem of MTT is to then use a series of these measurements and estimate the quantities

of interest usually referred to as the state of the target. In the traditional military

1



setting, the state corresponds to the positions and velocities of the moving vehicles.

MTT can thus be thought of as a recursive estimation problem over time.

MTT comprises two steps: (a) prediction and (b) update. In order to predict the

current state using an estimate (of the state) from the past, a process model that

describes the state evolution is needed. This process model is known as the state-

space model. Typically, the state-space model is described using a first-order Markov

process, and it relates the current state to the previous state. A measurement model

describes the relationship between the current state and the current observation. Once

the measurements are available, the predicted value of the state is updated using these

measurements. Typically, a single sensor is used to obtain the measurements of the

targets. Sometimes, sensors of a single type may not reliably obtain information

about the entire state. In such cases, several different kinds of sensors are employed

to obtain information about the state. Such measurements are referred to as multi-

modal measurements.

The problem of MTT can become challenging due to several reasons such as targets

not being detected by the sensor or the targets moving in a dense urban environ-

ments. In this dissertation, we develop computationally efficient tracking algorithms

for multiple-target tracking in three complex scenarios: (i) targets moving in a time-

varying multipath environment; (ii) unknown and time-varying number and types of

targets; (iii) targets with low probability of detection moving in dense clutter. We

focus on a class of algorithms called the sequential Monte-Carlo filters or the particle

filters for addressing MTT. The MTT problem in this dissertation concerns tracking

independent point targets. A point target is modelled in a dynamical state-space

usually consisting of position, velocity in the two-dimensional space. The tracking

2



problem then corresponds to estimation of the target state given the noisy measure-

ments from a sensor whose field of view includes the targets of interest. In the next

section, we formulate MTT as a sequential Bayesian estimation problem and briefly

discuss the ideas of Kalman and particle filters. We will then summarize the contri-

butions of this dissertation.

1.1 Mathematical Formulation of MTT

In this section, we formulate MTT as a sequential (or recursive) Bayesian estimation

problem also known as Bayesian filtering. A detailed survey in the area of Bayesian

filtering is provided in [14].

Let θt denote the state of a target at time t. For notational simplicity, assume that

there is only one target in the region of interest. We extend the filtering algorithms

that will be discussed here to the case of multiple-targets in the subsequent chapters.

Typically, the state θt of the target comprises its x-position, y-position, x-velocity

and y-velocity, i.e., θt = [xt, yt, ẋt, ẏt]
T . However, the state can also be comprised of

other target or system parameters as we will see in the subsequent chapters.

A state-space model describes the evolution of the target over time. Formally, the

state-space model is described as:

θt = g(θt−1, vt−1). (1.1)

In the above, g(.) is a known, but possibly nonlinear function and vt is the stochastic

process noise. In addition, there are noisy measurements yt, which depend on the

3



state θt in some known manner via a measurement model:

yt = h(θt,wt), (1.2)

In the above, h(.) is a known, but possibly nonlinear measurement function and wt

is the stochastic measurement noise at time t. The state equation and the measure-

ment equation can be equivalently written in terms of the conditional probability

distributions, p(θt | θt−1) and p(yt | θt). Note that the measurement yt at time t

is independent of the past states and measurements, given the current state θt. The

state equation and the measurement equation can be represented as a graph as shown

in Fig. 1.1.

Figure 1.1: Graphical model representing the state-space and the measurement mod-
els.

Given a system characterized by a state-space model and a measurement model, our

goal is to estimate the posterior distribution of the unknown state vector θt, t ∈ N,

given the past measurements y1:t−1 = {y1,y2 · · ·yt−1} and the current measurement

yt. Under the sequential Bayesian framework, the posterior of the state given the

measurements can be computed using the Chapman-Kolmogorov equation and Bayes’

theorem [15]:

p(θt | y1:t−1) =

∫

p(θt | θt−1)p(θt−1 | y1:t−1)dθt−1, and (1.3)
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p(θt|y1:t) =
1

z
p(yt | θt)p(θt | y1:t−1), (1.4)

where z is a normalization constant. Equations (1.3), and (1.4) are called the time-

update equation and the measurement-update equation, respectively.

1.1.1 Kalman Filtering

If the state model and the measurement model are linear, and the noise processes are

additive Gaussian, the Kalman Filter (KF) [15] is an efficient and optimal solution

to the Bayesian filtering problem in the least-squares sense. Suppose that the state-

space model and the measurement model given in Eqs (1.1) and (1.2), respectively

are simplified to:

θt = F t−1θt−1 + vt−1, (1.5)

yt = H tθt +wt, (1.6)

where vt and wt are independently distributed as

vt ∼ N (vt; 0,Σv), (1.7)

wt ∼ N (wt; 0,Σw). (1.8)
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A Kalman filter for obtaining an estimate of the posterior distribution of θt is then

summarized by the following equations:

θt|t−1 = F t−1θt−1|t−1 (1.9)

P t|t−1 = Ft−1P t−1|t−1F
T
t−1 +Σv (1.10)

ỹt = yt −H tθt|t−1 (1.11)

St = H tP t|t−1H
T +Σw (1.12)

Kt = P t|t−1H
T
t S

−1
t (1.13)

θt|t = θt|t−1 +Ktỹt (1.14)

P t|t = (I −KtH t)P t|t−1 (1.15)

In the above, Eqs (1.9) and (1.10) correspond to the time-update and Eqs. (1.11)-

(1.15) correspond to the measurement update. Kt is known as the Kalman gain. The

posterior distribution p(θt | y1:t) is then given as:

p(θt | y1:t) ∼ N (θt; θt|t,P t|t). (1.16)

If the state-space and the measurement models are nonlinear, Unscented Kalman filter

(UKF) [16], Extended Kalman Filter (EKF) [17] can be used for Bayesian filtering.

However, in many practical problems linearizations and Gaussian approximations are

intractable or yield low performance. A sequential Monte-Carlo (SMC) filter, also

called the particle filter (PF) provides a general framework for Bayesian filtering for

non-linear and non-Gaussian models.

6



1.1.2 Particle Filtering

Particle filtering [18], [19], [20] is a Monte Carlo approach to address the Bayesian

filtering, and particle filters (PFs) provide a tractable solution to the state estima-

tion problem in non-linear and non-Gaussian systems. A PF approximates the joint

posterior distribution of the state (up to the current time) using a set of particles,

and associated weights,

p(θ0:t | y1:t) ≈
Ns∑

i=1

w
(i)
t δ(θ0:t − θ

(i)
0:t), (1.17)

where
{

θ
(i)
0:t

}Ns

i=1
are the particles (or samples) that characterize the probability distri-

bution p(θ0:t|y1:t), and
{

w
(i)
t

}Ns

i=1
are the associated weights. The samples

{

θ
(i)
0:t

}Ns

i=1

are drawn from a known proposal distribution, and the weights are derived using the

principle of importance sampling [21]. According to this principle, the weights are

updated using

w̃
(i)
t =

p(θ
(i)
0:t | y1:t)

q(θ
(i)
0:t | y1:t)

, (1.18)

where q(θ0:t | y1:t) is the proposal distribution from which the samples are drawn

and w̃
(i)
t is the un-normalized weight of the ith particle at time t. The weight update

equation can be simplified as:

w̃
(i)
t ∝ p(θ

(i)
0:t | y1:t)

q(θ
(i)
0:t | y1:t)

∝ p(θ
(i)
0:t−1 | y1:t−1)

q(θ
(i)
0:t−1 | y1:t−1)

× p(yt | θ(i)
t )× p(θ

(i)
t | θ(i)

t−1)

q(θ
(i)
t | θ(i)

0:t−1,y1:t)

∝ w
(i)
t−1 × p(yt | θ(i)

t )× p(θ
(i)
t | θ(i)

t−1)

q(θ
(i)
t | θ(i)

0:t−1,y1:t)

∝ w
(i)
t−1 × p(yt | θ(i)

t ), (1.19)
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where the proposal distribution q(θ0:t | y1:t) is chosen to factorize such that

q(θ0:t | y1:t) = q(θ0:t−1 | y1:t−1)× q(θt | θ0:t−1,y1:t), (1.20)

and q(θt | θ0:t−1,y1:t) = q(θt | θt−1,yt). Due to this choice, the proposal distribution

only depends on θt−1, and we can discard the samples θ0:t−1, and the observations

y1:t−1. The last step of Eq. (1.19) is obtained by choosing the proposal distribution

to be the state transition distribution

q(θt | θt−1,yt) = p(θt | θt−1). (1.21)

Although this choice is not optimal, it results in a simple weight update equation.

Hence the state transition distribution is a most popular choice for the proposal

distribution.

Resampling

Standard particle filters, based on the principle of importance sampling, suffer from

a drawback called the degeneracy phenomenon. After a few iterations, the weights

of all but a few particles will be close to zero. As a result of degeneracy, the number

of particles contributing to the posterior distribution become significantly less over

time, and hence the performance of the filter degrades. In theory, it is impossible

to avoid degeneracy, but its effect can be reduced by drawing samples from a good

proposal distribution and by using resampling techniques.

The idea of resampling is to eliminate the particles that have smaller weights and

replace them with new samples with equal weights. Resampling is a crucial step
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in particle filtering, since after a few iterations, propagating trivial weights becomes

computationally expensive. After each iteration, the effective number of particles is

computed using [18]:

Neff =
1

∑Ns

i=1(w
(i)
t )2

, (1.22)

and the particle set is resampled if Neff falls below a predetermined threshold. There

are several resampling techniques available in the literature; interested readers can

refer [14]. In the rest of this dissertation, we use the residual systematic resampling

technique that is described in [22].

In addition to the degeneracy, the number of particles required to approximate the

posterior density grows exponentially [23] with the dimension of the state vector.

Filters using such a large number of particles are computationally complex and run

into numerical inconsistencies. One of the most common ways to overcome this diffi-

culty is to partition the state-space into several subspaces, and explore each subspace

independently [24].

1.2 Original Contributions

In this dissertation, we develop computationally efficient algorithms for MTT in com-

plex scenarios. Below, we briefly summarize our contributions.

Sparsity-based Algorithm for MTT in Multipath Environments: We propose

a sparsity-based algorithm for tracking targets moving in a time-varying multipath

environment. The channel state that describes the multipath environment is assumed
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to be known. We develop a sparse measurement model for the received signal, by con-

sidering a finite dimensional representation of the system function that characterizes

the multipath environment. This measurement model allows us to exploit the inher-

ent joint delay-Doppler diversity offered by the environment. We then reformulate

the problem of MTT as a block-support recovery problem from the sparse measure-

ment model. We prove that under some signaling conditions, the dictionary of the

sparse measurement model exhibits a special structure. We exploit this structure to

develop a computationally inexpensive block support recovery algorithm (and thereby

a multiple-target tracking algorithm) by projecting the received signal onto the row

space of the dictionary. Further, we also derive an upper bound on the overall error

probability of wrongly identifying the support of the sparse signal.

Multiple Rao Blackwellized Particle Filter for MTT: We develop a particle

filter for jointly estimating both the target and the channel states (when the chan-

nel state is unknown to the radar). The dimension of the overall state is high, and

hence the standard particle filter requires a large number of particles making it com-

putationally expensive. However, given the target state the measurements are linear

and Gaussian in the channel state and the target states evolve independently of each

other. We exploit this structure in the system to develop a new filter called the Mul-

tiple Rao-Blackwellized Particle Filter (MRBPF) to jointly estimate both the target

and the channel state. MRBPF is a hybrid filter that uses one particle filter for

each target’s state partition, and uses a Kalman filter to analytically find an estimate

of the channel state. Since MRBPF operates on low dimensional subspaces, it re-

duces the complexity involved with high-dimensional state space. In addition, due to

the Rao-Blackwell theorem, the variance of the estimates obtained after finding the
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channel state analytically will be less than the variance of the estimate obtained by

sampling the entire state vector.We also compute the posterior Cramér-Rao bound

(PCRB) on the estimates of the target state and the channel state. Using PCRB as

a metric, we find a suitable subset of antennas to be used for transmission in each

tracking interval, as well as the power transmitted by these antennas.

Hierarchical Particle Filter for Tracking Unknown Number of Targets us-

ing Multi-Modal Sensors: In a multi-modal sensor network, different quantities

associated with the same state are measured using sensors of different kinds. We

first develop a general filtering technique to estimate the unknown state from the

multi-modal measurements for a special class of problems which can be modeled hier-

archically. The proposed filter, the Hierarchical Particle Filter (HPF), estimates the

global posterior density of the unknown state in multiple stages, by partitioning the

state and the measurement spaces into lower dimensional subspaces. At each stage,

we find an estimate of one partition using the measurements from the corresponding

partition, and the information from the previous stages. In this way, the proposed

filter can combine the information from different sensors. We then model the problem

of MTT using a hierarchical model and demonstrate the proposed filtering for joint

initiation, termination and tracking of an unknown number of targets. The multi-

modal data consists of the measurements collected from a radar, an infrared camera

and a human scout.

Sensor Management for MTT: We focus on sensor selection (SS), resource al-

location (RA) and data fusion (DF), which constitute the sensor management. Our

11



approach is inspired by the trading behavior of economic agents in commercial mar-

kets. Each sensor node (SN) acts as a seller who wants to sell the data it collects, to

the sensor network manager (SM) who acts as a buyer. The resources and the data

are priced by looking to balance global supply and demand, with the SN required

to purchase resources for producing the data, and the SM required to purchase data

to accomplish his tasks. We model this interaction as a double sided market with

both consumers and producers, and propose an iterative double auction mechanism

for computing the equilibrium of such a market. We relate the equilibrium point to

the solutions of SS, RA and DF.

Concurrent Particle Filter for MTT in the Presence of Association Am-

biguities: Data association corresponds to the problem of assigning each measure-

ment to a target or clutter. We propose a new particle filter, which we refer to as

the interacting multi-model concurrent particle filter (IMM-CPF) to track multiple

maneuvering targets in the presence of association ambiguities. We treat the data

association and state estimation as separate subproblems and we develop a game-

theoretic framework to address the data association, in which we model each tracker

as a player and the set of measurements as strategies. We develop utility functions for

each player, and then use a regret-based learning algorithm to find the equilibrium of

this game. The game-theoretic approach allows us to associate measurements to all

the targets simultaneously. We then use particle filtering on the reduced dimensional

state of each target, independently.
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1.3 Organization

The rest of dissertation is organized as follows. In Chapter 2, we address MTT when

the targets themselves are moving in a time-varying multipath environment and pro-

pose a sparsity-based MTT algorithm. In Chapter 3, we relax the assumption that

channel state describing time-varying multipath environment is known and propose

MRBPF that jointly tracks both the channel and the target states. In Chapter 4,

we consider the problem of tracking an unknown number and types of targets using

a multi-modal sensor network, and we propose HPF. In Chapter 5, we develop a

unified framework for sensor management for tracking using a multi-modal sensors.

In Chapter 6, we address MTT in the presence of data association ambiguity that

arises due to clutter and propose IMM-CPF. In Chapter 7, we summarize the con-

clusions reached in this thesis and provide several potential directions for further work

in this area.
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Chapter 2

Sparsity based MTT in Multipath

Environments1

In this chapter, we address the problem of MTT in a time-varying multipath environ-

ment. Multipath environments are usually encountered when the targets are moving

in dense urban environments.

2.1 Introduction

Multipath environments provide two major challenges for the operation of conven-

tional radar systems [25]: complete obscuration of the target due to tall buildings;

and the presence of multiple scatterers in the environment. Radar systems operat-

ing in these environments therefore suffer severe performance degradation compared

to the conventional radar systems designed for the line-of-sight (LOS) propagation

environments. In order to overcome the problem of obscuration, radars generally

1Based on P. Chavali and A. Nehorai, “A Low-Complexity Multi-Target Tracking Algorithm for
Urban Environments using Sparse Modeling”, Signal Processing, vol. 92, pp. 2199-2213, Sep.
2012. c©[2012] Elsevier
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maintain a steep grazing angle. This, however, dramatically decreases the coverage

area [25]. The degradation due to presence of scatterers can be compensated by treat-

ing the signals arriving on the non-LOS paths as interference, and thus mitigating

it [26], [27]. Recently, however, there has been a growing interest in exploiting the

multipath nature of the environment to obtain a better performance [28], [29]. The

presence of multiple scatterers in the environment introduces a delay spread in the

transmission channel. The relative motion between the moving targets and scatterers

introduces time variations in the channel, which manifests as Doppler spread. Thus

multipath environments with multiple scatterers are characterized by a time-varying

multipath channel. The delay and the Doppler spread provide additional diversity for

the problem of target tracking, and by employing methods that exploit this diversity,

the performance of the tracking system can be significantly improved.

In this chapter, a finite-dimensional measurement model is developed for the track-

ing problem by modeling multipath channel as a time-varying linear system. This

measurement model captures both the delay and the Doppler spread that is intro-

duced into the system. The dimensionality of the linear representation has a physical

significance and it represents the additional diversity that the environment offers.

Next, sparse modeling is used to transform the problem of multiple-target tracking

into a problem of support recovery of a block- sparse signal. Sparse modeling has

drawn a lot of attention in the radar community [30] recently. In the context of

radar, sparse models are used to reconstruct the target scene by representing each

target as a grid point in the delay-Doppler plane. Since the number of targets is in

general less than the number of grid points, the target scene can be represented as
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a sparse signal and it can be reconstructed by finding the support 2 [31]- [32] of the

sparse signal. Further, an upper bound on the overall error probability of wrongly

identifying the support of the sparse target scene is derived. Using this bound, it will

be shown that spread-spectrum waveforms are ideal candidates for signaling, as they

have good time-bandwidth properties which are essential to obtain the full diversity

provided by the delay and the Doppler spread.

Further, a computationally inexpensive algorithm for the support recovery of the

sparse signal is introduced in this chapter. This method works by projecting the

received signal vector onto the row space of the dictionary 3. The dictionary corre-

sponding to the block-sparse model consists of delayed and Doppler shifted versions

of the transmitted waveforms. Under spread-spectrum signaling, we prove that the

dictionary of the sparse model exhibits a special structure, which enables efficient sup-

port recovery. We refer to this algorithm as projection-based (PB) support recovery.

We use PB support recovery algorithm for target tracking and we demonstrate using

numerical simulations that PB algorithm takes significantly less time compared to

the time taken by the standard sparse signal reconstruction based tracking methods,

while giving good performance.

2Support of a vector x is defined as the set of indices where the vector is non-zero, i.e., supp(x) =
{i
∣
∣ xi 6= 0}
3The dictionary of a sparse model corresponds to the over complete set of basis functions obtained

by discretizing the variable of interest.
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2.2 System Model

2.2.1 Multipath Environment Model

Consider a monostatic pulse radar system operating in an urban environment as

shown in Fig. 2.1. Assume that the radar antenna is omnidirectional. This as-

sumption ensures that the antenna transmits equal power in all the directions and is

capable of receiving the signal from all the directions. The radar transmits a known

electromagnetic signal to obtain an image of the target. The transmitted signal prop-

agates through a forward transmission channel before it reaches the target. The target

responds to the transmitted waveform and backscatters a modified waveform into the

environment. The modified waveform propagates back to the radar receiver through

a reverse transmission channel. The received signal is then processed to obtain the

necessary information about the target. This is a standard model for radar systems

operating in a multipath environment [29], [33].

In the absence of the time-varying multipath effect due to the surrounding environ-

ment, the forward transmission channel and the reverse transmission channel do not

have any effect on the backscattered waveform, except possibly for a propagation loss.

In such cases, the target is the object which causes the uncertainty in the received

waveform. The electromagnetic signal that is reflected off the target is modified as

a function of the target’s relative position, velocity and it’s physical characteristics,

referred to as the radar cross section (RCS) [34]. If the target is assumed to be a

point target, the signal reflected off it can be expressed as

r(t′) = αs(t′ − τd)e
j2πνdt

′

, (2.1)
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where s(t′) is the transmitted waveform, r(t′) is the backscattered waveform from the

target, α is the unknown RCS, τd is the round trip delay, and νd is the Doppler shift in

the frequency due to the relative motion between radar and the target. For simplicity,

assume initially that there is only one target present in the region of interest. The

extension to the case of multiple targets will be made in Sec. 2.2.4. Without the loss

of generality, consider that the radar is located at (0, 0). With this assumption,

τd =
2

c

√

x2 + y2, (2.2)

νd =
2fc
c

xẋ+ yẏ
√

x2 + y2
, (2.3)

where (x, y) and (ẋ, ẏ) denote the position and velocity of the target, respectively, in

the two dimensional plane, fc is the carrier frequency, and c is the speed of propaga-

tion.

Figure 2.1: Block diagram showing the forward, reverse transmission channels and
the targets.

In the presence of time-varying multipath channel, the uncertainty in the received

waveform is due to the joint effect of the forward transmission channel, the target

itself, and the reverse transmission channel. Since the propagation of electromag-

netic waves obey the superposition principle, it is reasonable to model the forward
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transmission channel and the reverse transmission channel as linear time-varying sys-

tems [33]. Denoting the time-varying system responses of the forward transmission

channel and the reverse transmission channel using hf(t
′, τ) and hr(t

′, τ), respectively,

the received signal can be expressed as

y(t′) = hr(t
′, τ) ∗ r(t′) ∗ hf(t

′, τ) + w(t′),

=

∫

h(t′, τ)r(t′ − τ)dτ + w(t′), (2.4)

where y(t′) is the received waveform in the presence of time-varying multipath chan-

nel, h(t′, τ) is the response of the overall multipath channel at delay τ and time t′

given as h(t′, τ) = hr(t
′, τ) ∗ hf(t

′, τ), and w(t′) is circularly symmetric, complex ad-

ditive white Gaussian noise. Considering the Fourier transform of h(t′, τ), the signal

y(t′) can be expressed as

y(t′) =

∫ ∫

H(f, τ)r(t′ − τ)ej2πft
′

dτdf + w(t′), (2.5)

where H(f, τ) is the Fourier transform h(t′, τ) at time τ . It can be assumed that

h(t′, τ) is a wide-sense stationary Gaussian random process in the variable t′ and the

responses due to different scatterers at delays τ1 and τ2 to be uncorrelated. This model

incorporating the wide-sense stationarity and the uncorrelated scattering is widely

used for characterizing time-varying systems responses [35]. Under this assumption,

the power spectral density of H(f, τ), which denotes the average power output of the

time-varying multipath channel as a function of time and frequency, is given by the

Wiener Khinchin theorem [21].

Ψ(f, τ) = E
[
|H(f, τ)|2

]
. (2.6)
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The range of values of delay, τ , and the frequencies (two-sided), f , over which Ψ(f, τ)

is non-zero are defined as the delay spread (Td) and the Doppler spread (Bd) of the

channel, respectively. The inverse of the delay spread is defined as the coherence

bandwidth (Bc) and the inverse of the Doppler spread is defined as the coherence

time (Tc) of the channel. Coherence time and coherence bandwidth denote the range

of time scales and frequencies over which the variations caused due to the channel

are constant. In other words, for two frequencies f1, f2 such that |f1 − f2| ≤ Bc,

and two time instants τ1 and τ2 such that |τ1 − τ2| ≤ Tc, the power spectral density

satisfies Ψ(f1, τ1) = Ψ(f2, τ2) [36]. A finite dimensional representation of (2.5) is

obtained by sampling the variables τ and f at a resolution ∆τ and ∆f such that

τ × f ∈ [0, Td] × [−Bd

2
, Bd

2
]. Specifically, each delay-Doppler grid of size ∆τ × ∆f

consists of all the paths whose delay and Doppler shifts fall within that grid.

y(t′) =

Q/2−1
∑

q=−Q/2

P−1∑

p=0

H(p, q)r(t′ − p∆τ)ej2πq∆ft′ + w(t′), (2.7)

where Q = dBd

∆f
e and P = d Td

∆τ
e. In a rich scattering like an urban environment,

each of the grid points is populated by at least one path. Further, if the sampling

resolutions are chosen such that ∆τ > Tc and ∆f > Bc, the coefficients H(p, q) are

independent of each other [37]. Thus, the vector h defined as h = vec(H), is a

multivariate Gaussian random variable with independent entries. h will be referred

as the channel state vector and H as the channel state matrix from now on. For

simplicity, in this chapter, we assume that the processing interval and the signal

energy are chosen so that the radar can estimate the channel state vector in each

tracking interval without any errors. This assumption is equivalent to considering

that the channel state information is available at the receiver. In the next chapter,
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we relax this assumption, and estimate the channel and the target state jointly in

each tracking interval.

It is evident from the representation given in Eq. (2.7) that the received signal is

a linear combination of independent time shifted (multipath) and frequency shifted

(Doppler) versions of the back scattered signal from the target. Hence, the rep-

resentation in Eq. (2.7) provides two kinds of additional diversity; delay diversity

and the Doppler diversity. Similar representations are used in problems related to

communication in fading wireless channels [37].

2.2.2 Signal Model

In this subsection, the signal model is described. The radar transmits a coherent

pulse train of L pulses, with a pulse repetition interval of tp seconds in each tracking

interval. Pulse train signaling enables the radar receiver to estimate both the range

and the Doppler without any ambiguity [38]. The corresponding transmitted signal

is given as

s(t′) =
√
E

L−1∑

l=0

al(t
′ − ltp), 0 ≤ t′ ≤ ∆t, (2.8)

where al(t
′) is the unit energy transmitted waveform in the lth pulse and E is the

signal energy per pulse and ∆t is the system sampling time.

In each pulse, a spread-spectrum waveform [36] is transmitted. Apart from a few

works, [39], [40], there has not been much research in the literature that use spread

spectrum waveforms in the radar context. The spread-spectrum waveform a(t′) takes

the form

a(t′) =

G−1∑

g=0

agv(t
′ − gtc), such that

G−1∑

g=0

agag−k ≈ 0, k 6= g, (2.9)
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where tc is the chip duration, v(t′) is a rectangular waveform of duration tc, G is

the number of chips in each pulse, and
{
ag, g = 0, · · · , G− 1

}
is the spreading code

corresponding to the spread-spectrum waveform a(t′). The bandwidth corresponding

to this waveform is given by B = 1
tc
.

2.2.3 State-Space Model

We consider K targets moving in a two-dimensional plane and denote the position

and velocity of the kth target as (xk, yk) and (ẋk, ẏk), respectively. The target state

at time t is then represented by the vector θk,t = [xk,t, yk,t, ẋk,t, ẏk,t]
T . We assume in

this chapter that all the targets follow linear trajectories. The dynamics of the kth

target at time t are then described by

θk,t = F kθk,t−1 + vk,t−1, (2.10)

where F k is the state transition matrix corresponding to the kth target and is given

as

F k =












1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1












for k = 1, 2, · · · , K. (2.11)

Here ∆t is the system sampling time, which corresponds to the time interval after

which the processing is done, and we refer to it as tracking interval. vk,t denotes the

error in the state model which is assumed to be Gaussian distributed, with a zero
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mean and a covariance matrix given by [2]:

Σv,k = εk












1
3
∆t3 0 1

2
∆t2 0

0 1
3
∆t3 0 1

2
∆t2

1
2
∆t2 0 ∆t 0

0 1
2
∆t2 0 ∆t












, (2.12)

where εk is the intensity of the noise process for the kth target. Using Eq. 2.10, and

concatenating the state vectors of all the targets, an overall target state transition

equation is obtained as

θt = Fθt−1 + vt−1, (2.13)

where

θt : 4K × 1 joint target state defined as θt =

[

θT
1,t, · · · , θT

K,t

]T

F : 4K×4K matrix representing the overall state transition matrix, which is defined

as F = blkdiag{F 1, · · ·FK}

vt : 4K × 1 overall additive noise given as vt =

[

vT
1,t, · · · , vT

K,t

]T

with noise covari-

ance matrix Σv = blkdiag{Σv,1, · · · ,Σv,K}
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2.2.4 Measurement Model

Using (2.1) and (2.8) in (2.7), the received signal due to a single target can be ex-

pressed as

ỹ(t′) =
√
E

Q/2−1
∑

q=−Q/2

P−1∑

p=0

α̃H(p, q)

L−1∑

l=0

al(t
′ − ltp − p∆τ − τd)e

j2πνd(t
′−p∆τ)ej2πq∆ft′ + w(t),

≈
√
E

Q/2−1
∑

q=−Q/2

P−1∑

p=0

α̃H(p, q)

L−1∑

l=0

al(t
′ − ltp − p∆τ − τd)e

j2πνdltpej2πq∆fltp + w(t′).

(2.14)

The term ej2πνdt
′

is approximated as ej2πνdltp (constant) and ej2πq∆ft′ is approximated

as ej2πq∆fltp within each a(t′), since it is a narrowband pulse. Also the term e−j2πνdp∆τ

is ignored as the variation in this terms are negligible when compared to the variations

in other terms. The superscript ∼ is used to emphasize that the signal, and the

scattering coefficient correspond to a single target.

The overall received signal due to all the targets is given as

y(t′) =
K∑

k=1

√
E

Q/2−1
∑

q=−Q/2

P−1∑

p=0

α̃kH(p, q)
L−1∑

l=0

al(t
′−ltp−p∆τ−τk,d)e

j2πνk,dltpej2πq∆fltp+w(t′),

(2.15)

where τk,d, νk,d, α̃k represent the delay, Doppler and the RCS of the kth target, respec-

tively. The distance between the targets is smaller compared to the distance between

the targets and the radar, and hence the channel state matrix is assumed to remain

the same for all the targets.
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2.3 Sparse Modeling

In this section, we develop a sparse measurement model for Eq. (2.15). Consider the

received signal in Eq.(2.15) and discretize the delay-Doppler plane into grid points

such that the delay and Doppler corresponding to each target falls within one specific

grid point i.e.,

τk,d = m1
k∆τ,

νk,d = m2
k∆ν, (2.16)

for k = 1, 2, · · · , K, where m1
k and m2

k represent the indices of the discretized delay

and Doppler of the kth target. If the delay-Doppler plane is discretized into M1 points

along the delay dimension andM2 points along the Doppler dimension, corresponding

to a total of M = M1M2 grid points in the region of interest, the received signal for

the kth target can be expressed as

ỹk,t =
√
E

Q/2−1
∑

q=−Q/2

P−1∑

p=0

α̃kH(p, q)
L−1∑

l=0

al(t
′− ltp −p∆τ −m1

k∆τ)ej2π(m
2
k
∆f+q∆f)ltp +w(t′).

(2.17)

The received signal is now sampled at a rate fs = B so that one sample from each

chip is collected. Consider N samples around a reference point4 in each pulse. The

sampling resolution of the delay-Doppler grid is chosen to commensurate with the

sampling of the signal, i.e., ∆τ = 1
fs

and ∆f = 1
δt
. The corresponding discrete-time

4The choice of the reference point can be arbitrary. In this chapter it is chosen to be the predicted
state of the first target.
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signal is then given by

ỹk(nts) =
√
E

Q/2−1
∑

q=−Q/2

P−1∑

p=0

α̃kH(p, q)

L−1∑

l=0

al(nts − ltp − pts −m1
kts)e

j2π(m2
k
+q)l

tp
δt + w(t).

(2.18)

Expressing (2.18) in a matrix form,

ỹk =
√
E

Q/2−1
∑

q=−Q/2

P−1∑

p=0

α̃kH(p, q)

(

F (q,m2
k)⊗ J(p,m1

k)

)

s

︸ ︷︷ ︸

φ(p,q,m1
k
,m2

k
)

+w, (2.19)

where

ỹk : LN × 1 received signal vector corresponding to the kth target

F (q,m2
k) : L×L Doppler modulation matrix defined as diag

{
1, e

j2π(q+m2
k
)

L , · · · , e
j2π(q+m2

k
)(L−1)

L

}

J(p,m1
k) : N ×G time shift matrix defined as

[

0T
(m1

k
+p)×G IG 0T

(N−G−m1
k
−p)×G

]T

s : LG × 1 column vector obtained by stacking the spreading code a, L times as

[aT ,aT , · · · ,aT ]T .

w : LN × 1 complex additive white Gaussian noise with zero mean and covariance

matrix σ2
wILN .

In obtaining Eq. (2.19), it is assumed that all the samples of the received waveform

ỹk(t
′) fall within the sampling window of size N . By further simplifying (2.19),

ỹk = α̃k

√
EΦkh+w, (2.20)

where

Φk : LN×PQ defined asΦk = [φ(1, 1, m1
k, m

2
k) · · · ,φ(p, q,m1

k, m
2
k), · · · ,φ(P,Q,m1

k, m
2
k)]

h : PQ × 1 defined as vec(H), where H is a P × Q matrix with elements [H ]pq =

H(p, q) and h ∼ CN (0,Σh).
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When there are K targets, each of these targets will occupy one specific grid point.

The received signal due to all the targets is then given as

y(t′) =
√
E

M∑

m=1

αm

Q/2−1
∑

q=−Q/2

P−1∑

p=0

H(p, q)

L−1∑

l=0

al(t−ltp−p∆τ−m1∆τ)ej2π(q+m2)∆fltp+w(t′),

(2.21)

with m1 = (m− 1) mod M1, m
2 = bm−1

M1
c and each of the K targets located at one

grid point m. We collect all such grid points where the targets are located into a set

K and define

αm =

{

α̃k if m ∈ K

0 if m /∈ K.

In general, the number of targets is much smaller than the number of grid points

(K << M). This sparsity constraint allows for the development of a sparse measure-

ment model. As before, expressing the received signal in a vector form gives

y =

M∑

m=1

αm

√
EΦmh+w. (2.22)

By further simplifying Eq. (2.22),

y =
√
EΦζ +w, (2.23)

where

• Φ : LN×MPQ dictionary of block-sparse model defined asΦ = [Φ1 · · ·Φm, · · · ,ΦM ]

• ζ : MPQ × 1 block-sparse vector [41] defined as ζ = [α1h
T , · · · , αMhT ]T =

α⊗ h
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Observe that the dictionary matrix consists of time-frequency shifted versions of the

transmitted signal in its columns. The dictionary matrix satisfies a special property

which will be stated as a theorem. But before that, a notation Dξ
κ is introduced

below.

LetD1, · · · ,DU denote diagonal matrices each of order V and letD = diag
{
D1, · · · ,DU}

be a block diagonal matrix. Denote by Dξ
κ, a matrix obtained by moving the diago-

nal entries of all the matrices D1,D2 · · ·DU in D to ξth sub-diagonal below or above

their respective principal diagonals, depending on whether ξ is positive or negative.

Further, all the diagonal matrices in the block diagonal matrix D are moved to the

κth sub-diagonal below or above the principal diagonal of D, depending on whether

κ is positive or negative. Thus, the superscript denotes the offset of the elements of

D1,D2 · · ·DU from their respective principal diagonals and the subscript denotes the

offset of the matrices D1,D2 · · ·DU from the principal diagonal of D. An example

for the notation is provided below.

Example: Let

D =



















d11 0 0 0 0 0

0 d12 0 0 0 0

0 0 d13 0 0 0

0 0 0 d21 0 0

0 0 0 0 d22 0

0 0 0 0 0 d23



















=






D1 0

0 D2




 ,
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then

D1
1 =



















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

d11 0 0 0 0 0

0 d12 0 0 0 0



















=






0 0

D1
1 0




 ,

and,

D−1
−1 =



















0 0 0 0 d11 0

0 0 0 0 0 d12

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



















=






0 D−1
1

0 0




 ,

with

D1
1 =









0 0 0

d11 0 0

0 d12 0









and D−1
1 =









0 d11 0

0 0 d12

0 0 0









.

Theorem 1. If L ≥ M2+Q
2

and
∑G−1

g=0 agag−k = 0, k 6= g, then the dictionary Φ

satisfies

ΦH
mΦn = D

ξM1
(n,m)

κM1
(n,m) (2.24)

where ξM1(n,m) = bn−1
M1

c − bm−1
M1

c, κM1(n,m) = {(n − 1) mod M1} − {(m − 1)

mod M1}, D = diag(LIP , · · ·LIP ).
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Proof: From the definition of Φ,

[
ΦH

mΦn

]

ij
= aH

L−1∑

l=0

e
j2πl
L

ξM1
(n,m)+ξP (j,i)

(

J

(

κM1(n,m), κP (j, i)

)

a

)

. (2.25)

1. First, consider the case m = n, i.e., within the same block. For this case,

ξM1(n,m) = 0 and κM1(n,m) = 0. Therefore,

[
ΦH

mΦm

]

ij
=

L−1∑

l=0

e
j2πlξP (j,i)

L

G−1∑

g=0

a∗gag−κP (j,i). (2.26)

When ξP (j, i) 6= 0, i.e., b j−1
P
c − b i−1

P
c 6= 0, corresponding to all the P × P

sub-matrices that are not along the principal diagonal in the PQ× PQ matrix

ΦH
mΦm, we have

[
ΦH

mΦm

]

ij
= 0. (2.27)

When ξP (j, i) = 0, i.e., b j−1
P
c − b i−1

P
c = 0, corresponding to all the P × P

sub-matrices along the principal diagonal of ΦH
mΦm, we again consider two

possibilities. First, κP (j, i) = 0. In this case,

[
ΦH

mΦ
H
m

]

ij
= L

G−1∑

g=0

a∗gag = L. (2.28)

Since ξP (j, i) = 0, this corresponds to the case when i = j, or equivalently all the

diagonal entries of the matrix ΦH
mΦm are L. When κP (j, i) 6= 0 or equivalently,

i 6= j,

[
ΦH

mΦm

]

ij
= L

G−1∑

g=0

aga
∗
g−(j−i) = 0. (2.29)

Hence for m = n, ΦH
mΦn = LI.
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2. Next, consider the case when m 6= n. In this case, ξM1(n,m) + ξP (j, i) = 0

only when ξM1(n,m) = −ξP (j, i) or equivalently ξM1(n,m) = ξP (i, j). This

corresponds to all the P×P submatrices along the ξM1(n,m)th diagonal. For all

other i, j, since L ≥ M2+Q
2

and ξM1(n,m)+ ξP (j, i) 6= 0, we have
[
ΦH

mΦn

]

ij
= 0.

The constraint on L essentially eliminates the possibility of an ambiguity in

the Doppler estimation. Within each submatrix along the ξM1(n,m)th diagonal,

κM1(n,m) + κP (j, i) = 0, when κM1(n,m) = κP (i, j). These correspond to the

indices along the κM1(n,m)th diagonal within each submatrix. For all these

indices,
[
ΦH

mΦn

]

ij
= L. When κM1(n,m) + κP (j, i) 6= 0 ,

[
ΦH

mΦn

]

ij
= 0. Hence

the structure.

2.4 Sparsity-Based Multiple-Target Tracking

In a sparsity-based tracking procedure, the predicted state θ̃k,t = [x̃k,t, ỹk,t, ˜̇xk,t, ˜̇yk,t]
T

of each target is computed, and it is used to decide the region of interest in the

received signal. The support of the block-sparse signal 5 ζ is then computed using

the measurement at time t given by Eq. (2.23). From the support of the block-sparse

signal, the estimates of the delay and Doppler of each target are computed using Eq.

(2.16). Next, the estimates of the target state for each target are computed using the

following equations:

(x̂k,t, ŷk,t) =
c ˆτk,t,d
2

ũk,t,

(ˆ̇xk,t, ˆ̇yk,t) =
cν̂k,t,d

2fc(˜̇uk,t)T ũk,t

˜̇uk,t, (2.30)

5The support of a block sparse vector is defined as the set of blocks which have non-zero norm,

i.e., bsupp(a) as bsupp(a) = {l
∣
∣
∣ ‖a[l]‖`2 6= 0}, where a[l] denotes the lth block of elements of the

vector a.
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where τ̂k,t,d and ν̂k,td are the estimates of delay and Doppler of kth target at time t,

respectively, and ũk,t and ˜̇uk,t are the unit vectors in the direction of the position and

velocity of kth target at time t, respectively, given by

ũk,t = (
x̃k,t

√

x̃2
k,t + ỹ2k,t

,
ỹk,t

√

x̃2
k,t + ỹ2k,t

),

˜̇uk,t = (
˜̇xk,t

√

˜̇x2
k,t +

˜̇y2k,t

,
˜̇yk,t

√

˜̇x2
k,t +

˜̇y2k,t

). (2.31)

Using this procedure, the problem of multiple-target tracking boils down to the prob-

lem of estimating the support of the block-sparse signal ζ. The support of ζ can be

found by reconstructing the sparse signal ζ using one of the following standard sparse

signal reconstruction techniques, followed by thresholding.

2.4.1 Standard Sparse Signal Reconstruction Techniques

In its most canonical form, a sparse-model consists of an N × 1 measurement vector

of the form y = Φx + w, where Φ is an N × M dictionary of basis vectors and x

is an M × 1 sparse vector, with sparsity level K, K � M , and w is the additive

noise. Several algorithms have been proposed in the literature to reconstruct the

sparse signal x, all of which can be broadly classified into three main categories. In

the absence of noise, the signal x can be recovered by solving

P0 : argmin
x

‖x‖`0 subject to y = Φx.

Unfortunately, P0 is a non-convex optimization problem and it is NP hard to solve [42].

A convex relaxation to P0 is obtained by replacing the `0 norm with the `1 norm or `p
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norm in general. Solutions thus obtained fall under the category of convex relaxation.

Basis pursuit (BP) [43] solves the problem

BP : argmin
x

‖x‖`1 subject to y = Φx .

In the presence of noise, a variation of basis pursuit called as the basis pursuit de-

noising (BPDN) [43], [44] is used. BPDN solves

BPDN : argmin
x

‖x‖`1 subject to ‖y −Φx‖`2 ≤ ε ,

where ε > 0 is the tuning parameter chosen based on the noise level. Dantzig selec-

tor (DS) [45], another convex relaxation optimization introduced recently, solves the

optimization problem

DS : argmin
x

‖x‖`1 subject to ‖ΦH (y −Φx) ‖`∞ ≤ µ ,

where µ > 0 is the tuning parameter. When the standard deviation of the additive

noise is known, and the columns of the dictionary are normalized, the parameters ε

and µ are chosen to be
√
2 logNσ [43]. A second category of reconstruction methods

perform a greedy iterative search for the solutions of P0 by making locally optimal

choices. Orthogonal matching pursuit (OMP) [46], [47], compressive sampling match-

ing pursuit (CoSaMP) [48] fall under this category. The algorithm terminates when

the squared error of the estimate between the consecutive iterations is below a pre-

determined threshold. The third category of solutions enforce a sparsity based prior

on the signal x and recover the signal x by solving for the MAP estimate. Most com-

mon methods in this category are Bayesian compressive sensing (BCS) [49] and sparse

Bayesian learning (SBL) [50]. The choice of the sparsity enforcing priors is problem
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dependent and there are no universal priors which guarantee good performance for

all the models.

Using these standard sparse signal reconstruction algorithms to reconstruct the target

scene in a multipath is often computationally expensive as they involve high dimen-

sional vectors and matrices. Hence, these reconstruction algorithms are not well suited

for target tracking, which requires real time processing. Further, all these algorithms

depend heavily on the choice of the tuning parameters. In Sec. 2.4.3, a projection

based (PB) support recovery algorithm which exploits the structural property of the

dictionary is described. PB support recovery algorithm is a simple single-step proce-

dure that does not require convex optimization or an iterative greedy search. It does

not depend on the tuning parameters and it can be applied in scenarios where the

selection of tuning parameters is difficult.

2.4.2 Effect of Multipath Environment

In this section, the effect of the time-varying multipath channel and the signaling on

the performance of the support recovery algorithm is analyzed. As shown in Section

2.4, multiple-target tracking problem is equivalent to a support recovery problem. In

particular, the set K of indices that correspond to the non-zero blocks of the block

sparse vector ζ in Eq. (2.23) are to be estimated. For a known block size, there are

S =
(
M
K

)
possible locations where the blocks of non-zero entries can be placed in ζ.

Let S denote the set containing all these possible locations of the non-zero blocks.

Given that the actual set, K, corresponding to the block support of ζ, is located at an

index m in this set S, an error in the estimate of the delay or the Doppler of at least

one target occurs whenever the index m is associated to some other index n. To study
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the performance of such a scheme, the total error probability of a multiple hypothesis

testing problem, where each hypothesis corresponds to a candidate support, is used

as a performance metric [51].







H0 : bsupp(ζ̃) = S0,

...

HS : bsupp(ζ̃) = SS

. (2.32)

Evaluating the total error probability for an arbitrary reconstruction method is, in

general, not feasible. Hence, an upper bound on total error probability for an optimal

maximum-likelihood based decision criterion is used. If all the hypothesis are assumed

to be equally likely, the optimal decision rule is given as [52]

m∗ = argmax
m

p(y|Hm). (2.33)

The following theorem upper bounds the error probability of wrongly identifying the

support.

Theorem 2. For the sparse signal model defined in (2.22), the total error probability,

PM
K , is upper bounded by

PM
K ≤ 1

2S

S∑

m=1

S∑

n=1
n 6=m

PQ
∏

ρ=1

1

1 + λρ(m,n)
, (2.34)

where λ1(m,n) · · ·λPQ(m,n) are the eigenvalues of the PQ×PQ matrix Λ(m,n) de-

fined as Λ(m,n) = SNR
2L

Σζ∆ΦH
m,n∆Φm,n, SNR = EL

σ2 is the signal to noise ratio, σ is

the standard deviation of the additive white Gaussian noisew, Σζ = diag{α1, · · · , αK} ⊗Σh

and ∆Φm,n = Φn −Φm.
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Proof. For the system model described by Eq. (2.22), first consider a binary case

where there are only two supports, indexed by m and n. Denote the probability

of wrongly associating the support Sm to Sn as Pc(m → n|m). This probability is

evaluated for an optimal maximum likelihood based hypothesis test. For the binary

case, given that bsupp(ζ̃) = Sm, Eq. (2.22) can be written as

y =
√
EΦmζ +w, (2.35)

where Φm is obtained by concatenating K blocks each of size N×PQ that correspond

to the bsupp(ζ̃) = Sm and ζ is obtained by removing the zeros in the block-sparse

vector ζ̃. Using the optimal decision rule given by Eq. (2.33), an error in wrongly

associating support is given as

Pc(m → n|m) = Pr
{
P (y|bsupp(ζ̃) = Sn) > P (y|bsupp(ζ̃) = Sm)|m

}
. (2.36)

The subscript c emphasizes that the error probability is conditional on ζ. Under the

hypothesis Hm : bsupp ˜(ζ) = Sm, y ∼ CN (
√
EΦmζ,Σ). Thus the conditional error

probability given ζ is given as

Pc(m → n|m) = Pr
{
e−(y−

√
EΦnζ)Σ−1(y−

√
EΦnζ) ≥ e−(y−

√
EΦmζ)Σ−1(y−

√
EΦmζ)|m

}
,

= Pr
{√

EyHΣ−1∆Φm,nζ +
√
EζH∆ΦH

m,nΣ
−1y ≥

EζHΦH
mΣ

−1Φmζ −EζHΦH
n Σ

−1Φiζ|m
}

.

However, yHΣ−1∆Φm,nζ+ζH∆ΦH
m,nΣ

−1y follows a complex normal distribution with

mean
√
EζHΦH

mΣ
−1∆Φm,nζ +

√
EζH∆ΦH

m,nΣ
−1Φiζ and variance-covariance matrix
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ζH∆ΦH
m,nΣ

−1∆Φm,nζ. Hence,

Pc(m → n|m) = Pr
{√

E(yHΣ−1∆Φm,nζ + ζH∆ΦH
m,nΣ

−1y) ≥

E(ζHΦH
n Σ

−1Φnζ − ζHΦH
mΣ

−1Φmζ)|m
}

,

= Q

(√

EζH∆ΦH
m,nΣ

−1∆Φm,nζ

)

, (2.37)

where Q(γ) is the complementary error function defined as Q(γ) =
∫∞
x=γ

1√
2π
e−

x2

2 dx.

Using the bound Q(γ) ≤ 1
2
e−γ2/2 [53],

Pc(m → n|m) <
1

2
e−

EζH∆Φ
H
m,nΣ

−1∆Φm,nζ

2 . (2.38)

The unconditional probability of error is obtained by averaging Pc(m → n|m) over

the distribution of ζ. Since ζ ∼ CNPQ(0,Σζ),

P (m → n|m) <
1

2

∫

e−
EζH∆Φ

H
m,nΣ

−1∆Φm,nζ

2
1

(π)PQ|Σζ|
e−ζH

Σζζdζ,

=
1

2

2|Σ−1
ζ |

|E∆ΦH
m,nΣ

−1∆Φm,n + 2Σ−1
ζ |

∫ |E∆ΦH
m,nΣ

−1∆Φm,n + 2Σ−1
ζ |

2(π)PQ
e−ζH

(
E∆Φ

H
m,nΣ

−1∆Φm,n+2Σ−1
ζ

2

)
ζdζ,

=
1

2

1
∣
∣EΣζ∆ΦH

m,nΣ
−1∆Φm,n/2 + I

∣
∣
. (2.39)
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The total probability of error is now obtained by using the union bound.

Perr =

S∑

m=1

Pr{err|m}P(m),

=
1

S

S∑

m=1

Pr
{ ⋃

n 6=m

P (m → n|m)
}
,

<
1

S

S∑

m=1

S∑

n=1
n 6=m

P (m → n|m),

<
1

2S

S∑

m=1

S∑

n=1
n 6=m

1

|EΣζ∆Φ
H
m,nΣ

−1∆Φm,n

2
+ I|

. (2.40)

Denote Λ(m,n) =
EΣζ∆Φ

H
m,nΣ

−1∆Φm,n

2
and let λ1(m,n), λ2(m,n), · · · , λPQ(m,n) be

the eigenvalues of Λ(m,n). Then,

Perr <
1

2S

S∑

m=1

S∑

n=1
n 6=m

PQ
∏

ρ=1

(
1

1 + λρ(m,n)

)

. (2.41)

Several comments are in order here. First, note that the performance metric, PM
K ,

can be difficult to compute due to an exponentially large number of terms in the

summation. Nevertheless, it gives various insights on how a support recovery algo-

rithm depends on the signalling parameters and the channel. PM
K , varies inversely

with the product PQ = TdBdTB. For a given signaling scheme, i.e., for a given TB,

PM
K decreases as the product TdBd increases. This performance advantage is due to

the joint delay-Doppler diversity that is inherently present in the measurement model

due to a time-varying multipath channel. By using a model which captures this joint

diversity, significant performance improvement is achieved. For a given channel, i.e.,

38



for a given TdBd, P
M
K decreases as the time-bandwidth product, TB, of the signaling

increases. To maximize the product PQ, and to exploit the full diversity offered by

the model, a signaling scheme that maximizes the time-bandwidth product should

be used. For non spread-spectrum signals, the signaling duration and the bandwidth

cannot be controlled independently. As a result, by increasing the signaling duration,

the diversity offered due to the Doppler spread is lost and by increasing the signaling

bandwidth, the diversity offered due to the delay spread is lost. For spread-spectrum

signals, signaling duration and the bandwidth can be controlled independently. In

particular, the time-bandwidth product will be proportional to G which can be made

arbitrarily large in principle. Hence, spread-spectrum waveforms are optimal for

sparsity-based tracking in multipath scenarios.

Second, the eigenvalues λρ depend on the dictionary, Φ, which in turn depend on

the spread-spectrum sequence chosen for the transmission. This leads to a signal

optimization problem. The optimal sequence to be transmitted in each tracking

interval can be found by solving the following optimization problem:

a∗ = argmin
a

S∑

m=1

S∑

n=1
n 6=m

( 1

1 + λmin(a)

)PQ

, (2.42)

where λmin(a) corresponds to the minimum eigenvalue of the matrix Λ defined earlier.

However, this design problem is not considered in this chapter.

Finally, note also that the upper bound given in Theorem 2 may not be a tight for

all SNR values. Due to the large number of terms in the summation, the bound PM
K

can be greater than one for some values of SNR, in which case the bound becomes

trivial.
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2.4.3 Projection-Based (PB) Support Recovery Algorithm

In this subsection, a projection-based (PB) support recovery algorithm is discussed.

The PB algorithm is a single step approach for finding the support of the block-

sparse vector. First, construct the dictionary Φ for the sparse model by discretizing

the delay-Doppler plane, as described in Section 2.3. Next, project the received vector

onto the row space of the dictionary, and coherently combine the energy in each block

of the projection vector. The projection z can be expressed as

z = (IM ⊗ hH)ΦHy. (2.43)

The block support of ζ can be then estimated by finding the indices that correspond

to the maximum absolute values of the vector z. Below discussion demonstrates why

the algorithm works. For a noise free case,

z = (IM ⊗ hH)ΦHy =
√
E(IM ⊗ hH)ΦHΦζ. (2.44)

Rewriting ζ as ζ = α⊗ h, and expressing the rth element of z as

zr =
√
EhH

∑

k∈K
αkΦ

H
r Φkh. (2.45)

The summation over other terms is zero as αm = 0 for m /∈ K.

For r ∈ K, (2.45) simplifies as

zr = αr

√
EhHΦH

r Φrh+
√
EhH

∑

k∈K−{r}
αkΦ

H
r Φkh,

= αr

√
ELhHh+

√
E

∑

k∈K−{r}
αkhHDξ

κh. (2.46)
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The result from Theorem 1 is used to express ΦH
r Φk as ΦH

r Φk = Dξ
κ, where ξ is

denoted as ξM1(k, r) and κ is denoted as κM1(k, r) for simplicity. By expanding Dξ
κ,

using the notation described in Section 2.3,

hHDξ
κh = L

Q−κ
∑

i=1

P−ξ
∑

j=1

h∗
i+κ,j+ξhij . (2.47)

Since hij are independent Gaussian random variables, they are uncorrelated. There-

fore, by the law of large numbers, the summation in (2.47) is approximately zero.

Hence

zr = αr

√
ELhHh for r ∈ K. (2.48)

For r /∈ K, (2.45) simplifies as

zr =
√
EhH

∑

k∈K
αkΦ

H
r Φkh,

=
√
EL

∑

k∈K
αk

Q+1−κ
∑

i=1

P+1−ξ
∑

j=1

h∗
i+κ,j+ξhij ,

≈ 0. (2.49)

Thus, in the absence of noise, the indices corresponding to the support of the block-

sparse vector ζ are exactly same as the indices that correspond to non-zero elements

in the vector z. When there is noise in the system, z will no longer be sparse and

the locations of K maximum absolute values of z determine the support of the block-

sparse vector. After finding the support of the block-sparse vector ζ, the estimates

of the delay and the Doppler for each target will be computed using Eq. (2.16), and

the exact position and velocity for each target will be computed using Eq. (2.30).

In order to associate each non-zero index to a specific target, Eq. (2.23) is solved
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for ζ, using a regular least squares approach. After ζ is known, the estimates the

target RCS, αk for k = 1, · · · , K are computed. Using the RCS values, each target is

assigned to one of the K absolute maximum values. As long as the noise is bounded

such that the vector z does not have spikes at the indices that do not correspond

to the exact target locations, the proposed algorithm gives a perfect target scene

reconstruction. This process is repeated in each tracking interval to obtain the target

state. The pseudo-code for the overall tracking method is given in Algorithm 1.

Algorithm 1 PB Support Recovery Algorithm for Target Tracking in Multipath
Environment
1: for t = 1 : T do
2: Compute θ̃t = F θ̂t−1.
3: Construct the dictionary Φt using θ̃t.
4: Construct a M × 1 vector zt = (IM ⊗ hH

t )Φ
H
t yt.

5: Find support {sk | |zt,sk | > |zt,r|, r ∈ {1, · · · ,M}, r 6= sk, k = 1, · · · , K}.
6: Using sk, compute τ̂k,t,d, ν̂k,t,d, k = 1, · · · , K.
7: Compute the estimate of the target state using Eqs. (2.30) and (2.31).
8: end for

Tracking using the proposed PB support recovery is computationally less expensive

when compared to the computational complexity of other tracking methods. This

computational advantage is achieved because the PB support recovery does not need

a convex optimization or an iterative greedy search. Tracking using the proposed PB

support recovery performs better compared to the performance of the other tracking

methods. This performance advantage is achieved because the projection vector z

is obtained by coherently combining the energy from all the paths. Therefore, the

algorithm exploits the joint delay-Doppler diversity that is inherently present in the

problem.
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2.5 Numerical Results

Several numerical examples are shown in this section to demonstrate the performance

and computational advantage of proposed tracking method. These examples also

show the effect of the time-varying multipath modeling on the performance of the

support recovery based-tracking methods.

The simulated scenario had two crossing targets (K = 2) moving in the region of

interest. The initial position of the first target was (1200, 900)m and it was moving

with a constant velocity of (18, 24)m/s; the initial position of the second target was

at (900, 1559)m and it was moving with a constant velocity of (15,−26)m/s. The

initial parameters were estimated before the tracking process. Such an estimation

can be performed using several methods including the maximum likelihood-based

estimation [54], beamforming-based estimation [55], Bayesian estimation [56], and

sparsity-based estimation [32] and interested readers can refer to these works for more

information. Both targets were moving along linear trajectories, and hence their state

transition equations were described by Eq. (4.24) and the covariance matrices of the

modeling error were given by Eq. (2.12) with ε1 = ε2 = 4. The tracking interval

length δt was chosen to be 0.5 seconds. The RCS of the first target, α̃1 was 1, while

that of the second target, α̃2 was 1.4.

The carrier frequency, fc, of the transmitted waveforms was 1Ghz and the bandwidth,

B, of each pulse was 100Mhz. We used L = 4 pulses in each tracking interval. In each

pulse, a spread waveform generated from a pseudo-random noise sequence of length,

G = 16 was used. Since there was no signal optimization or pulse to pulse diversity

employed, the same signal was used over all the 4 pulses and the 20 tracking intervals.

In each tracking interval, the entries of the matrix H were generated independently
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from a complex Gaussian distribution. The entries were scaled later such that variance

of the coefficients corresponding to different delays decayed exponentially. PQ was

chosen to be 6. A window of 300 samples (N = 300) per pulse around the predicted

state of the first target in each tracking interval was considered. Such a large window

size is required is accommodate the received signal vector of all the targets, when

they are moving away from each other over time. The entries of w were drawn

independently from a complex Gaussian distribution and were scaled to obtain the

required SNR defined as

SNR =
EL

σ2
w

. (2.50)

The performance of proposed projection-based tracking method was compared with

other sparsity based tracking methods that employed BPDN, DS and BCoSaMP

algorithms for support recovery. The delay-Doppler plane was divided into M1 = 5

and M2 = 5 grid points for each target, with the grid size ∆τ = 1/fs and ∆f = 1/ti.

This corresponded to a position and velocity estimate resolution of 1.5m and 0.3m/s,

respectively in the x and the y directions. Support recovery using BPDN and DS

were done by solving the optimization problems labeled BPDN and DS in Section

2.4.1, followed by thresholding. MATLAB’s CVX package [57] was used to solve

the convex optimization problem and the tuning parameters were chosen based on

the noise variance, which was assumed to be known. Both these algorithms do not

use the additional information about the block sparsity present in the problem. A

BCoSaMP algorithm similar to the one used in [31] and [41] was used to solve the

support recovery problem. The BCoSaMP algorithm used the additional information

about the block sparsity in the problem.
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All the simulations were averaged over 50 Monte Carlo iterations, and we used an

SNR of 25dB.
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Figure 2.2: Root mean-square-error for various tracking algorithms.

In Fig. 2.2, the cumulative root mean-square-error (RMSE) in the range and velocity

estimates were plotted and in Fig. 2.3, actual and estimated trajectories for both the

targets using different methods were plotted.

It can be seen that for all the sparsity based methods the RMSE’s in the range and the

velocity estimates were under 2m and 1m/s, respectively. The RMSE in the velocity

estimates using PB support recovery was slightly better when compared to other

methods. Further it should also me emphasized that the methods based on DS and

BPDN assume that the noise variance is known for selecting the tuning parameter.

The time taken by each of these algorithms is tabulated in Table 2.1.

In the second set of simulations, the performance improvement obtained due to the

joint delay-Doppler diversity in the model was demonstrated. In Fig. 2.4, the upper

bound on the error probability is shown against the SNR for various values of P andQ.

It can be seen that as the product PQ increased, the bound on the error probability

decreased significantly. This is due to additional degrees of freedom provided by the

joint delay and Doppler diversity present in the urban environment. Also, for PQ = 1,
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the bound was trivial and was greater than one for the range of SNR considered. To

get a useful bound, the SNR has to be increased. In Fig. 3.5, the actual RMSE in the

range and the velocity estimates obtained using the PB tracking for various values

of P and Q. It can be seen that when the product PQ = 1, RMSE increased and

was unbounded. For the same SNR, the performance in the presence of time-varying

multipath channel model was significantly better.

Table 2.1: Average CPU time (in seconds) for various sparsity-based tracking algo-
rithms.

DS BPDN BCoSaMP PB
5× 5 grid 8.56 7.04 2.78 2.16
9× 9 grid 94.2 19.42 10.31 6.20

2.6 Summary

In this chapter, we considered the problem of multiple-target tracking in a time-

varying multipath channel. A sparse model was developed by considering a finite

dimensional representation of the time-varying system function that characterizes

the channel, and then discretizing the delay-Doppler plane. The target scene is then

represented as a sparse signal which has non-zero values only at the indices which cor-

respond to target locations. Tracking is then performed in two steps: predication and

update. In the prediction step, a predicted value of the target state is obtained using

the estimate of the target state from the previous tracking interval. This predicted

state is used to construct the dictionary for the sparse model. In the update step,

the estimates of the delay and Doppler of each target are obtained. Since the target
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(c) BCoSaMP based tracking
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Figure 2.3: Actual Vs estimated trajectories using various tracking algorithms.

scene is represented as a sparse signal, problem of delay and Doppler estimation is

equivalent to a sparse support recovery problem.

An upper bound on the error probability for an optimal maximum likelihood based

support recovery algorithm was then derived. Using this bound, we showed that the

performance of the support recovery depends inversely on the time-bandwidth prod-

uct of the signaling; hence spread-spectrum waveforms are optimal for sparsity based

recovery in multipath environments since their signaling duration and bandwidth can

be controlled independently. With spread-spectrum signaling, the dictionary of the

block-sparse model exhibits a special structure. We exploited this special structure to

propose a new projection based (PB) support recovery algorithm. As the PB support
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Figure 2.4: Upper bound on error probability for an optimal reconstruction.

recovery algorithm did not involve an iterative search or the need to solve a convex

optimization problem, target tracking using this algorithm was computationally less

intensive. Further, in the scenarios where the additive noise is bounded, PB algo-

rithm gives exact target scene reconstruction and the corresponding tracking perfor-

mance was better when compared to the performance obtained using other standard

sparse signal reconstruction algorithms. Numerical simulations demonstrated that

the proposed tracking algorithm takes less time when compared to the time taken

by the standard sparse signal reconstruction-based tracking, and it produced lower

mean-squared error (MSE) in the position and velocity estimates of the targets when

compared to the MSE obtained using other methods.
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Figure 2.5: Root mean-square-error for various values of PQ.
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Chapter 3

Multiple Rao Blackwellized

Particle Filtering for MTT6

In the previous chapter, we developed a sparsity based tracking algorithm for targets

moving in a time-varying multipath environment. We assumed that the channel state

representing the environment was known in all the tracking intervals. In this chapter,

we develop a tracking algorithm that jointly estimates the channel and the target

states in each tracking interval.

3.1 Introduction

In this chapter, we use a radar network for the task of tracking multiple-targets mov-

ing in a time-varying multipath environment. As discussed in Chapter 2, such an

environment offers an inherent delay-Doppler diversity which can be used to obtain

6Based on P. Chavali and A. Nehorai, “Scheduling and Resource Allocation in a Cognitive Radar
Network for Multiple-Target Tracking”, IEEE Trans. on Signal Processing, vol. 60, no. 2, pp.
715-729, Feb. 2012. c©[2012] IEEE
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a better tracking performance. However, accurate priori information about the chan-

nel state that characterizes the multipath environment is required. When no prior

information is available, the channel state has to be estimated along with the target

state. When multiple sensors are employed, the channel state between each pair of

sensors has to be estimated. Hence, the problem of MTT in a multipath environment

poses a computational challenge due to the high-dimensionality of the state space.

In this chapter, we develop a particle filter for obtaining an approximate Bayesian

estimate of the target and the channel state. We develop a hybrid filter, which is

a combination of a multiple particle filter (MPF) and a Rao-Blackwellized particle

filter (RBPF), by exploiting the structure of the state space.

Next, we derive the closed-form expressions for the PCRB on the estimates of the

state vector, when the received signal at each radar is a linear combination of the

delayed and Doppler-shifted versions of the signals transmitted from all the radars.

Specifically, we do not assume that the signals transmitted by the individual radars

are orthogonal to each other for all the delay and Doppler pairs. We then address the

problems of adaptive sensor scheduling and power allocation for the radar network.

Since the total costs of acquiring measurements, the communication involved with

central processing, and the computational complexity of processing the measurements,

increases with the number of operational radars, it is important to adaptively select

a subset of operational radars and the power allocated to them at each time, to

minimize the error in the estimate of the state vector. The problem of selecting a

subset of sensors from a given set of possible sensors arises in various applications

and has been addressed in the literature for passive networks [58]. The estimation

performance is evaluated using the volume of the confidence ellipsoid as a performance

metric, which is minimized for finding a suitable subset of sensors to be employed.
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For an active sensor network, such as a radar network, it is also important to consider

the constraints on the signal power to be transmitted, and the sensor locations while

formulating the optimization problem. Few works in the past have addressed the

problem of sensor scheduling for active sensor networks like a distributed MIMO

radar network. In [59], [60], the authors proposed a subset selection algorithm for the

task of estimating the position of a single stationary target. They do not assume the

presence of multipath and assume that the signals transmitted from each radar to be

orthogonal. In [61], authors considered tracking multiple targets, but they also do

not consider multipath and assume that the transmitted signals are orthogonal. They

perform an iterative local search to minimize the PCRB and find a subset of antennas

to be employed at each time. In this chapter, we consider tracking multiple targets

moving in a multipath scenario. We derive the PCRB for arbitrary transmit signals

and use that as an optimization criterion for the scheduling and power allocation

problems. We propose a two-pass greedy algorithm for finding a suitable antenna

subset in the first pass and the power to be transmitted by the selected antennas in

the second pass. Our algorithm is adaptive, and we select the antennas to be used

and the power to be transmitted in each tracking interval based on the target state

and the channel state estimates, which are obtained through the feedback from the

receiver, with suitable constraints on the overall transmit power and communication

cost.

3.2 System Model

We extend the model proposed in Chapter 2 to the case of a radar network in this

chapter. Consider a network of P monostatic radars labeled as P = {1, 2, . . . , p, . . . , P}
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operating in a centralized fashion, i.e., information fusion, scheduling and resource al-

location are confined to a central fusion center. The radar network is employed in the

region of interest R ⊂ R
2, with the pth radar located at (xp, yp). One of the P radars

will act as the fusion center for the network, and, without the loss of generality, we

consider the first radar to be the fusion center of the network and that it is located at

(0,0). There are K point targets moving in the region of interest R, with the position

and velocity of the kth target given as (xk, yk) and (ẋk, ẏk). We abuse the notation

slightly here and use the same symbols x and y to denote the x- and the y- positions

of the radar and the target; we differentiate between them based on the sub-script

used for indexing the radar antennas and the targets. Throughout the chapter, we

use the subscript k to denote the target. All the other subscripts correspond to the

radar antennas. Other than the targets, there are multiple scatters in the region R,

which can be stationary or moving at speeds comparable to the speed of the targets.

3.2.1 State-Space Model

Denote by θk,t the state vector corresponding to the kth target at time t, and let

θt =

[

θT
1,t, · · · , θT

K,t

]T

denote the 4K × 1 vector of the joint target state. Then

from Eq. 2.13 of Chapter 2 we get an overall target state transition equation given

as

θt = F θθt−1 + vθ,t−1. (3.1)

The noise is assumed to be additive white Gaussian noise with covariance matrix

Σvθ = blkdiag{Σ1,vθ , · · · ,ΣK,vθ} and Σk,vθ given by Eq. 2.12.
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The state transition for the channel is assumed to be a first order Markovian process,

and it is described by the following equation:

βt = βt−1 + vβ,t−1, (3.2)

where the noise is assumed to be white Gaussian, with a known covariance matrix

Σvβ , given by

Σvβ = diag{vec(Σβ)} ⊗ IKNτNf
, (3.3)

where Σβ is a P×P matrix with [Σβ]pq denoting the variance of the mutipath channel

between the pth radar and qth radar, and diag{vec(Σβ)} is a P 2×P 2 diagonal matrix

with vec(Σβ) along the principal diagonal. We form an extended state vector by

concatenating the target state vector and the channel state vector into a single vector

of dimension 4M+PMPNτNf defined as ξ = [θT ,βT ]T . The state transition equation

for ξ is given as

ξt = Fξt−1 + vξ,t−1, (3.4)

where the overall state transition matrix is given as

F =






F θ 04K×PKPNτNf

0PKPNτNf×4K IPKPNτNf




 ,

and vξ,t−1 is the additive white Gaussian noise with covariance matrix Σvξ . Hence-

forth in this chapter, when we say state vector, we refer to the extended state vector

formed by concatenating the target state and the channel state.
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3.2.2 Measurement Model

At each antenna, we transmit a coherent train of multiple pulses with a pulse repeti-

tion period of tp seconds. The transmitted signal at the qth radar is given as

sq(t
′) =

L−1∑

l=0

alq(t
′ − ltp), (3.5)

where alq(t
′) is the transmitted signal in the lth pulse from the qth radar, and sq(t

′) is

a unit energy signal.

Let τpqm be the total time taken for the signal to travel from the qth radar to the kth

target and back to the pth radar, and νpqk be the Doppler frequency shift due the qth,

pth transmit-receive pair and the kth target. As before, the propagation path consists

of a forward transmission channel, the target itself, and a reverse transmission channel

(see Fig. 2.1). The parameters τpqk and νpqk depend on the position and velocity of

the kth target and the positions of the pth radar and the qth radar. We have

τpqk =
1

c

{

Rqk +Rpk

}

, (3.6)

and

νpqk =
fc
c

{

Ṙqk + Ṙpk

}

, (3.7)

where c is the speed of propagation, fc is the carrier frequency, Rqk is the range from

the radar q to the target k, Rpk is the range from the radar p to the target k, and
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Ṙqk and Ṙpk are the corresponding range rates, i.e.,

Rqk =
√

(xq − xk)2 + (yq − yk)2,

Rpk =
√

(xp − xk)2 + (yp − yk)2,

Ṙqk =
ẋk(xq − xk) + ẏk(yq − yk)

Rqk

, and

Ṙpk =
ẋk(xp − xk) + ẏk(yp − yk)

Rpk
. (3.8)

Following Eq. 2.14 from Chapter 2, the received signal at the pth radar, due to the

signal transmitted from the qth radar and bouncing off the kth target is given as

ypqk(t
′) =

√
γq

Nf
2

−1
∑

nf=−

Nf
2

Nτ−1∑

nτ=0

αkHpqk(nf∆f, nτ∆τ)sq(t
′ − τpqk − nτ∆τ)ej2πνpqk(t

′
−nτ∆τ)ej2πnf∆ft + wp(t

′),

=
√
γq

Nf/2−1
∑

nf=−Nf/2

Nτ−1∑

nτ=0

β
nfnτ

pqk sq(t
′ − τpqk − nτ∆τ)ej2π(νpqk+nf∆f)t′ + wp(t

′),

=
√
γq

Nf/2−1
∑

nf=−Nf/2

Nτ−1∑

nτ=0

L−1∑

l=0

β
nfnτ

pqk alq(t
′ − ltp − τpqm − nτ∆τ)ej2π(νpqk+nf∆f)ltp + wp(t

′), (3.9)

where

• αk is the radar cross section (RCS) of the kth target

• γq is the energy of the signal transmitted from the qth radar

• Nf = dBd

∆f
e and Nτ = d Td

∆τ
e represent the number of the different delay and the

Doppler paths,respectively

• β
nfnτ

pqk = αkHpqk(nf∆f, nτ∆τ) and
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• wp(t
′) is the additive noise at the pth receiver which is assumed to be circularly

symmetric, complex, white, and following a Gaussian distribution.

The resolution of the sampling of the delay-Doppler plane is chosen to match the

signaling duration and bandwidth, i.e., ∆τ = 1
B

and ∆f = 1
T
. We now sample the

received signal at a rate fs = B, and consider N samples around a reference point

(obtained by using the predicted state of the first target) in each pulse repetition

interval. The corresponding discrete-time signal is then given by

ypqk(nts) =
√
γq

Nf/2−1
∑

nf=−Nf/2

Nτ−1∑

nτ=0

L−1∑

l=0

β
nfnτ

pqk alq(nts−ltp−τ̃pqk−nτ ts)e
j2π(νpqk+nf∆f)ltp+wp(nts).

(3.10)

Here τ̃pqk = fsτpqk is the delay in the discrete domain. Expressing Eq. (3.10) in a

matrix form, we get

ypqk =
√
γq

Nf/2−1
∑

nf=−Nf/2

Nτ−1∑

nτ=0

β
nfnτ

pqk

(

Υ(nf )⊗ Γ(nτ )

)

sq

︸ ︷︷ ︸

φ(nτ ,nf )

+wp, (3.11)

where

• ypqk is a LN × 1 received signal vector at the pth antenna due to the signal

transmitted from the qth antenna and bouncing off the mth target

• Υ(nf ) is a L× L Doppler modulation matrix defined as

diag
{
1, ej2π(νpqk+nf∆f)tp , · · · , ej2π(νpqk+nf∆f)(L−1)tp

}

• Γ(nτ ) is aN×G time shift matrix defined as

[

0(τ̃pqk+nτ )×G IG 0(N−G−τ̃pqk−nτ )×G

]T
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• sq is a LG × 1 column vector obtained by stacking the transmitted signal

in each pulse from the qth antenna, i.e., sq = [aT
0q,a

T
1q, . . . ,a

T
L−1q]

T ,alq =

[a0lq, . . . , a
G−1
lq ]T

• wp is a LN × 1 complex additive white Gaussian noise at the pth receiver with

zero mean and covariance matrix Σw,p = σ2
w,pILN

In obtaining Eq. (3.11), we assumed that all the samples of the received waveform

ypqk(t) fall within the sampling window of size N and that the pulse width is greater

than ts seconds. The second assumption ensures that there is at least one sample

from each pulse. By further simplifying Eq. (3.11), we get

ypqk =
√
γqΦpqkβpqk +wp, (3.12)

where

• Φpqk is a LN ×NτNf matrix defined as Φpqk = [· · · ,φ(nτ , nf ), · · · ] and

• βpqk is a NτNf × 1 vector defined as [· · · , βnτnf

pqk , · · · ]T

The received signal at the pth antenna due to all the targets and all the antennas is

then given as

yp =

P∑

q=1

K∑

k=1

√
γqΦpqkβpqk +wp. (3.13)

The final measurement equation is obtained by concatenating the measurement vec-

tors at all the antennas and is given as

y = Φβ +w, (3.14)
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where

• y = [yT
1 , . . . ,y

T
P ]

T is a LNP × 1 vector of the received signal

• Φ = blkdiag{Φ1, . . . ,Φp, . . . ,ΦP} is a LNP ×PKPNτNf matrix, where Φp =

{√γ1Φp11, . . . ,
√
γPΦpPK}

• β = [βT
111, . . . ,β

T
PPK]

T is a PKPNτNf × 1 vector of the channel state and

• w = [wT
1 , . . . ,w

T
P ]

T is a LNP × 1 measurement noise vector with covariance

matrix Σw = blkdiag{Σw,1, . . . ,Σw,P}.

3.3 Multiple Rao-Blackwellized Particle Filter

In this section, we propose a new hybrid filter that partitions the state space into

lower dimensional subspaces and generates the particles from the lower dimensional

state space. Our method is based on the combination of a multiple particle filter [62]

and a Rao-Blackwellized particle filter [63], [64], [65]. The idea behind a multiple

particle filter is to partition the state space into subspaces of lower dimension, such

that the state transition of each subspace is independent of other subspaces, and then

to employ multiple particle filters operating on each subspace independently. The idea

behind a Rao-Blackwellized particle filter is to partition the state space, such that

conditioned on one partition the system becomes linear and Gaussian. This partition

can then be marginalized out analytically using a Kalman filter. The Rao-Blackwell

theorem states that the variance of the estimates obtained after Rao-Blackwellization

is less than the variance of the original estimate. We use these ideas to develop a

hybrid filter which is a combination of both MPF and a RBPF. We first partition the
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state space as target state and channel state, i.e., ξ = [θT ,βT ]T . The joint posterior

distribution at time t, given the measurements up to t can be expressed as

p(ξt|y1:t) = p(βt|θt, y1:t)p(θt|y1:t) (3.15)

Given a particle θ
(i)
t , the measurement model given in Eq. (3.14), is linear and

Gaussian in the channel state vector β. Hence, we use a Kalman filter to obtain the

measurement and time updates corresponding to the partition β. Next, we further

partition the target state into smaller subspaces where each partition corresponds to

the state of a single target. Since the state transition corresponding to each target is

independent of other targets, the distribution p(θt|y1:t) can be expressed as

p(θt|y1:t) =
K∏

k=1

p(θk,t|y1:t), (3.16)

We employ one particle filter for each partition, and approximate the distributions

p(θk,t|y1:t), k = 1, · · · , K using random measures defined by (θ
(i)
k,t, w

(i)
k,t). The corre-

sponding weight update equations can be expressed as [62]

w̃
(i)
k,t ∝ w

(i)
k,t−1p(yt|θ(i)

k,t,y1:t−1). (3.17)

The density p(yt|θ(i)
k,t,y1:t−1) 6= p(yt|θ(i)

k,t). This is because the measurements y1:t−1

contain the information about the channel state βt and the target state θ−k,t =

[θ1, . . . , θk−1, θk+1, . . . , θK ]
T
t . We express the distribution p(yt|θ(i)

k,t,y1:t−1) as

p(yt|θ(i)
k,t,y1:t−1) =

∫

p(yt|θ(i)
k,t, θ−k,t,βt)×p(βt|θ(i)

k,t,y1:t−1)×p(θ−k,t|θ(i)
k,t,y1:t−1)dβtdθ−k,t,

(3.18)
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and the distributions p(βt|θ(i)
k,1:t,y1:t−1) and p(θ−k,t|θ(i)

k,t,y1:t−1) as

p(βt|θ(i)
k,t,y1:t−1) =

∫

p(βt|βt−1)p(βt−1|y1:t−1)dβt−1, (3.19)

and

p(θ−k,t|θ(i)
k,t,y1:t−1) =

K∏

n=1
n 6=k

∫

p(θn,t|θn,t−1)p(θn,t−1|y1:t−1)dθn,t−1. (3.20)

We identify Eqs. (3.19) and (3.20) to be the time update equations corresponding to

the Kalman filter and the K − 1 particle filters, respectively. Also, Eq. (3.19) can

be computed analytically since the distributions defined in this equation are Gaus-

sian [64]. Following the similar procedure, we compute the weight update equations

corresponding to all K particle filters. Finally, we compute the marginal p(βt|y1:t)

using

p(βt|y1:t) =
∫

p(βt|θt, y1:t)× p(θt|y1:t)dθt. (3.21)

It can be shown that βt|y1:t ∼ CN
(
β+

t ,G
+
t

)
, where β+

t and G+
t are given by the

measurement update equations corresponding to the Kalman filter. In this manner,

the filter jointly estimates the multiple target positions and velocities, using Monte

Carlo based approach with one particle filter per target, and channel state, using a

Kalman filter. We refer to this Bayesian filter as Multiple Rao-Blackwellized particle

filter (MRBPF). The overall algorithm is given in Algorithm 2.
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Algorithm 2 MRBPF Algorithm for Joint Tracking of Target and Channel States.

1: Initialize {θ(i)
k,0}Ns

i=1,β
+
0 , and {G+

0 }
2: Initialize the weights w

(i)
k,0 = 1/Ns for k = 1, 2, · · ·K

3: for t = 1 : T do
4: parfor k = 1 : K do
5: Draw the samples {θ(i)

k,t}Ns
i=1 from the proposal distributions p(θk,t|θk,t−1).

6: Compute Φ
(i)
t based on the samples {θ(i)

k,t}Ns
i=1, k = 1, · · ·M

7: Kalman filter time update: Compute the Kalman gain and obtain the pre-
dicted value of the channel state vector β−

t using the following equations.

G−
t = Σvβ +G+

t−1

P
(i)
t = Σw +Φ

(i)
t G−

t (Φ
(i)
t )H

J
(i)
t = G−

t (Φ
(i)
t )H(P

(i)
t )−1

β−
t = β+

t−1

8: Particle filter time update: Compute the predicted value of the kth target
state using the equation

θ−
k,t =

Ns∑

i=1

w
(i)
k,t−1θ

(i)
k,t

9: Particle filter measurement update: Compute the unnormalized weights for
each k using the equation

w̃
(i)
k,t = w

(i)
k,t−1p

(

yt|θ(i)
k,t, θ

−
−k,t,β

−
t

)

10: Normalize the weights using w
(i)
k,t =

w̃
(i)
k,t

∑Ns
i=1 w̃

(i)
k,t

11: Kalman filter measurement update: Update the covariance matrix of the
channel state and the channel state itself using

z
(i)
t = Φ

(i)
k β−

k

β+
t =

1

M

M∑

m=1

Ns∑

i=1

w
(i)
m,k

(

β−
k + J

(i)
t (yk − z

(i)
k )
)

G+
t =

1

K

K∑

k=1

Ns∑

i=1

w
(i)
k,t(I − J

(i)
t Φ

(i)
t )G−

t

12: end for
13: end for

62



3.4 Antenna Scheduling and Power Allocation

We use the posterior Cramér-Rao bound (PCRB) as an optimization criterion for

antenna scheduling and power allocation. The PCRB is a lower bound on the mean

square error (MSE) of the Bayesian estimates of the state vector and hence we seek

to find the optimal antenna set and the corresponding power to be transmitted by

these antennas by minimizing the PCRB. Another motivation for using the PCRB is

that it can be computed in a sequential manner [66] in every interval. The recursive

formulation for the computation of PCRB suits the problem of target tracking, where

we need to find the estimates of the state vector in every tracking interval, and hence

the PCRB is a natural choice for the optimization criterion. The PCRB for the

tracking problem is defined and derived as follows.

3.4.1 Computation of the Posterior Cramér Rao Bound

Let ∆η = [∂η1, ∂η2, . . . ∂ηr]
T denote a vector of the partial derivatives with respect

to the vector η and ∆κ
υ = ∆υ∆

T
κ denote the partial derivative vectors. With this

notation, the PCRB for an unbiased estimate of ξ has the form

E[(ξ − ξ̂)(ξ − ξ̂)T ] ≥ J−1, (3.22)

where J is the Fisher information matrix (FIM), given as

J = −E

[

∆ξ
ξ log

(
p(ξ,y)

)
]

. (3.23)
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The recursive equation to compute the FIM in an online and recursive manner was

proposed in [66], and we state it here for completeness.

Theorem 3. The sequence {Jt} of posterior information sub-matrices for estimating

state vector obeys the recursion

Jt+1 = D22
t −D21

t (Jt +D11
t )−1D12

t , (3.24)

where

D11
t = E

{
−∆ξt

ξt
log p(ξt+1|ξt)

}

D12
t = E

{
−∆ξt

ξt+1
log p(ξt+1|ξt)

}

D21
t = E

{
−∆

ξt+1

ξt
log p(ξt+1|ξt)

}
and

D22
t = E

{
−∆

ξt+1

ξt+1
log p(ξt+1|ξt)

}
+ E

{
−∆

ξt+1

ξt+1
log p(yt+1|ξt+1)

}
,

and the expectation is taken with respect to the joint distribution p(ξt+1,yt+1).

From Eq. (3.4), p(ξt+1|ξt) ∼ N (Fξt,Σvξ). With this substitution and using the

matrix-inversion lemma, it can be shown that Eq. (3.24) reduces to

Jt+1 =
[
Σvξ + FJ−1

t F T
]−1

+ Γt+1, (3.25)

where

Γt+1 = E

[

−∆
ξt+1

ξt+1
log p(yt+1|ξt+1)

]

. (3.26)

Since the estimate of the state vector, ξt+1, is not available at time t, the term Γt+1

does not have a closed form expression. We use Monte Carlo sampling to obtain an
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approximate value as outlined below.

Γt+1 = E

[

−∆
ξt+1

ξt+1
log p(yt+1|ξt+1)

]

= Eξ

[

Ey|ξ

[

−∆
ξt+1

ξt+1
log p(yt+1|ξt+1)

] ]

≈ 1

K

Ns∑

i=1

K∑

k=1

w
(i)
k,tΞt+1

(

θ
(i)
t+1,β

(i)
t+1

)

, (3.27)

where Ξt+1

(
θt+1,βt+1,

)
= Ey|ξ

[

−∆
ξt+1

ξt+1
log p(yt+1|ξt+1)

]

, ξt+1 =
[
θT
t+1,β

T
t+1

]T
, and

θ
(i)
t+1 and β

(i)
t+1 are the samples drawn from the state transition functions of the target

state and channel state vectors following Eq. (3.1) and Eq. (3.2), respectively. The

value of Ξt+1

(
θt+1,βt+1,

)
is stated next.

Theorem 4. Let πt ⊆ {1, 2, · · ·N} denote the set of the radars that are in operation

at time t. For the measurement model described in Eq. (3.14), we have

Ξt+1

(
θt+1,βt+1,

)
= 2

∑

p,q,r∈πt+1

√
γqγr<

{(
∂µpq

t+1

∂ξt+1

)

Σ−1
w,p

(
∂µpr

t+1

∂ξt+1

)H
}

, (3.28)

where µ
pq
t+1 =

∑K
k=1Φpqk,t+1βpqk,t+1.

The proof of the theorem is shown in Appendix A and he expressions for
∂µpq

t+1

∂ξt+1
are

derived in Appendix B.
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3.4.2 Approximate Greedy Algorithm for Adaptive Antenna

Scheduling and Power Allocation

Our approach to antenna scheduling and power allocation for the radar network is

based on the minimization of the predicted value of the PCRB, under suitable con-

straints. The constraints represent the bounds on the total power and total cost

available for deploying the antennas. In general, the cost of communicating the infor-

mation from a radar to the fusion center is proportional to the distance between them.

Hence we use the Euclidean distance measure as an indicator of the communication

cost. We devise the following constrained joint optimization problem for scheduling

and power allocation.

π∗
t+1,γ

∗
t+1 = argmin

Π,Γ
trace(Jt+1)

−1 subject to

∑

p∈πt+1

√

(x2
p + y2p) ≤ ηc, and

∑

p∈πt+1

γp ≤ ηe (3.29)

The first constraint in the problem represents the communication cost constraint

and second constraint represents the power constraint. The parameters ηc and ηe

correspond to the bounds on the total communication cost and the total power.

Obtaining a solution to this joint optimization problem is NP-hard. We propose a

two pass greedy algorithm to find a suboptimal solution to this problem. We separate

the problem into two parts: the problem of finding the antennas to be employed and

the problem of finding the power to be allocated to these antennas. In the first pass,

we transmit equal power on all the antennas and solve the problem of selecting an

optimal set of antennas to be used. To select an optimal subset of antennas to be
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used, we can evaluate the FIM over all possible combinations of subsets of antennas,

and choose the best one. The complexity of such an evaluation grows exponentially

with the number of antennas. We obtain an approximate solution by employing an

approximate greedy algorithm whose computational complexity grows linearly with

the number of antennas. We compute the FIM for all the antennas separately, and

greedily select the ones which minimize the product of the Euclidian distance and

the trace of the inverse of the FIM. Once the antennas are selected, in the second

pass, we distribute the power to these antennas, again using a greedy approach. In

this case, we allocate more power to the antennas that maximize the overall signal

to noise ratio (SNR). Since the PCRB is inversely related to the SNR [15], we are

minimizing by PCRB by maximizing the SNR. The algorithm is summarized below

in 3.

3.5 Numerical Results

In this section, we use numerical examples to study the performance of the proposed

cognitive radar network system in the presence of the time-varying multipath propa-

gation conditions. We demonstrate the advantage of the proposed MRBPF method

by comparing it to the SPF. We also demonstrate the advantage of the proposed

adaptive antenna scheduling and power allocation methods compared to the fixed

antenna scheme and equal power allocation. Finally, we demonstrate the advantage

of the multipath modeling. We describe the simulation setup first and then discuss

the numerical examples.

Signal and Multipath parameters: We considered OFDM waveforms with eight (G =

8) sub-carriers loaded with same symbol in all the sub-carriers. The total bandwidth
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Algorithm 3 Greedy Algorithm for Sensor Scheduling and Power Allocation.

1: for t = 1:T do
2: First Pass:
3: Initialize πt+1 = {1}
4: for i = 1 : P do
5: Set πt+1 = {1, i} and γt+1 =

ηe
P
.

6: Compute ei = trace(J−1
k+1)

7: Compute the distance between the ith antenna and the first antenna i.e.,
di =

√

(x2
i + y2i )

8: Compute the product vi = di × ei
9: end for
10: Sort the antennas in decreasing order of v. Let the sorted list be stored in

SortedList
11: while

∑j
i=1 di < ηc and SortedList is non-empty do

12: Select antenna i sequentially from SortedList
13: πt+1 = πt+1 ∪ {i}
14: end while
15: If ej+1 > eπt+1, where eπt+1 = trace(J−1

t+1) with πt+1, choose π∗
t+1 = πt+1, other-

wise, choose π∗
t+1 = {1, j + 1}

16: Second Pass:
17: for i ∈ π∗

k+1 do
18: Compute the ratio

λi =
∑

p∈π∗

k+1

∑K
k=1[Σβ]ip
σ2
w,p

(3.30)

19: Choose the energy to be transmitted on the ith antenna as

γ∗
i,k+1 =

λiηe
∑

j∈π∗

k+1
λj

(3.31)

20: end for
21: Update FIM
22: Update Jt+1 using Eqs. (3.25), (3.27), (3.28) and π∗

t+1 and γ∗
t+1

23: end for
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was 100Mhz (B = 100) and the carrier frequency, fc, of the transmitted waveforms

was 1Ghz. We used four (L = 4) pulses in each tracking interval. The multipath

environment consisted of delay and Doppler shifts. We used three Doppler shifts and

two delay shifts, i.e., Nτ = 2 and Nf = 3. The vector βpqk was generated from a

Gaussian distribution with zero mean and unit variance and scaled later such that

variance of the coefficients corresponding to different delays decayed exponentially.

Target and the Radar Network parameters: We considered three different configura-

tions for the target trajectories and the antenna locations for the examples. These

configurations are shown in Fig. 3.1.

In the first configuration, the network consisted of three monostatic radars located at

(x1, y1) = (0, 0), (x2, y2) = (10, 25), (x3, y3) = (25, 20).

There were two crossing targets (K = 2) moving in the region of interest with the

initial position of the first target at (x1, y1) = (5, 5) m and that of the second target at

(x2, y2) = (30, 10) m. The targets were moving with constant velocities of (ẋ1, ẏ1) =

(12, 12) m/s and (ẋ2, ẏ2) = (−15, 15) m/s along linear trajectories. The co-variance

matrix of the process noise for the target state transition was given by Eq. (2.12)

with with ε1 = ε2 = 1. The co-variance matrix of the process noise for the channel

state transition was given by Eq. (3.3) with Σβ = σ2
βIP , where σ2

β = 5 × 10−2. The

variance of the measurement noise at each receiver was σ2
w,p = 5× 10−2, p = 1, · · ·P .

In the second configuration, the network consisted of eight monostatic radars located

at

(x1, y1) = (0, 0), (x2, y2) = (3, 3), (x3, y3) = (6, 6), (x4, y4) = (9, 9),
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(x5, y5) = (12, 12), (x6, y6) = (15, 15), (x7, y7) = (18, 18), (x8, y8) = (21, 21).

There were two non-crossing targets (K = 2) with the initial position of the first

target at (x1, y1) = (0, 3) m and the second target at (x2, y2) = (6, 0) m. The targets

moved with constant velocities of (ẋ1, ẏ1) = (0, 12) m/s and (ẋ2, ẏ2) = (15, 0) m/s

along linear trajectories. The co-variance matrix of the process noise for the target

state transition was same as the corresponding co-variance matrix used in the first

configuration. The co-variance matrix of the process noise for the channel state was

given by Eq. (3.3), with

Σβ =

























0.01 0.01 0.01 0.005 0.005 0.005 0.003 0.002

0.01 0.01 0.01 0.005 0.005 0.005 0.003 0.002

0.01 0.01 0.01 0.005 0.005 0.005 0.003 0.002

0.005 0.005 0.005 0.01 0.005 0.005 0.003 0.002

0.005 0.005 0.005 0.005 0.01 0.005 0.003 0.002

0.005 0.005 0.005 0.005 0.005 0.01 0.003 0.002

0.003 0.003 0.003 0.003 0.003 0.003 0.01 0.002

0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.01


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




















The variance of the measurement noise was given by the vector

σ2
w = (σ2

w,1, · · ·σ2
w,P ) = (5×10−2, 5×10−2, 3×10−2, 3×10−2, 5×10−2, 2×10−22×10−2, 1×10−2).

In the third configuration, the network consisted of nine radars located at

(x1, y1) = (0, 0), (x2, y2) = (0, 20), (x3, y3) = (0, 40), (x4, y4) = (15, 0),
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(x5, y5) = (15, 20), (x6, y6) = (15, 40), (x7, y7) = (30, 0), (x8, y8) = (30, 20), (x9, y9) = (30, 40).

There were five crossing targets (K = 5) with the initial position of targets at

(x1, y1) = (6, 5) m, (x2, y2) = (25, 0) m, (x3, y3) = (28, 30) m, (x4, y4) = (10, 35)

m, (x5, y5) = (5, 5) m, respectively. The targets moved with constant velocities of

(ẋ1, ẏ1) = (12, 0) m/s, (ẋ2, ẏ2) = (0, 18) m/s, (ẋ3, ẏ3) = (−12, 0) m/s, (ẋ4, ẏ4) =

(0,−18) m/s, and (ẋ5, ẏ5) = (12, 12) m/s, respectively, along linear trajectories. The

co-variance matrix of the process noise for the target state transition was same as

the one used for the first two configurations and the co-variance matrix of the pro-

cess noise for the channel state was given by Eq. (3.3), with Σβ = σ2
βIP , where

σ2
β = 5× 10−2. The variance of the measurement noise was given by the vector

(σ2
w,1, · · ·σ2

w,P ) = (5× 10−2, 3× 10−2, 5× 10−2, 3× 10−1,

1× 10−2, 3× 10−2, 5× 10−2, 3× 10−1, 5× 10−1).

In all the examples, the tracking interval length was chosen to be 0.1 seconds and the

motion of the targets over 20 tracking intervals was considered. The parameter ηe

was chosen to be 120, which corresponds to the total transmit power constraint. The

simulations were averaged over 100 Monte Carlo iterations (Nmc = 100). In order

to analyze the performance improvement due to the adaptive scheduling and power

allocation methods, we plot the composite root mean-squared error (CRMSE) vs the

tracking interval index. We define the CMRSE in the range and velocity estimates,

respectively, as
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CRMSEran =
1

KNmc

Nmc∑

i=1

K∑

k=1

√

(xk − x̂k,i)2 + (yk − ŷk,i)2,

CRMSEvel =
1

KNmc

Nmc∑

i=1

K∑

k=1

√

(ẋk − ˆ̇xk,i)2 + (ẏk − ˆ̇yk,i)2, (3.32)

where [x̂k,i, ŷk,i, ˆ̇xk,i, ˆ̇yk,i]
T is the estimate of the kth target state in the ith Monte-carlo

run, and [xk, yk, ẋk, ẏk]
T is the actual kth target state.

Example 1: In this example, we demonstrate the advantage of the proposed multiple

Rao-Blackwellized particle filtering method. We considered the first configuration for

this example. In Fig. 3.2, we plot the composite root mean-squared error (CRMSE)

averaged over all the 20 tracking intervals as a function of number of the particles for

both SPF and the proposed MRBPF. It can be seen from the figure that MRBPF-

based filtering resulted in lower CRMSE compared to the SPF-based filtering. This

performance improvement is obtained since the MRBPF partitions the state space

and computes the actual estimates of the channel state, and it updates the weight of

individual target states instead of the joint target state. It can also be seen that we

can achieve a given performance level using a MRBPF with fewer particles instead of a

SPF with more particles. For example, to obtain an average CMRSE of 0.1 m/target

we need approximately 80 particles using an MRBPF whereas we need around 160

particles using a SPF. Hence, MRBPF is computationally less expensive compared

to the SPF, since we can get similar performance to that of SPF using fewer particles.
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(c) Third Configuration

Figure 3.1: Three configurations used in the numerical examples.
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(b) CRMSE in Velocity

Figure 3.2: Average CRMSE of the range and the velocity estimates plotted against
the number of particles for the SPF and the MRBPF.
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Table 3.1: Table showing output of the antenna scheduling for one Monte Carlo
Iteration.

Tracking
Interval
Index

# of An-
tennas
(second
configura-
tion)

Antennas
selected
(second
configura-
tion)

# of An-
tennas
(third con-
figuration)

Antennas
selected
(third con-
figuration)

1 4 1,2,3,4 5 1,6,2,3,4
2 4 1,2,3,4 5 1,8,6,2,4
3 4 1,2,3,4 5 1,8,2,3,4
4 3 1,4,7 5 1,8,2,3,4
5 3 1,7,4 5 1,8,2,3,4
6 3 1,7,4 5 1,8,3,2,4
7 3 1,7,4 5 1,8,3,2,4
8 3 1,7,4 5 1,8,3,2,4
9 3 1,7,4 4 1,2,5,6
10 3 1,7,4 4 1,8,3,7
11 3 1,7,4 4 1,8,3,7
12 3 1,7,4 4 1,7,3,6
13 3 1,7,4 4 1,6,3,7
14 3 1,7,4 4 1,6,3,7
15 3 1,8,3 5 1,8,6,2,4
16 3 1,8,3 5 1,8,6,2,4
17 2 1,7 2 1,6
18 2 1,7 2 1,6
19 2 1,8 2 1,6
20 2 1,8 5 1,6,7,2,4
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Example 2: In this example, we demonstrate the advantage of the adaptive scheduling

and resource allocation methods. We used the second configuration with Ns = 200

particles for this example. The parameter ηc was chosen to be 40. In Fig. 3.3, we plot

the CMRSE in the range and the velocity estimates for this configuration. For the

fixed scheduling and resource allocation, we used antennas {1, 2, 4} and distributed

the available power equally among them. We used three antennas so that the average

number of antennas that are used remain same for both the adaptive case and the

non-adaptive case. Using adaptive scheduling, four antennas were selected initially

(see Table 3.1). Since the RMSE is inversely proportional to the number of the anten-

nas, maximum number of antennas were used within the distance constraint. As the

target moved away from the fusion center, the antennas that are closer to the target

are used, although this increased the communication cost. As a result only two an-

tennas were selected after a few iterations. As it can be seen, the performance using

adaptive scheduling and resource allocation was better compared to the performance

obtained using the fixed scheduling resource allocation.

Example 3: In this example, we used third configuration with Ns = 200 particles

and compared the performance of cognitive radar employing adaptive scheduling and

resource allocation with the performance of the standard radar that employed fixed

scheduling. The parameter ηc was chosen to be 120 for this example. In Fig. 3.4, we

plot the CRMSE in the range and the velocity estimates of both the targets for this

configuration. For the fixed scheduling, we used antenna set {1, 3, 7, 9}. As it can be

seen the performance using adaptive scheduling and resource allocation was better

compared to the performance obtained using the fixed scheduling resource allocation.
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Figure 3.3: Performance comparison with and without adaptive scheduling and power
allocation for the second configuration.

Example 4: In this example, we demonstrate the advantage of the multipath modeling

in the system. In Fig. 3.5, we plot the CRMSE in the range and the velocity

estimates obtained using the MRBPF tracking with and without considering the

multipath modeling. We used first configuration for this example with Ns = 200

particles. It can be seen that when the multipath model was not considered the

CRMSE increased. For the same parameters, the performance by considering the

effect of time-varying multipath channel model was significantly better. This is due

to the additional degrees of freedom that an urban environment provides in the form of

delay and Doppler diversity. When the receiver has information about the propagation

conditions, it can exploit the multipath nature of the urban environment to obtain a

better performance.

3.6 Summary

We considered the problem of multiple target tracking in a time-varying multipath

channel which is characterized by an unknown channel state. We proposed a new
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Figure 3.4: Performance comparison with and without adaptive scheduling and power
allocation for the third configuration.
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Figure 3.5: Performance comparison with and without multipath modeling.
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hybrid filter called the Multiple Rao-Blackwell particle filter (MRBPF) for the joint

estimation of the target state and the channel state. The proposed filter was efficient

for tracking high-dimensional state vector as it operates by partitioning the state

space into lower dimensional subspaces. We then computed the posterior Cramér-

Rao bound (PCRB) on the estimates of the target and the channel states and used

it as an optimization criterion to find the sensors to be employed at each time and

the power to be transmitted on them. Since the optimal solution to the sensor

scheduling and power allocation problem is NP-hard, we proposed a sub-optimal,

but computationally efficient, method for scheduling and power allocation based on

greedy programming.
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Chapter 4

Hierarchical Particle Filtering

using Multi-Modal Sensors7

In this chapter, we develop a filtering technique for tracking an unknown number and

unknown types of targets moving in the region of interest.

4.1 Introduction

The last few decades have seen burgeoning growth in the development of inexpensive

sensing devices due to the advances in the micro-electro-mechanical system (MEMS)

fabrication techniques. With sensing devices becoming cheaper, it is now possible to

deploy several kinds of sensors to observe the unknown state through the measure-

ments collected by the sensors. Such networks are called multi-modal sensor networks,

and they are deployed for various applications including visual tracking [67], cardio-

vascular diagnosis [68], 3D image reconstruction [69], temperature inference [70], and

7Based on P. Chavali and A. Nehorai, “Hierarchical Particle Filtering for Multi-Modal Sensor
Networks With Application to Multiple-Target Tracking”, to appear in Signal Processing. c©[2013]
Elsevier
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target tracking [1]. In multi-modal sensor networks, different quantities associated

with the same state are measured using sensors of different kinds. A single sensor is

usually unable to provide complete information about the hidden state, and therefore

it is necessary to combine the information provided by multiple sensors for obtaining

an estimate of the state. When complimentary information from different kinds of

sensors is appropriately combined, the performance of the overall system improves

significantly compared with the performance of each modality separately.

The problem of combining the diverse and sometimes inconsistent measurements pro-

vided by multiple sensors is called data fusion [71], [72], [73]. Fusing the data acquired

from different sensors has to be done before the estimation process and therefore, it

is a critical bottleneck. There are several data fusion algorithms that are proposed

in the literature which combine the data at one of the following three levels. At the

low level, the raw data obtained from each sensor is combined. This kind of data

fusion is used when the employed sensors collect similar types of data. At the inter-

mediate level, the raw data from each sensor is processed to obtain the features of

interest, and the features are combined. The problem with this approach is that the

process of feature selection is subjective and problem dependent. At the high level

or the decision level, the posterior distributions of the unknown state vector, which

are computed using the raw data from individual sensors, are combined. Graphical

models [74] have been used as suitable candidates for data fusion at the high level.

In this chapter, we first derive the weight update equations for a particle filter that

employs (i) linear opinion pool (ii) independent opinion pool and (iii) independent

likelihood pool (described in the next section) for combining the information from the

various sensing modalities. In all these three techniques, the information from the
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multiple sensing modalities is combined only in the measurement-update equation

1.4.

Second, we propose a new particle filtering technique for a special class of models

called the hierarchical models. We call this variation of the particle filter, a hierarchi-

cal particle filter (HPF). Hierarchical models are encountered frequently in practice

when the observations about the unknown state are obtained using multi-modal sen-

sors, where each sensor is used to obtain information about a specific aspect of the

state vector. We will provide more examples of such models in the subsequent sec-

tion. Our proposed filtering method provides two advantages when compared to

other methods that are described in the previous subsection. We will discuss these

advantages in the subsequent sections.

We then formulate the problem of tracking an unknown number of targets using multi-

modal measurements. We use the proposed HPF for the joint initiation, termination

and tracking of multiple targets. We employ a multi-modal sensor network comprising

a multistatic radar, an infrared camera, and a human scout, to obtain the information

about the target scene. The unknown state vector comprises the number of targets,

their positions, velocities, and categories. We describe the detailed state model for

this system, and derive the measurement models for the three sensors that are used.

4.2 Existing Techniques for Data Fusion

Fusion of information from different modalities has been a major research area yet

there has not been a widely accepted standard technique [73]. Given the state θt,

we assume that the data collected is conditionally independent across the modalities,
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i.e., p(yt|θt) =
∏N

n=1 p(yn,t | θt). Our goal is to estimate the global posterior filtered

density p(θt | y1:t). The most common approach is to combine the local posterior

densities in the measurement update step to compute the global posterior. In [75], the

author proposes to compute the global posterior p(θt | y1:t), given the observations

from each modality, as a linear combination of the local posterior distribution at each

modality, i.e.,

p(θt | y1:t) =

N∑

n=1

πnp(θt | yn,1:t), (4.1)

where each weight πn represents a subjective measure of the reliability of the informa-

tion from the nth modality and
∑N

n=1 πn = 1. This method is called the linear opinion

pool. One of the shortcomings of the linear opinion pool is its inability to reinforce

opinion because the weights are usually unknown except in very specific applications.

The independent opinion pool is a product form variation of the linear opinion pool

and the global posterior is computed as the product of the local posteriors [76].

p(θt | y1:t) =
N∏

n=1

p(θt | yn,1:t). (4.2)

The problem with the independent opinion pool is that when the prior information at

each modality is common, the global posterior will reinforce the opinion through the

product of the priors. Hence, this method is suitable only if the prior information at

each modality is obtained independently. When all the modalities have common prior

information, the global posterior can be obtained through an independent likelihood

pool [76], which is obtained as

p(θt | y1:t) = p(θt)

N∏

n=1

p(yn,1:t | θt). (4.3)
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As it can be seen, an independent likelihood pool simply multiplies the likelihoods

obtained from the individual sensors to compute the global posterior density. Con-

sequently, the multi-modal characteristics of different sensors can be lost if there is

a large difference among the numerical values of these likelihoods. In such scenarios,

the performance improvement obtained through sensor fusion is not significant.

In [77], the authors propose a mixture kernel-based Bayesian filtering for multi-modal

data. In this approach, the local posterior distribution corresponding to each modal-

ity is modeled as a mixture of Gaussian distributions. Using parametric and non-

parametric mixture models for approximating the posterior distribution has been first

proposed in [78], and the authors in [77] use this modeling to represent the local pos-

terior distributions. The global posterior distribution is then represented as a mixture

of the local posterior distributions, and this representation is preserved through itera-

tions of the Bayesian filtering. At each iteration, the prior and the partial observation

from each modality are combined using a 2-stage method scheme to construct the pro-

posal distribution. The details of this method can be found in [67], [77],and [79]. The

2-stage sampling improves the sampling of the particles, and reduces the degeneracy

problem. The mixture weights corresponding to the local posterior distributions are

evaluated in proportion to the measurement confidence at each modality. However,

representing the local posterior distributions as a mixture of the Gaussian distribu-

tions is possible only if all the local distributions are continuous probability densities.

For a general case where a local posterior distribution is a discrete distribution, such

a representation is not valid. Further, estimating the parameters of the Gaussian

distributions and the mixture weights for each local posterior requires training data

from each modality, which is not, in general, available.
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4.3 Hierarchical Bayesian Models

We consider a class of systems in which the state equation and the measurement

equation follow a hierarchical structure. The evolution model and the measurement

model for such a system can be described by the following equations:

θ1,t = g1(θ1,t−1,v1,t−1); y1,t = h1(θ1,t,w1,t),

θ2,t = g2(θ2,t−1,θ1,t,v2,t−1); y2,t = h2(θ1,t,θ2,t,w2,t),

...
...

θN,t = gN (θN,t−1,θ1:N−1,t,vN,t−1); yN,t = hN (θ1:N,t,wN,t). (4.4)

In the above, θ1,t, . . . , θN,t are theN partitions of the state vector, θ1:n,t = {θ1,t, . . . , θn,t},

and y1,t, . . . ,yN,t are the partitions of the measurements. Each partition corresponds

to the measurements obtained from one modality. Thus, it can be seen that the first

modality observes only one partition of the state vector; the second modality observes

two partitions; and finally, the last modality observes the entire state vector. Further,

the evolution of each partition of the state vector depends on the previous partitions.

Multi-modal systems are typically characterized by such hierarchical observation and

state models, because each sensing modality is selected to measure a specific aspect

of the unknown state vector. For example, in surveillance systems that use a combi-

nation of audio and video sensors, the audio sensors determine the direction of arrival

of the source, whereas the video sensors measure the number of sources in the region,

and their positions. The measurements obtained by the audio sensors are, however,

a function of the number of the sources and their positions. In the target tracking

example that we considered, the human scout is trained to estimate the number of

targets and to recognize their categories, but he is incapable of determining their
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positions and velocities; the infrared camera sensors can obtain an estimate of the

target locations, but they cannot determine their velocities; a multistatic radar can

measure both the positions and velocities of the targets accurately, but it has limited

capabilities in measuring the number of targets.

In some scenarios, each sensor might not be able to sense all the partitions of the state

(see Example 2). Hierarchical modeling shown in Eq. 4.4 above will not describe

such models. The proposed method can still be applied to such models, however the

performance improvement obtained will not be significant.

4.4 Particle Filtering with Existing Fusion Meth-

ods

In this section, we derive the weight update equations for a standard particle filter that

employs the linear opinion, the independent opinion, and the independent likelihood

methods described in the earlier section.

4.4.1 Linear Opinion Pool

The posterior distribution p(θ0:t | y1:t) is expressed as

p(θ0:t | y1:t) =
N∑

n=1

πn

Ns∑

i=1

w
(i)
n,tδ(θ0:t − θ

(i)
0:t), (4.5)

where w
(i)
n,t is the weight corresponding to the ith particle, and nth modality. The

weights corresponding to each modality are updated using the principle of importance
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sampling.

w̃
(i)
n,t ∝ p(θ

(i)
0:t | yn,1:t)

q(θ
(i)
0:t | yn,1:t)

∝ p(θ
(i)
0:t−1 | yn,1:t−1)

q(θ
(i)
0:t−1 | yn,1:t−1)

× p(yn,t | θ(i)
t )× p(θ

(i)
t | θ(i)

t−1)

q(θ
(i)
t | θ(i)

0:t−1,yn,1:t)

∝ w
(i)
n,t−1 × p(yn,t | θ(i)

t )× p(θ
(i)
t | θ(i)

t−1)

q(θ
(i)
t | θ(i)

0:t−1,yn,1:t)

∝ w
(i)
n,t−1 × p(yn,t | θ(i)

t ). (4.6)

The proposal distribution q(θ0:t | yn,1:t) is chosen to factorize such that

q(θ0:t | yn,1:t) = q(θ0:t−1 | yn,1:t−1)× q(θt | θ0:t−1,yn,1:t), (4.7)

and q(θt | θt−1,yn,t) = p(θt | θt−1). Note that the proposal distribution is indepen-

dent of the the sensor index n. Thus using the linear opinion pool, we update the

weights due to each modality first, and then obtain the overall weights as

w
(i)
t =

N∑

n=1

πnw
(i)
n,t. (4.8)

We refer to this filtering method as standard particle filtering with linear opinion pool

(SPF-LO).
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4.4.2 Independent Opinion Pool

Using Eq. (4.2), the global posterior distribution for the independent opinion pool is

written as

p(θ0:t | y1:t) ∝
Ns∑

i=1

N∏

n=1

w̃
(i)
n,tδ(θ0:t − θ

(i)
0:t). (4.9)

From Eq. (4.9), it can be seen that the overall weights for standard particle filtering

with independent opinion pool (SPF-IO) are given by

w̃
(i)
t ∝

N∏

n=1

w̃
(i)
n,t, (4.10)

where {w̃(i)
n,t}Ns

i=1 are the un-normalized weights obtained by following Eq. (4.6).

4.4.3 Independent Likelihood Pool

Using Eq. (4.3), the global posterior distribution for the independent likelihood pool

is written as

p(θt | y1:t) = p(θt|y1:t−1)
N∏

n=1

p(yn,1:t | θt). (4.11)

Substituting Eq. (4.11) into the weight update equation defined by Eq. (1.18), it can

be shown that the overall weights for standard particle filtering independent likelihood

pool (SPF-IL) are given as

w̃
(i)
t ∝ w

(i)
t−1

N∏

n=1

p(yn,t | θ(i)
t ). (4.12)
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It should be noted here that for all the above methods, particle filters corresponding

to all the sensors have the same set of particles.

4.5 Hierarchial Particle Filter

In this section, we describe the proposed hierarchical particle filter. The idea behind

the hierarchical particle filter is to exploit the model structure in order to improve

the efficiency of the sampling, thereby reducing the variance in the particle weights.

We first partition the state space and the measurement space into lower-dimensional

subspaces, and approximate the local posterior distribution corresponding to the first

partition, given the measurements from the first partition, using a random particle

set and the associated weights. To approximate the subsequent partitions, we gen-

erate the particles using the information obtained from the estimation of previous

partitions, and update the weights using the measurements from the current parti-

tion. Thus, unlike the earlier approaches, we combine the information from different

modalities in both the time-update step and the measurement-update step. We also

describe the process of obtaining the particles from the proposal distribution, and

updating their corresponding weights.

Let θ1,t, . . . , θN,t be the N partitions of the state vector. We find the posterior

distribution of each partition individually, by using the information provided from the

estimates of the previous partitions and the measurements associated with the current

partition. Without the loss generality, we assume that θ1,t is estimated first, followed

by θ2,t and so on. The measurement partitions are labeled as y1,t,y2,t, . . . ,yN,t. In

the first stage of the algorithm, we estimate the first partition of the state vector

using the measurements from the first partition. We employ a standard particle filter
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for approximating the local posterior distribution p(θ1,0:t | y1,1:t). The particles are

drawn from the proposal distribution q1(θ1,0:t | y1,1:t), which is chosen to be the

state transition distribution corresponding to the first partition, and the weights are

updated following Eq. (1.18). We denote by λ1,t, the discrete probability distribution

defined by the normalized weights {w(i)
1,t}Ns

i=1 associated with the particles {θ(i)
1,t}Ns

i=1.

In the second stage of the filtering method, we use the posterior probability distri-

bution λ1,t as extrinsic information for estimating the partition θ2,t along with the

measurements. In other words, we are interested in evaluating the posterior distri-

bution conditional on λ1,t, p(θ2,0:t | y2,1:t,λ1,t). We sample the particles {θ2,t}Ns
i=1

from the proposal distribution q2(θ2,0:t | y2,1:t,λ1,1:t), which depends also on λ1,t, and

then evaluate the associated weights. In a similar way, for the nth stage, the posterior

probability distributions λ1:n−1,t = {λ1,t, . . . ,λn−1,t} are used as extrinsic information

to draw the samples and update the corresponding weights of the nth partition of the

state vector. The posterior distribution for the nth partition, p(θn,0:t | yn,1:t,λ1:n−1,1:t),

is expressed as

p(θn,0:t | yn,1:t,λ1:n−1,1:t)

= p(yn,t | θn,0:t,yn,1:t−1,λ1:n−1,1:t)×
p(θn,0:t | yn,1:t−1,λ1:n−1,1:t)

p(yn,t | yn,1:t−1,λ1:n−1,1:t)

= p(yn,t | θn,t,yn,1:t−1,λ1:n−1,1:t)×
p(θn,t | θn,0:t−1,yn,1:t−1,λ1:n−1,1:t)

p(yn,t | yn,1:t−1,λ1:n−1,1:t)

× p(θn,0:t−1 | yn,1:t−1,λ1:n−1,1:t)

= p(yn,t | θn,t,yn,1:t−1,λ1:n−1,1:t)×
p(θn,t | θn,t−1,λ1:n−1,t)

p(yn,t | yn,1:t−1,λ1:n−1,1:t)

× p(θn,0:t−1 | yn,1:t−1,λ1:n−1,1:t−1)

∝ p(yn,t | θn,t,yn,1:t−1,λ1:n−1,1:t)× p(θn,t | θn,t−1,λ1:n−1,t)

× p(θn,0:t−1 | yn,1:t−1,λ1:n−1,1:t−1) (4.13)
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The proposal distribution for the nth stage qn(θn,0:t | yn,1:t,λ1:n−1,1:t) is chosen to

factorize such that

qn(θn,0:t | yn,1:t,λ1:n−1,1:t) = qn(θn,t | θn,t−1,λ1:n−1,t)×

qn(θn,0:t−1 | yn,1:t−1,λ1:n−1,1:t−1). (4.14)

Hence, the weight update equation for the nth stage can be expressed as

w̃
(i)
n,t ∝ p(θ

(i)
n,0:t | yn,1:t,λ1:n−1,1:t)

qn(θ
(i)
n,0:t | yn,1:t,λ1:n−1,1:t)

,

∝ p(θ
(i)
n,0:t−1 | yn,1:t−1,λ1:n−1,1:t−1)

qn(θ
(i)
n,0:t−1 | yn,1:t−1,λ1:n−1,1:t−1)

× p(yn,t | θ(i)
n,t,yn,1:t−1,λ1:n−1,1:t)

qn(θ
(i)
n,t | θ(i)

n,t−1,λ1:n−1,t)

×p(θ
(i)
n,t | θ(i)

n,t−1,λ1:n−1,t),

∝ w
(i)
n,t−1 ×

p(yn,t | θ(i)
n,t,yn,1:t−1,λ1:n−1,1:t)

qn(θ
(i)
n,t | θ(i)

n,t−1,λ1:n−1,t)
× p(θ

(i)
n,t | θ(i)

n,t−1,λ1:n−1,t),(4.15)

where {θ(i)
n,t}Ns

i=1 are the samples drawn from the distribution.

4.5.1 Sampling from the Proposal Distribution

The choice of the proposal distribution is crucial and specific to the proposed hier-

archical model. For optimal efficiency, it is necessary that the distribution proposes

the most probable particles. In this work, we choose the proposal distribution for the

nth stage, n > 1, to be

qn(θn,t | θn,t−1,λ1:n−1,t) = p(θn,t | θn,t−1,λ1:n−1,t). (4.16)
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This choice results in a weight update equation which is simple to implement. It is

given as

w̃
(i)
n,t ∝ w

(i)
n,t−1 × p(yn,t | θ(i)

n,t,yn,1:t−1,λ1:n−1,1:t). (4.17)

We make a comment here that sampling the particles from the above proposal dis-

tribution is different than sampling them from the distribution p(θt | θt−1), even

for hierarchical models that are described in Sec. 4.3. In our approach, using the

proposal distribution described by Eq. (4.16), we obtain particles in stages. We

use information provided by the weights corresponding to the samples from the first

stage to obtain the samples for the subsequent stages. In this manner, we are combin-

ing the measurements obtained from earlier stages in both the time-update and the

measurement-update steps. This is in contrast to the traditional sampling schemes

which draw samples of all the partitions in one stage and do not use information

provided by the measurements to obtain the particles.

In order to draw the samples from the distribution p(θn,t | θn,t−1,λ1:n−1,t), we use the

following steps:

1. Choose Ns samples of θ1,t, . . . , θn−1,t, generated from the earlier N − 1 stages.

2. Choose, for each partition, the samples {θm,t}Ns
i=1, m = 2, . . . , n − 1, with re-

placement, according to the probability distribution λm,t.

3. Generate the samples {θ(i)
n,t}Ns

i=1 according to the known state transition proba-

bility p(θn,t | θ1:n−1,t, θn,t−1).

As a result of the second step, the samples with higher weights are selected more

frequently. Due to this selection, there is a lower probability of choosing a sample

of other partitions that will lead to an incorrect sample of the current partition.
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Therefore, the weights associated with the samples generated using this approach

will have a lower variance.

4.5.2 Evaluating the Likelihood

In this subsection, we will describe how the likelihood function p(yn,t | θn,t,yn,1:t−1,λ1:n−1,t)

can be evaluated. We will start with an observation that the measurements yn,1:t−1

contain information about the partitions θ1:n−1,t. Hence the likelihood

p(yn,t | θn,t,yn,1:t−1,λ1:n−1,1:t) 6= p(yn,t | θn,t,λ1:n−1,1:t). (4.18)

In order to evaluate the likelihood, we use an approximation by replacing the proba-

bility distributions λ1:n−1,1:t in p(yn,t | θn,t,yn,1:t−1,λ1:n−1,1:t) with samples {θ(i)
1:n−1,1:t}

that are drawn according to these distributions. As a result, the likelihood simplifies

as

p(yn,t | θn,t,yn,1:t−1,λ1:n−1,1:t) ≈ p(yn,t | θn,t,yn,1:t−1, θ
(i)
1:n−1,1:t),

= p(yn,t | θn,t, θ
(i)
1:n−1,t). (4.19)

The last equality in the above equation holds true since, given the state vector θ1:n,t,

the measurement yn,t is independent of the other measurements yn,1:t−1. The samples

θ
(i)
1:n−1,t are chosen according to the distributions λ1:n−1,t, and the samples that are

obtained during the sampling step can be reused here. The distribution p(yn,t |

θn,t, θ
(i)
1:n−1,t) can then be evaluated using the observation model p(yn,t | θ1:n,t).
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4.5.3 Discussion

The proposed hierarchical approach has two advantages over the conventional particle

filtering methods described in Section 4.4. First, by partitioning the state space into

several subspaces, we reduce the effect of the degeneracy phenomenon. Second, since

the proposal distribution for each stage is chosen using the information from the

previous stages, sampling is more efficient and thereby, the particle weights will have

a lower variance.

4.5.4 Examples

In this section, we present two examples to describe the performance of the proposed

hierarchical filtering method. We consider a state vector which is partitioned into

three subspaces. The measurements are collected by three modalities. Each partition

of the state vector is of unit dimension, and the corresponding measurements are

scalars.

First Example: In the first example, the scalar probability distributions governing

the state equation and the measurement equations for each partition are given as

p(y1,t | θ1,t) ∼ N (y1,t; θ
2
1,t, σ

2
y1
)

p(θ1,t | θ1,t−1) ∼ N (θ1,t; 1 + θ1,t−1, σ
2
θ1
)

p(y2,t | θ1,t, θ2,t) ∼ N (y2,t; sin(θ1,t) + cos(θ2,t), σ
2
y2
)

p(θ2,t | θ2,t−1, θ1,t) ∼ N (θ2,t; θ2,t−1 + θ1,t, σ
2
θ2)

p(y3,t | θ1,t, θ2,t, θ3,t) ∼ N (y3,t;
θ21,t + θ22,t + θ23,t

(θ1,t + θ2,t + θ3,t)2
, σ2

y3)

p(θ3,t | θ3,t−1, θ2,t, θ1,t) ∼ N (θ3,t; θ3,t−1 + θ2,t + θ1,t, σ
2
θ3), (4.20)
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where σ2
y1

= σ2
y2

= σ2
y3

= 0.2, and σ2
θ1

= σ2
θ2

= σ2
θ3

= 0.1. We used Ns = 200 particles

for the simulation and averaged the result for Nc = 50 Monte-Carlo iterations. In Fig.

4.1, we plot the root mean-squared error (RMSE) for the three partitions. It can be

seen that the HPF produces a lower RMSE when compared to the RMSE obtained

using SPF-LO, SPF-IO and SPF-IL.

Second Example In the second example, we analyze the behavior of the algorithm

when the hierarchy in the state equations is not satisfied. To this end, we modify the

probability distributions that govern the state evolution as

p(θ1,t | θ1,t−1) ∼ N (θ1,t; 1 + θ1,t−1, σ
2
θ1
)

p(θ2,t | θ2,t−1, θ1,t) ∼ N (θ2,t; θ2,t−1, σ
2
θ2)

p(θ3,t | θ3,t−1, θ2,t, θ1,t) ∼ N (θ3,t; θ3,t−1, σ
2
θ3). (4.21)

The probability distributions corresponding to the three measurements were the same

as the the distributions that were used in the first example, and the variances corre-

sponding to the measurement noise and the process noise were the same as the ones

used in the first example. In Fig. 4.2, we plot the RMSE for all the methods for

the second example. It can be seen that the RMSE in the estimates of the partitions

using the HPF was lower than the RMSE obtained using SPF-IO, and SPF-IL, but

it was similar to the RMSE obtained using the SPF-LO.

4.6 Multiple-Target Tracking using HPF

In this section, we apply the proposed algorithm for the problem of multiple target

tracking. In this chapter, we address a tracking scenario where the number of targets is
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unknown and the tracking system should be capable of automatically determining this

number. We consider a network comprising three kinds of sensors: a multistatic radar

with one transmit and three receive antennas, which can measure the backscattered

signal from the targets; one infrared camera, which can obtain the top view of the

region using arial shots; and an intelligence report provided by a human scout.

4.6.1 System Model

We consider a planar region of the battlefield, R, with an unknown number of moving

targets of various types. At time t, we assume that the number of targets is Nt. Note

that we changed the notation here and we are using Nt to represent the number of

the targets at time t. The targets are indexed as {1, . . . , nt, . . . , Nt} with the position

and velocity of nth
t target denoted as ρnt

= [xnt
, ynt

]T ∈ R2 and ρ̇nt
= [ẋnt

, ẏnt
]T ∈

R2, respectively. We label the target categories using α = {α1, . . . , αnt
, . . . , αNt

},

where αnt
∈ A, with A being the set of all the target types. The parameters of

interest are the number of targets Nt in the scene, the positions ρnt
, the velocities

ρ̇nt
, and the categories αnt

of each of the targets. The overall state vector at time

t is obtained by concatenating all the unknown parameters and we denote it using

θt = [Nt,ρ
T
1 , ρ̇

T
1 , α1, · · · ,ρT

Nt
, ρ̇T

Nt
, αNt

]T ∈ (R2×R2×A)Nt . Next, we derive the state

transition model for the vector θt.

4.6.2 State-Space Model

We assume, for simplicity, that there can be at most one birth or one death of the

targets at each state transition, and we represent the probabilities of the death and
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the birth of the targets using pd and pb, respectively. Hence, we have

p(Nt+1|Nt = nt) =







pb if Nt+1 = nt + 1,

ntpd(1− pd)
nt−1 if Nt+1 = nt − 1,

1− pb − ntpd(1− pd)
nt−1 if Nt+1 = nt.

(4.22)

Let αt = {αt,1, αt,2, · · · , αt,Nt
} denote the categories of each of the Nt targets, and

assume that the number of possible categories is finite, i.e., card(A) = M < ∞. Let

α∗ ∈ A be the category of the new target that appears at time t+1. The probability

distribution for the target categories αt+1 at time t + 1 given αt and Nt+1 can be

written as

p(αt+1|αt, Nt+1) =







1
M

if Nt+1 = Nt + 1,αt+1 = αt ∪ α∗,

1
Nt

if Nt+1 = Nt − 1,αt+1 = αt − αt,nt
for any nt,

pdpb
NtM

if Nt+1 = Nt,αt+1 = αt − αt,nt
∪ α∗,

1− pdpb
NtM

if Nt+1 = Nt,αt+1 = αt.

(4.23)

Let χt denote the set of all the targets present in the scene at time t. We now define

the state transitions of the targets that are present at both times t and t + 1. For

such a target, nt ∈ {χt+1 ∩ χt}, we define a vector of its position and velocity as

ξt+1,nt
= [ρT

t+1,nt
, ρ̇T

t+1,nt
]T . Then, given ξt,nt

, we have

ξt+1,nt
= F nt

ξt,nt
+ vt,nt

, (4.24)

where F nt
is the state transition matrix and vt,nt

is the process noise. We assume

that the targets follow linear trajectories and the process noise, vt,nt
, is Gaussian
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distributed with a zero mean and a covariance matrix Σv,nt
. Hence, we have

p(ξt+1,nt
|ξt,nt

) = N (ξt+1,nt
;F nt

ξt,nt
,Σv,nt

), (4.25)

The state transition of the vector θt can be obtained by using the chain rule as

p(θt+1|θt) = p(ξ∗t+1)p(αt+1|αt, Nt+1)p(Nt+1|Nt)
∏

nt∈χt+1∩χt

p(ξt+1,nt
|ξt,nt

),(4.26)

where p(ξ∗
t+1) is the probability density of the position and velocity vector of the

new target initiated at time t + 1. We assume that targets belonging to any of the

categories can enter the scene with an equal probability. Further, for simplicity, we

assume that all the targets belonging to a particular category will enter the scene at

the same location.

4.6.3 Measurement Models

In this subsection, we describe the sensor measurement models for the multistatic

radar, the infrared camera and the human scout. At time t, let yt = {y1,t,y2,t,y3,t}

be the measurements obtained from the sensors. y1,t corresponds to the measure-

ment obtained from a multistatic radar system, y2,t corresponds to the measurement

obtained from an infrared camera, and y3,t corresponds to the measurement obtained

by the human scout.

Multistatic Radar: As before, we assume that the transmit antenna uses coherent

train of multiple pulses with a pulse repetition period of tp seconds:

s(t′) =

L−1∑

l=0

al(t
′ − ltp), (4.27)
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where al(t
′) is the transmitted signal in the lth pulse. The discrete version of the

signal al(t
′) is assumed to be of length G and it is denoted as al. Let τp,nt

be the

total time taken for the signal to travel from the transmit antenna to the nth
t target

and back to the pth receive antenna, and νp,nt
be the Doppler frequency shift due the

nth
t target. The received signal at the pth receive antenna, due to the signal bouncing

off the nth
t target, can then be expressed as

y1,p(t
′) = βp,nt

√
γ1s(t

′ − τp,nt
)ej2πνp,nt t

′

+ w1,p(t
′), (4.28)

where βp,nt
is the target RCS which is a function of the target category, γ1 is the

transmit signal energy, and w1,p(t
′) is the additive receiver noise. We assume that

the mapping from the target category to the target RCS is known and one-to-one.

The noise is assumed to be circularly symmetric, complex, white, and following a

Gaussian distribution. The corresponding discrete-time signal can be obtained by

sampling the received signal and considering only Np samples. It can be expressed as

y1,p,nt
= βp,nt

√
γ1

(

Υ(p, nt)⊗ Γ(p, nt)

)

s

︸ ︷︷ ︸

φp,nt

+w1,p, (4.29)

where

• y1,p,nt
is a LNp × 1 received signal vector at the pth antenna due to the signal

bouncing off the nth
t target

• Υ(p, nt) is an L× L Doppler modulation matrix defined as

diag
{
1, ej2πνp,nttp , · · · , ej2πνp,nt(L−1)tp

}

• Γ(p, nt) is aNp×G time shift matrix defined as

[

0τ̃p,nt×G; IG; 0Ns−G−τ̃p,nt×G

]
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• s is a LG×1 column vector obtained by stacking the transmitted signal in each

pulse i.e., s = [aT
0 ,a

T
1 , . . . ,a

T
L−1]

T

• w1,p is a LNs×1 complex additive white Gaussian noise at the pth receiver with

a zero mean and a covariance matrix Σ1,p = σ2
1,pILNp

The received signal due to all the targets can now be expressed in a matrix form as

y1,p,t =
Nt∑

nt=1

βp,nt

√
γ1

(

Υ(p, nt)⊗ Γ(p, nt)

)

s

︸ ︷︷ ︸

φp,nt

+w1,p = Φp,tβp,t +w1,p, (4.30)

where

• y1,p,t is a LNp×1 received signal vector at the pth antenna due to all the targets

• Φp,t is a LNp ×Nt matrix defined as Φp,t = [φp,1, . . . ,φp,Nt
]

• βp,t is a Nt × 1 vector defined as βt = [βp,1, . . . , βp,Nt
]

Hence we have

p(y1,p,t|θt) = CN (y1,p,t;Φp,tβp,t,Σ1,p), for p = 1, 2, 3. (4.31)

Since the measurements obtained at the receive antennas are independent of each

other, we have

p(y1,t|θt) = CN (y1,t;Φtβt,Σ1), (4.32)

where y1,t = [yT
1,1,t,y

T
1,2,t,y

T
1,3,t]

T ,Φt = blkdiag{Φ1,t,Φ2,t,Φ3,t},βt = [βT
1,t,β

T
2,t,β

T
3,t]

T

and Σ1 = blkdiag{Σ1,1,Σ1,2,Σ1,3}.
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Infrared Camera: We use a measurement model similar to the one proposed in [80]

and [81] for the infrared camera. The output of an infrared camera, which is an

R × C matrix of pixel values, is modeled as a noisy version of an ideal image I0

convolved with the point-spread function of the camera. For simplicity, we assume

the point-spread function to be a delta function and the ideal image to be of the form

I0(z) =
Nt∑

nt=1

Tnt
δ(z − ρnt

), (4.33)

where z is a two-dimensional pixel location in the image obtained by the camera, ρnt

is the two-dimensional pixel location of the nth
t target in the image obtained by the

camera, which depends on the actual location of the nth
t target, and Tnt

is a constant

that depends on the target category. Following [80], we express the likelihood of the

output of the camera as

p(y2,t | θt) = N (y2,t; vec(γ2I0),Σ2), (4.34)

where y2,t is a vector form of the matrix of pixel values that correspond to the

output of the camera, γ2 is a constant that depends on the quality of the camera, and

Σ2 = Σ2,1 ⊗Σ2,2 where Σ2,1 and Σ2,2 are the covariance matrices of the measurement

noise along the rows and the columns, respectively.

Human scout: The measurement report given by the scout is an M-dimensional

vector with its mth entry representing the number of targets of type m. The total

number of targets at time t, as counted by the scout, is given as

N3,t =

M∑

m=1

y3,t,m, (4.35)
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where y3,t,m is the mth entry of the vector y3,t. In the above, we use a subscript,

N3,t, to denote the number of targets counted by the scout in order to differentiate

it from the actual number of targets in the scene which is denoted by Nt. Let Nmax

be an upper bound on N3,t. We obtain the probability mass distribution for the

number of targets counted by scout, N3,t, denoted g(N3,t), by evaluating a Gaussian

density 8 with mean Nt, the actual number of targets, and variance σ2
3,t followed by

normalizing:

g(N3,t = k) =
N (k;Nt, σ

2
3,t)

∑Nmax

i=1 N (i;Nt, σ
2
3,t)

, Nt > 0 (4.36)

The variance σ2
3,t is chosen to be Nt/γ3, where the parameter γ3 is proportional to

the level of the training that the scout undergoes and the quality of the equipment

that he uses. The variance also depends on the actual number of the targets in the

scene. The greater the number of targets, the higher the probability that the scout

incorrectly counts them. A similar probability mass function was used in [81] for the

number of targets counted by a human scout. Let pc denote the probability that

the scout counts at least one target incorrectly. We model the probability pc to be

inversely proportional to γ3, i.e., pc = b/γ3, where b is a known constant chosen such

that pc ∈ [0, 1]. From the expression for pc, it can be seen that well-trained scouts and

scouts with better equipment have a lower probability of incorrectly identifying the

targets. We model the scout’s measurements y3,t to follow a multinomial distribution,

whenever at least one target is identified incorrectly. The likelihood for the scout’s

measurement report can then be expressed as

p(y3,t|θt) =






pc
∑Nmax

k=1 g(k) k!
y3,t,1!···y3,t,M !q

y3,t,1

1,t · · · qy3,t,M

M,t if at least one target is incorrectly identified,

(1− pc) + pc[g(N3,t)
N3,t!

y3,t,1!···y3,t,M !q
y3,t,1

1,t · · · qy3,t,M

M,t ] otherwise.

(4.37)

8Note here that we are computing a discrete probability distribution by sampling a continuous
Gaussian density. The resulting probability mass function for the number of targets counted by the
scout is still a discrete distribution.
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The probabilities q1,t, q2,t, . . . , qM,t are obtained based on the actual values of the state

vector θt. We first evaluate an Nt ×M matrix Qt, such that

[Qt]nt,m =







1− qc if the nth
t target is of type m,

qc
M−1

otherwise

, (4.38)

where 0 ≤ qc ≤ 1 is a known constant. We then normalizeQt to obtain the probability

vector qm,t as qm,t =
1
Nt

∑Nt

nt=1[Qt]nt,m. We assumed in this work that the samples

from all the sensors arrive at the receiver at the same time and that the sensors are

time-synchronized.

4.6.4 Filtering Algorithm

We divide the state-space into three partitions. The first partition θ1,t comprises

the target number and the target categories, i.e., θ1,t = [Nt,α
T
t ]

T . The second and

the third partitions comprise the target positions and velocities, respectively, i.e.,

θ2,t = [ρT
1,t, . . . ,ρ

T
Nt,t]

T and θ3,t = [ρ̇T
1,t, . . . , ρ̇

T
Nt,t]

T . It can be seen that the evolution

of the second and third partitions depend on the evolution of the first partition.

The measurements collected by the scout depend only on the first partition, the

measurements collected by the infrared camera are a function of both the first and

the second partitions, and the measurements collected by the radar are function of

all the three partitions. Thus the measurement and the state functions satisfy the

hierarchical model that is described in Eq. (4.4). In order to obtain the state estimate,

we use the HPF that is described in Sec. 4.5.

In general, it is observed that partitioning the samples of each target individually

results in a better filtering performance [82], [83]. The proposed hierarchical filtering
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can be extended to operate in this manner by further dividing the second and third

partitions θ2,t and θ3,t.

4.7 Numerical Results

In this section, we use numerical examples to demonstrate the performance of the

tracking system when the proposed hierarchical filtering method is used for target

tracking. In order to quantify the performance of the multiple target tracking system,

we define four performance metrics. We describe the simulation setup first and then

discuss the examples.

Target parameters: We consider surveillance of a region for a period of 20 tracking

intervals. The duration of each tracking interval was 0.1 s (∆t = 0.1s). We consider

tracking under two scenarios. In the first scenario, during the first 0.8 s, which

corresponds to 8 intervals, there were 3 targets in the scene, during the next 0.8 s,

i.e., between the 9th and the 15th interval there were 4 targets, and thereafter there

were 3 targets again. The number of target classes was chosen to be 5 (M = 5), and

the initial positions and initial velocities of the targets belonging to various classes

were chosen as shown in the Table 4.1. During the entire tracking period, the target

categories were chosen as

αt =







{1, 2, 4} t = 1, 2, . . . , 8

{1, 2, 4, 5} t = 9, 10, . . . , 15

{1, 2, 5} t = 16, . . . , 20
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In the second scenario, there were three targets during the entire duration, i.e. αt =

{1, 2, 4} for t = 1, . . . , 20. The initial positions and velocities of these targets were

again chosen according to Table 4.1. The probabilities of the birth and the death of

the targets were chosen to be 0.01, i.e., pd = pb = 0.01, respectively. The constants

Tnt
in the measurement model of the infrared camera (see Eq. (4.33)) were chosen to

be T1 = 4.2, T2 = 8, T3 = 9, T4 = 10.4, T5 = 13.6, respectively.

Signal and Sensor Parameters: In each pulse, we transmit a spread-spectrum wave-

form [40]- [39] with 16 (G = 16) chips from the radar antenna. The total bandwidth

was 100Mhz (B = 100) and the carrier frequency, fc, of the transmitted waveforms

was 1Ghz. We used four (L = 4) pulses in each tracking interval. The radar receive

antennas were located at (xRx,1, yRx,1) = (0, 0), (xRx,2, yRx,2) = (20, 0), (xRx,3, yRx,3) =

(40, 0), respectively, and the variance of the measurement noise at each receiver was

σ2
1,p = 1× 10−3, p = 1, 2, 3. The covariance matrices of the measurement noise at the

infrared camera were chosen to be Σ2,1 = σ2
2IR,Σ2,2 = σ2

2IC , with σ2
2 = 1×10−2. The

constants b and qc for the human scout were chosen to be 0.2 and 0.05, respectively.

We assumed that all the targets are observable by all the sensors. We evaluated the

Table 4.1: Table showing the initial positions and velocities of all the target classes
Target Class Initial Position Initial Velocity

Fixed Varying Fixed Varying
1 (5,5) (5,5) (10,10) (10,0)
2 (10,35) (10,0) (5,0) (0,10)
3 (20,20) (20,20) (3,3) (3,3)
4 (35,35) (12,15) (-10,-10) (0,-10)
5 (0,30) (8,12) (5,-10) (10,-5)

performance of the system using four metrics: the average number of targets detected

in the scene, the average number of targets identified incorrectly, the root mean-

squared error in the position of correctly identified targets, and the root mean-squared
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error in the velocity of correctly identified targets. Let the estimate of the state vector

at time t in the ith Monte-Carlo iteration be θ̂t,i = [N̂t, ρ̂
T
1 , ˆ̇ρ

T
1 , α̂1, · · · , ρ̂T

Nt
, ˆ̇ρT

Nt
, α̂Nt

]Ti .

The four performance metrics are then defined as:

PM1 =
1

Nmc

Nmc∑

i=1

N̂t,i,

PM2 =
1

Nmc

Nmc∑

i=1

card

(

(αt − α̂t,i)
⋃

(α̂t,i −αt)

)

,

PM3 =
1

|Bt|Nmc

Nmc∑

i=1

∑

nt∈Bt

√

(ρx,nt
− ρ̂x,nt

)2 + (ρy,nt
− ρ̂y,nt

)2,

PM4 =
1

|Bt|Nmc

Nmc∑

i=1

∑

nt∈Bt

√

(ρ̇x,nt
− ˆ̇ρx,nt

)2 + (ρ̇y,nt
− ˆ̇ρy,nt

)2,

where Bt is the set of correctly identified targets.

In Figs. 4.3, we plot these metrics using the four methods, for varying number of

targets. In the first method, we used the proposed HPF. In the second, third, and

fourth methods, we used SPF-LO, SPF-IO, SPF-IL, where the weights were updated

following Eqs. (4.8), (4.10), and (4.12), respectively. We used Ns = 1000 particles for

the simulations and the results were averaged over Nmc = 50 Monte Carlo iterations.

In Fig. 4.3(a), we plot the actual number of targets (ground truth), labeled as GT

along with estimates of the number of targets obtained using other methods. It can

be seen from this figure that the system was able to accurately estimate the number

of targets using the HPF approach. On the other hand, using SPF-LO, SPF-IO, and

SPF-IL resulted in an incorrect estimation of the number of targets. It can also be

seen that using HPF resulted in higher correct identifications of the target categories

compared to the other methods. However, from Fig. 4.3(d), it can be seen that the
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RMSE in the range and velocity, per target, for the correctly identified targets, using

HPF was comparable to the RMSE obtained using the SPF based methods.

In Fig. 4.4, we plot the performance metrics for a fixed number of targets. It can be

seen that using HPF resulted in an accurate estimate of the target number, higher

correct identifications, and lower RMSE in range when compared to the performance

obtained using SPF based methods. Among the other methods, SPF-IL performed

better, followed by SPF-LO and SPF-IO. The RMSE in the velocity estimate using

HPF was comparable to the RMSE using SPF based methods. This is due to the

fact that the velocity and the range evolve independent of each other. We plot the

actual target trajectories for the two scenarios and the estimated trajectories (using

a single Monte-Carlo run) using the proposed HPF in Fig. 4.5.

In Table 4.2, we list the average computational time taken by each of these algorithms

for the case of varying numbers of targets. We considered the average running time

for the case of Ns = 500, 1000 and 2000 particles. The simulations were run on

an 8-core processor using parallel matlab sessions. HPF requires a sampling and a

weight update step in each stage of the filtering process, and as a result it takes longer

time compared to other SPF based methods. An n−stage HPF requires n sample

generation and weight update steps, whereas an SPF based method requires only one

sampling and weight update step.

Table 4.2: Table showing average computational time in seconds for various algo-
rithms

No. of Particles HPF SPF-LO SPF-IO SPF-IL
500 4.23 1.02 0.98 0.89
1000 9.36 2.26 1.96 1.85
2000 18.76 4.19 3.74 2.98
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4.8 Summary

In this chapter, we proposed a new filter, called the hierarchical particle filter (HPF)

to obtain the state estimate. HPF finds the estimate of the state vector in several

stages. At each stage, the filter uses the posterior weights obtained in the last stages

as extrinsic information, and computes the estimate of the state vector in the current

stage. The data obtained from multiple sensing modalities is combined in both the

time-update and the measurement-update step of the recursive Bayesian filtering.

We then used the proposed filtering method for the joint initiation, termination and

tracking of multiple targets using multi-modal sensors. We used a sensor network

comprising three different types of sensors: a radar, an infrared camera and a human

scout. We compared the tracking performance with standard particle filtering (SPF)

using linear opinion (SPF-LO), independent opinion (SPF-IO) and independent like-

lihood (SPF-IL) for the data fusion. The results demonstrated that HPF was able

to accurately identify the number of targets, produce higher correct identifications,

and lower root mean-squared error (RMSE) in range estimates when compared to the

performance obtained using the SPF-LO, SPF-IO, and SPF-IL. The RMSE in the

velocity estimates was similar for all the methods.
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Figure 4.1: RMSE for the three partitions for the first example.
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Figure 4.2: RMSE for the three partitions for the second example.
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Figure 4.3: Performance comparison for varying number of targets.
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Figure 4.4: Performance comparison for fixed number of targets.
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Figure 4.5: Estimated Vs Actual target trajectories.
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Chapter 5

Multi-Modal Sensor Management

using Price Theory9

5.1 Introduction

As described in the previous chapter, the advances in the development of inexpen-

sive sensing devices has made it feasible to deploy a multi-modal sensor network to

obtain information about various targets, activities and events. However, typically,

the multi-modal data collected across the sensors is highly diverse, incomparable,

and sometimes inconsistent. Therefore, the sensing system should understand how

to combine the information provided by multiple sensors, and it should be capable

of adaptively changing the way it combines this information depending on the sit-

uation. In addition, gathering information using the sensors incurs cost: physical

cost, computational cost, and communication cost. Sensing applications, however,

are constrained by limited resources. Hence, the sensing system should decide which

sensors it should use to produce the data, and how it should distribute the limited

9Based on P. Chavali and A. Nehorai, “Managing Multi-Modal Sensor Networks using Price
Theory”, IEEE Trans. on Signal Processing, vol. 60, no. 9, pp. 4874-4887, Sep. 2012. c©[2012]
IEEE
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resources to the sensors, such that the system achieves the best performance within

the cost constraints. These considerations give rise to three important aspects in sen-

sor management: sensor selection (SS) [84], resource allocation (RA) and data fusion

(DF) [85]. Sensor management can thus be defined as a process that manages and

coordinates the use of sensors by adaptively selecting the sensors, distributing the

resources among the sensors, and combining the information obtained from various

sensors with an overall goal of improving the system performance.

In this chapter, we propose a framework for sensor management that is inspired

by the trading behavior of agents in a commercial market and we use an economic

price theory-based approach [86]. The idea of a using a market-based approach is

not new [87], and it has been used to solve the resource allocation problems in the

past. In our work, however, we use this approach for the entire sensor management

process, by jointly addressing SS, RA, and DF. We model both the sensor nodes and

the sensor manager as self interested agents in a double-sided market. This kind of

modeling enables us to obtain a joint solution to all three problems related to sensor

management. We model each sensor node (SN) as a producer who wishes to sell the

data it produces, and each sensor manager (SM) as a consumer who wants to buy the

data from the sensors. The basic idea is that the data is priced by looking to balance

global supply vs global demand. The price of the data forces the SM to restrict itself

to using the data only from a limited number of sensors. Since the SM must provide

a payment for the data it uses, it will be straightforward in describing the utility it

obtains from each kind of SN. In a similar way, the SN will purchase resources, for

example, power, from the SM and pay in return for the resources. The SN will use

these resources to produce the data and it will be straightforward in describing the

quantity of the data it can provide with the resources it has. In this way, the proposed
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approach will provide a natural framework for the SN and the SM to interact and to

communicate their utilities dynamically. It also provides a rigorous methodology for

incorporating the importance of the information that the sensors collect to the overall

system goal. We describe the proposed framework using multiple-target tracking as

an illustrative example.

5.2 Problem Description

In this section, we describe in detail the problem formulation. Let θ ∈ Θ denote

the state vector. Consider a sensor network with P sensors, possibly of different

modalities, labeled as S = {1, 2, . . . , P}. At time t, each of these sensors can partially

observe the vector θt, i.e., the measured data yp,t corresponding to the pth sensor is a

function of a subset θp,t ⊂ θt of the state vector, which is represented as a projection

defined onΘ. For the pth sensor, we label this projection as gp(θp). The measurement

vector corresponding to the pth sensor at time t can then be written as

yp,t = gp(θp,t; t) +wp,t, (5.1)

where wp,t denotes the additive noise. The function gp(.) depends on the kind

of the sensor used, and it is assumed to be known but possibly nonlinear. Let

Y t = {y1,t, . . . ,yP,t} denote the measurements obtained by all the sensors at time t

and yp,1:t be the measurements obtained by the pth sensor up to time t. We assume

the existence of a central fusion center, which we refer to as the sensor manager (SM)

that processes the measurements obtained by the individual sensors and computes the

global posterior distribution p(θt | Y 1:t). The SM also decides which sensors should
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be activated at each time, how the finite resources should be distributed among the

activated sensors, and how the information obtained from each sensor should be com-

bined. These considerations give rise to the three aspects of the sensor management:

SS, RA and DF.

Let cp,t denote the the cost incurred by activating the pth sensor at time t, πt ⊂ S

denote a subset of sensors at time t, P(S) denote the power set of S, {ui
t}3i=1 denote a

set of utility functions that characterizes the system performance at time t, and rp,t

denote the resources allocated to the pth sensor at time t. Using these notations, we

define SS, RA, and DF as follows.

The problem of SS is to select a subset of sensors from a given set of possible sensors,

with the constraints on the total cost and coverage. It can be formulated as the

following constrained optimization problem:

SS : π∗
t = argmaxπt∈P(S) u

1
t ,

subject to
⋃

p∈πt

θp,t = θ and
∑

p∈πt

cp,t ≤ ηc. (5.2)

In this formulation, the first constraint corresponds to the coverage constraint, which

ensures that every component of the state vector is covered by at least one sensor, and

the second constraint ensures that the overall cost incurred by employing the sensors

is within a predefined threshold. The parameter ηc corresponds to the constraint on

the cost.

The problem of RA concerns allocating the available and limited resources to the

sensors to maximize the utility each of them provides to the sensor network. It can
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be formulated as the following joint constrained optimization problem:

RA : {r∗
p,t}Pp=1 = argmax{rp,t}Pp=1

u2
t ,

subject to
∑

p∈πt

rp,t ≤ ηr. (5.3)

The parameter ηr corresponds to the total available resources.

The problem of DF is to find an optimal way to combine the information that is

obtained from various sensors. Since the data collected by the sensors is, in general,

inconsistent, it should be combined at the decision level [88]. In this chapter, we use

the linear opinion pool [75] for the data fusion, as it is simple and widely used in

practice. The problem of the DF then corresponds to finding the optimal weights,

and it can be formulated as the following constrained optimization problem:

DF : µ∗
t = argmaxµt∈RP u3

t
,

subject to
∑

p∈π∗

t

µp,t = 1, and

p(θt | Y 1:t) =
∑

p∈π∗

t

µpp(θt | yp,1:t), (5.4)

where the weight µp,t represents a subjective measure of the reliability of the data

collected by the pth sensor, and the utility function u3
t is a function of the global

posterior distribution p(θt | Y 1:t).

SS, RA, and DF have been studied independently in the past, and several techniques

using various cost and utility functions, such as the reduction in the uncertainty

of the state vector, volume of the confidence ellipsoid of the state vector etc., have

been used. SS has been addressed in [58], [89], [90], [91], [92], RA has been studied

in [93], [94] and DF in [72]. The list is not exhaustive. All these earlier methods
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neglect the importance of dynamically changing environment on the utility functions

that each SN and SM use. Further, there was no unified framework for obtaining a

joint solution to SS, RA, and DF at the same time.

Our approach addresses these concerns by providing a framework, where the utility

function of the SNs and the SMs is updated periodically. Each node of the sensor

network acts as a self-interested economic agent that operates in a virtual market. A

global efficient behavior is enforced by adjusting the price vector, which decides how

each node behaves. The equilibrium point of this virtual market is then related to

the solutions of SS, RA, and DF.

5.3 Price theory and Auctions: Preliminaries

5.3.1 Walrasian Equilibrium

Price theory is a branch of economics that explains the trade of goods and services

between different economic agents [86]. Agents fall into two different categories:

consumers and producers. Consumers can buy and sell various goods in the market,

whereas producers can transform goods of some sort into goods of a different sort.

Consider an economic market with Nc consumers, Np producers, and K indivisible

goods. For the ith consumer, his preference for consuming various bundles of goods,

denoted as xi = [xi1, xi2, . . . , xiK ]
T and referred to as the demand vector, with xik ∈ N

representing the quantity of kth good that the ith consumer trades, is specified by a

utility function, ui : NK → R. The utility function of a consumer ranks various

bundles of goods according to his preference. If xik > 0, then the consumer buys

the good, and if xik < 0, the consumer sells the good. Each consumer starts with
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an initial endowment of goods ei = [ei1, . . . , eiK ]
T , with eik ∈ N representing the

quantity of kth good available for trade with the ith consumer. Given a price vector

p = [p1, . . . , pK ]
T , the objective of the ith consumer, i = 1, · · · , Nc, is to choose an

optimal demand vector that maximizes his utility function under the constraint that

the total wealth he spends is less than the total wealth he can generate by selling his

endowment, given by
∑K

k=1 eikpk = pTei, at price p. This feasible set is called the

budget set of the consumer. The consumer’s choice for his preferred bundle of goods

is obtained by solving the following constrained optimization problem:

x∗
i = arg max

xi∈Bi(p,ei)
ui(xi),

where Bi(p, ei) = {xi ∈ N
K : pTxi ≤ pTei}, i = 1, · · · , Nc. (5.5)

Agents of the second type, the producers, will take as input, goods from the consumers

and convert them into goods of different sort. For the jth producer, a vector yj =

[yj1, yj2, . . . , yjK]
T , yjk ∈ N, called the production plan vector, where yjk > 0 if kth

good is an output, and yjk < 0 if it is an input, defines the amount of goods that

the producer takes as input and produces as output. The maximum output of the

kth good obtained from the jth producer will be a function of his input goods and of

the available technology to produce the good. This is represented by a production

function, vjk : N
K → N. Each producer has an initial wealth wj required to start the

production. Given a price vector p = [p1, . . . , pK ]
T , the objective of the jth producer,

j = 1, · · · , Np, is to choose a production plan vector that maximizes his profit, subject

to the constraints on the maximum amount of goods that he can produce. Define

y+
j =

{
yjk ∈ yj|yjk > 0

}
, y−

j =
{
yjk ∈ yj |yjk < 0

}
and p−

j =
{
pk ∈ p | yjk < 0

}
. The

optimal production plan vector of each producer is obtained by solving the following
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constrained optimization problem:

y∗
j = arg max

yj∈NK
pTyj ,

subject to y+jk ≤ vjk(y
−
j ), ∀k, and (p−

j )
Ty−

j ≤ wj, j = 1, · · · , Np. (5.6)

Walras [95] defined a notion of an equilibrium in such consumer-producer economic

markets, called theWalrasian equilibrium, which is most commonly used by economists

today.

Definition 1. Walrasian Equilibrium : The tuples
(
{x∗

i }Nc
i=1, {y∗

j}Np

j=1,p
∗) of the

demand vector, the production plan vector and the price vector in an economy form

a Walrasian equilibrium, if and only if

1. xi is a solution to the constrained optimization problem given in Eq. (5.5) at

the price p, ∀ i

2. yj is a solution to the constrained optimization problem given in Eq. (5.6) at

the price p, ∀ j, and

3. the market is clear at the price p, i.e.,
∑Nc

i=1 xik =
∑Np

j=1 yjk, ∀ k.

Under some mild assumptions on the continuity and the monotonicity of the utility

and the production functions, it was shown that the Walrasian equilibrium exists for

all economies [96] using a fixed point argument. Under a much stronger assump-

tion called the gross substitutability10 condition, the equilibrium is also proved to be

unique. The key result of the price theory is that the Walrasian equilibria, although

defined as a solution to utility maximization and the profit maximization problems

10If there is an increase in the price of one good, then the net demand for other goods does not
decrease
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of individual agents, will produce Pareto-optimal11 allocations. This result is stated

as the following two fundamental theorems.

Theorem 1. First Fundamental Welfare Theorem - If the triplet (p,xi,yj), for

i = 1, 2, . . . , Nc and j = 1, 2, . . . , Np is a Walrasian equilibrium, then the allocations

xi and yj for i = 1, . . . , Nc and j = 1, . . . , Np are Pareto-optimal.

Theorem 2. Second Fundamental Welfare Theorem - In a convex economy12,

if xi and yj for i = 1, . . . , Nc and j = 1, . . . , Np represent any set of Pareto-

optimal allocations, then there exists a price vector p ∈ RK such that the tuples
(
{x∗

i }Nc
i=1, {y∗

j}Np

j=1,p
∗) form a Walrasian equilibrium for a suitable choice of initial

endowments.

The market equilibrium problem is to compute a price vector, the corresponding

demand vectors, and the production plan vectors for all the agents in the econ-

omy such that they form a Walrasian equilibrium. This problem is of considerable

interest in Economics, and several works have investigated this problem [97]- [98].

However, finding computationally efficient polynomial time algorithms to compute

the equilibrium prices and allocations for a general economic model is still a major

research area. Over the last few years, there has been a huge effort in the theo-

retical computer science community to develop efficient algorithms for computing

the equilibria [99], [100], [101], [102], [103]. While few groups have been working

on developing polynomial time algorithms for specific markets, the other groups fo-

cussed on developing algorithms for computing the approximate equilibrium. One

such notion of an approximate equilibrium is ε-approximate equilibrium. The tuples
(
{x∗

i }Nc
i=1, {y∗

j}Np

j=1,p
∗) form an ε-approximate Walrasian equilibrium if, for 0 < ε < 1,

11An allocation of goods to agents is defined to be Pareto-optimal if no other allocation of the
same goods would be preferred by every agent

12The utility and production functions of all the consumers and producers are convex functions
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the optimal solutions {x∗
i }Nc

i=1 and {y∗
j}Np

j=1 are such that
∑Nc

i=1 x
∗
ik = (1− ε)

∑Np

j=1 y
∗
jk∀

k at price p∗, i.e., the market clearing condition is approximately satisfied. In the

next subsection, we describe auctions and propose an auction mechanism that can be

used to compute an ε-approximate equilibrium of the market model described in this

subsection.

5.3.2 Auctions and Price discovery

Auction algorithms first originated as methods for finding solutions to an assignment

problem where several agents were competing for various resources [104]. Since then,

auctions have been used for solving a wide variety of problems in the areas of com-

puter science [105], Economics [106] and finance. Auction-based algorithms are used

for two important reasons. First, they are intuitive and easy to implement. Second,

they provide a general theoretic framework for understanding the interaction between

self-interested agents and provide computationally efficient methods for solving the al-

location problems among these agents, with the objective of achieving Pareto-optimal

outcomes.

There are many types of auctioning mechanisms, each with its own unique charac-

teristics and applications [Chap-10, [107]]. Four primary types of auctions that are

widely used are the ascending bid auction (English auction), the descending bid auc-

tion (Dutch auction), the first price sealed-bid auction and the second price sealed-bid

auction (Vickrey auction). Based on these primary types, several secondary type auc-

tions have been derived by making minor modifications. For a detailed descriptions

of auctions, interested readers can refer [Chap-10, [107]]. Our auction algorithm is
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a combination of two auction mechanisms: (i) the double auction [108] and (ii) the

combinatorial auction [109].

In a traditional auction, an auctioneer is regarded to be either on the sellers’ side or

the buyers’ side. When an auctioneer is on the sellers’ side, his main objective is to

maximize the sellers’ profits while minimizing their cost, whereas if the auctioneer is

on the buyers’ side, his objective is to maximize buyers’ utility and minimize their

purchase cost. Both of these scenarios are considered to be one-sided, and hence

a third neutral auctioneer scenario is introduced, where the objective is to strike a

balance between the two prior cases, with the main goal of maximizing global welfare.

These types of auctions are called double auctions (DA). It was shown that DAs are

much more efficient than several one-sided auctions [110]. Combinatorial auctions

(CA) are a different class of auction mechanisms, where bidders can place bids on

the combinations (or bundles) of goods, instead of being limited to bidding on a

single item, as happens in most conventional auctions. This ability to bid on several

combinations of goods allows the agents to more accurately express their preferences.

Combinatorial double auctions (CDA) [110]- [111], which are a combination of DAs

and CAs, are most frequently encountered in market-based economies (for e.g. stock

exchange markets), and they represent the advantages of combinatorial auctions by

allowing bids to be placed on several combinations of goods, and also the double

auctions by considering the requirements of both buyers and sellers in the market.

The use of auction-based algorithms for computing the market equilibrium was first

proposed in [106] and they have been used extensively since then.

We propose an iterative CDA algorithm that can be used for finding the ε−approximate

Walrasian equilibrium for the market scenario described in the previous section. We

restrict ourselves to the class of linear models, where the utility and the production
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functions are linear in the demand vector and the production plan vector, respectively,

i.e.,

ui(xi) =

K∑

k=1

uikxik, ∀i, (5.7)

vjk(yi) =
∑

yj∈y−

vjkyjk, ∀j. (5.8)

The run of the algorithm is partitioned into several iterations. Each iteration is further

partitioned into three steps. We start with an arbitrary, but fixed order, for each

consumer and producer in the economy. Let pn = (pn1 , . . . , p
n
K) denote the price vector

at the nth iteration of the algorithm. In the first step of each iteration, the optimal

demand vector of every consumer is evaluated. In order to compute the optimal

demand vector of the ith consumer, we will use a branch-and-bound [112] technique

to solve Eq. (5.5) at price pn. In the second step of each iteration, the optimal

production plan vector of every producer is evaluated. The optimal production plan

vector is obtained by solving Eq. (5.6) using a branch-and-bound technique. In the

third step, the auctioneer will compute the total demand and supply for each of the

K goods, and will adjust the price based on the demand and the supply values. The

price of the kth good is increased if the demand of the good exceeds the supply,

and the price is decreased if the supply exceeds the demand. The increase or the

decrease in the price is proportional to the value of the excess demand or the excess

supply, respectively, computed at the current price. As the price vector changes, the

algorithm recomputes the demand and the production plan vector for each consumer

and producer. The algorithm will terminate when an approximate equilibrium is
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achieved or when the number of iterations exceeds a predetermined threshold. The

detailed auction mechanism is shown in Algorithm 4.

Algorithm 4 Auction Algorithm to find Walrasian Equilibrium of a Double-Sided
Market
1: Initialize p1k = 0, ∀k, and n = 1
2: while n < Nth or ε-approximate equilibrium not achieved do
3: Find xn

i and yn
j by solving Eqs. (5.5) and (5.6), respectively for all

4: if (
∑Nc

i=1 x
n
ik >

∑Np

j=1 y
n
jk) then

5: set pn+1
k = pnk(1 + δpnk |

∑Nc

i=1 x
n
ik −

∑Np

j=1 y
n
jk|)

6: else if (
∑Nc

i=1 x
n
ik <

∑Np

j=1 y
n
jk) then

7: set pn+1
k = pnk/(1 + δpnk |

∑Nc

i=1 x
n
ik −

∑Np

j=1 y
n
jk|)

8: else
9: set pn+1

k = pnk
10: end if
11: end while

In this manner, an ε−approximate equilibrium of the market is reached via the in-

teractions between the producers and consumers using an auction mechanism. We

make several comments about the auction mechanism here. First, we assume that the

processing center has sufficient computational and communication resources to exe-

cute the mechanism and maintain the equilibrium in real-time. Second, there are two

methods to implement the auction mechanism across the sensor network: distributed

implementation and a centralized implementation. In a distributed implementation,

each agent controls the physical entity it represents, and is capable of computation. In

our market, a distributed implementation means that the consumers and the produc-

ers evaluate their respective optimal demand and production plan vectors at a given

price, and submit the demand and production plan vectors in the form of bids to an

auctioneer. The auctioneer will then adjust the price based on the demand and the

supply. In a centralized implementation, all the processing is done at a central unit.

In our market, a centralized implementation means that the producers and consumers
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will inform their utility and production functions to the processing center, which then

evaluates their optimal production and demand vectors. The processing center can

itself act as an auctioneer, and adjust the prices for the subsequent iterations. The

distributed implementation is communication intensive as the producers, consumers,

and the auctioneer should exchange bids and prices at each iteration, whereas the

centralized implementation is computation intensive as the processing center has to

evaluate the optimal demand and production plan vectors for all the agents in the

market. In this work, we adopt a centralized implementation for two important rea-

sons which we describe in the next Section. Third, we assume that all the agents in

the market are price takers. This assumption ensures that the equilibrium point is a

Pareto-optimal allocation.

5.4 Sensor Management for MTT

In this section, we address sensor management in multi-modal networks for the MTT

problem. Although the description is specific to target tracking, the proposed frame-

work can be easily extended for sensor management in other applications employing

multi-modal sensors. To keep the description simple, we address SS, RA and DF us-

ing a simple particle filter. Our approach to sensor management is based on modeling

the interaction between the SNs and the SM as an interaction between the agents

in an economic market. Each agent acts as a self interested unit, with the goal of

maximizing its utility. As the utilities of the agents keep changing, they re-evaluate

their preferences and reach an equilibrium. At the equilibrium, none of the agents

will deviate from their respective preferences due to the Pareto-optimality at the

equilibrium.
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We assume that all the data processing is done by the SM. We model the SM as a

consumer in the market that purchases measurements from each of the sensors and

sells the resources it has to the sensors. In this chapter, we consider a sensor network

that comprises of a multistatic radar, an infrared camera and a human scout. The

state model is same as the one employed in Chapter 4. The measurement models of

the infrared camera and the human scout are also same as the ones used in Chapter

4. We modify the measurement model of the radar system slightly, to include three

transmit antennas. We provide the measurement models for the sensors below.

1. Radar sensor:

yp,t =

Nt∑

nt=1

3∑

q=1

βp,q,nt

√

γqζp,q,nt

(

Υ(p, q, nt)⊗ Γ(p, q, nt)

)

s+wp, p = 1, 2, 3 q = 1, 2, 3.

(5.9)

2. Infrared camera:

p(y4,t | θt) = N (y4,t; γ4I0,Σir,1 ⊗Σir,2). (5.10)

3. Human scout:

p(y5,t|θt) =






pc
∑Nmax

k=1 g(k) k!
y5,t,1!···y5,t,M !q

y5,t,1

1,t · · · qy5,t,M

M,t if at least one target is incorrectly identified,

(1− pc) + pc[g(Nhs,t)
Nhs,t!

y5,t,1!···y5,t,M !q
y5,t,1

1,t · · · qy5,t,M

M,t ] otherwise.

(5.11)

In the above, the constants γ1, . . . , γ5 in the measurement models of the radar, the

infrared camera and the human scout, respectively, determine the quality of the mea-

surements that these sensors obtain. These constants can be thought of as resources

that the SM provides the SNs. However, in practice, not all SNs can obtain good

data at same time, since the SM has only a finite amount of resources. For example,
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if the SM spends some amount of resource in training the scout, it might not have

enough resources left to obtain a good camera, or to transmit the waveforms with

higher energy. Hence, we enforce a constraint of the form
∑5

p=1 γp ≤ γ, where γ is

the constraint on the available resource. We call these constants γ1, . . . , γ5 as the

power allocated to the respective sensors and γ as the total available power. Let

xt = [x1,t, . . . , x6,t]
T denote the demand vector of the SM at time t. Note that since

there is only one consumer in the market, we dropped the subscript for consumer

index. The demand vector xt comprises two parts: the number of measurements

that the SM seeks from each SN and the power that the SM distributes to the SNs.

Let the number of measurements that the SM seeks from the pth sensor at time t be

denoted xp,t, p = 1, . . . , 5. In general, xp,t = {0, 1}, p = 1, . . . , 5, which means that

the pth sensor is either inactive or it collects a single measurement. However, using

diversity techniques, such as time, space and frequency, independent realizations of

the measurement vectors can be obtained. Therefore, we consider that xp,t ∈ N.

Denote the total power that the SM distributes be denoted using x6,t. Note that

xp,t ≥ 0, for p = 1, . . . , 5, and x6,t < 0. The number of measurements that the SM

seeks correspond to the quantity of goods that the SM is willing to purchase, and the

power allocated corresponds to the quantity of the good that the SM is willing sell.

The optimal demand vector of the SM can be obtained by solving

x∗
t = arg max

xt∈Bt(pt,et)
ut(xt),

where Bt(pt, et) = {xt ∈ N
K : pT

t xt ≤ pT
t et}, (5.12)

where ep,t = 0, p = 1, . . . , 5, and e6,t = γ is the total available power. We consider

an information theoretic utility function to characterize the preference of the SM to

the various choices of the measurements that it can obtain from the sensors. Since
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the overall goal of the SM is to estimate the unknown target state, we chose a utility

function that reduces the uncertainty about the unknown state vector θt.

ut(xt) = −
5∑

p=1

1

dp
xp,tH(θt|yp,1:t−1), (5.13)

where dp is the dimension of the subspace that the pth sensor observes, and H(z) is

the entropy [113] of the random variable z defined as H(z) = −∑z∈Z p(z) log(p(z)).

For the utility function defined in Eq. (5.13), the posterior distribution, p(θt|yp,1:t−1)

can be approximated using a set of Np particles
{

θ
(k)
t

}Np

k=1
and associated weights

{

w
(k)
p,t−1

}Np

k=1
. This method of approximating the posterior distribution is employed

in particle filtering, and we will describe the particle filtering in detail in the next

subsection. With this approximation, the utility function can be simplified as

ut(xt) =

5∑

p=1

1

dp
xp,t

Np∑

k=1

w
(k)
p,t−1 log(w

(k)
p,t−1). (5.14)

We model the SNs as producers in the market that obtain measurements by using the

resources that the SM provides them. In the multiple target tracking example, there

are five producers: the three radar antennas, the infrared camera and the human

scout. Let vj,t(y
−
j,t) denote the production function of the jth producer. The produc-

tion function defines the number of measurements that the producer can obtain, as a

function of the resources allocated to it. We consider the following linear production

function for each producer at time t

vj,t(y
−
j,t) = cjy

−
j,t, (5.15)
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where vj,t(y
−
j,t) represents the maximum number of measurements that jth sensor can

obtain at time t, y−j,t represents the resource allocated to the jth sensor at time t, and

cj is a known constant. In this work, we chose cj = 1, j = 1, . . . , 5, ∀ t ∈ N. The

optimal production plan vector of each producer is obtained by solving

y∗
j,t = arg max

yj,t∈NK
pT
t yj,t,

subject to y+j,t ≤ vj,t(y
−
j,t) and (p−

j,t)
Ty−

j,t ≤ wj j = 1, . . . , 5. (5.16)

In this manner, we create an artificial market for the sensor information and the re-

sources. The SNs and the SM act as agents in the market, and these agents interact

in the market to reach an equilibrium. We use the auction mechanism described

in Table 4 to obtain an ε-approximate equilibrium point
(
{x∗}, {y∗j}5j=1,p

∗) for this

market. In the equilibrium solution thus obtained, x∗, which corresponds to the

number of the measurements obtained from each sensor, is the solution to the SS

problem; (y∗j )
+, which corresponds to the power allocated to each sensor, is the solu-

tion to the RA problem; and p∗, which corresponds to the price of the measurements

obtained by each sensor, is the solution to the DF problem. In our work, we use

centralized processing for two reasons. First, the SNs in the network collect the data,

but they do not have any processing capabilities. Hence, they cannot compute their

optimal production vectors. Second, bandwidth is scarce in any sensor network and

exchanging the bids and prices will increase the overhead of the system in terms of

communication bandwidth. Therefore, the MTT is more suited for a centralized im-

plementation than a distributed implementation. Since the production functions do

not change with time, the SNs can communicate their production functions to the

SM in an offline fashion at the beginning of the tracking process. Hence, there is no

information exchange during the sensor management.
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Tracking Algorithm

We use a standard particle filter [18] to compute an estimate of the state vector. First,

we compute the global posterior distribution as a linear sum of the local posterior

distributions, given the measurements collected by the individual sensors using linear

opinion pool [75].

p(θt | Y 1:t) =
P∑

p=1

µpp(θt | yp,1:t). (5.17)

Here, P = 5. We used a simple particle filter where the
{

θ
(k)
t

}Np

k=1
are drawn according

to the state-transition distribution and the weights are derived using the principle of

importance sampling. The minimum mean-squared error (MMSE) estimate of the

state vector is then obtained as the mean of the global posterior distribution as

θ̂t =
P∑

p=1

µp

Np∑

k=1

w
(k)
p,t θ

(k)
t . (5.18)

5.5 Numerical Results

In this section, we use numerical examples to demonstrate the performance improve-

ment obtained due to sensor management using the proposed price theory framework.

In order to quantify the performance of the multiple target tracking system, we define

four performance metrics. We describe the simulation setup first and then discuss

the examples.

Target parameters: We consider surveillance of a region for a period of 20 tracking

intervals. The duration of each tracking interval was 0.1 s (∆t = 0.1s). We consider

tracking under two scenarios. In the first scenario, during the first 0.8 s, which
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Table 5.1: Table showing the initial positions and velocities of all the target categories
Target Category Initial Position Initial Velocity

1 (5,5) (10,5)
2 (15,10) (5,0)
3 (10,10) (5,10)
4 (40,40) (-10,-10)
5 (0,40) (5,-10)

corresponds to 8 intervals, there were 3 targets in the scene, during the next 0.8 s,

i.e., between the 9th and the 15th interval there were 4 targets, and thereafter there

were 3 targets again. The number of target categories was chosen to be 5 (M = 5), and

the initial positions and initial velocities of the targets belonging to various categories

were chosen as shown in the Table 5.1. During the entire tracking duration, the target

categories were chosen as

αt =







{1, 2, 5} t = 1, 2, . . . , 8

{1, 2, 5, 3} t = 9, 10, . . . , 15

{1, 2, 3} t = 16, . . . , 20

In the second scenario, there were three targets during the entire duration and the

categories of these targets were chosen to be αt = {1, 2, 4} for t = 1, . . . , 20. The

initial positions and velocities of these targets were again chosen according to Table

5.1. The probabilities of the birth and the death of the targets were chosen to be

0.01, i.e., pd = pb = 0.01, respectively.

Signal and Sensor Parameters: We transmit OFDM [114] waveforms with eight

(G = 8) subcarriers loaded with same symbol in all the subcarriers from the radar

antennas. The total bandwidth was 100Mhz (B = 100) and the carrier frequency,

fc, of the transmitted waveforms was 1Ghz. We used four (L = 4) pulses in each
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Figure 5.1: Performance comparison of the two approaches for the first scenario.

tracking interval. The radar antennas were located at (x1, y1) = (0, 0), (x2, y2) =

(20, 0), (x3, y3) = (40, 0), respectively, and the variance of the measurement noise at

each antenna was σ2
w,p = 1 × 10−3, p = 1, 2, 3. The covariance matrices of the mea-

surement noise at the infrared camera along the row and columns, respectively, were

chosen to be Σir,1 = σ2
irIR,Σir,2 = σ2

irIC , with σ2
ir = 1× 10−2. The constants b and qc

for the human scout were chosen to be 0.2 and 0.05, respectively. We assumed that

all the targets were observable by all the sensors.

We evaluated the performance of the system using four metrics that we used in

Chapter 4: the average number of targets detected in the scene, the average number

of targets identified incorrectly, the root mean-squared error (RMSE) in the position
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of correctly identified targets, and the root mean-squared error in the velocity of

correctly identified targets.

In Fig. 5.1, we plot these metrics for two methods. In the first method, which we

refer as standard approach, there was no sensor management. We used all sensors

at all times, collected one measurement from each sensor, and equally distributed

the power among them. The particle weights corresponding to each sensor were

updated following standard weight update equation, and the global posterior density

was computed following Eq. (4.8) by giving equal weights to the sensors, i.e., µp =

1/P, p = 1, . . . , P . In the second method, which we refer as price-theory approach, we

used the proposed price theory framework to select the number of measurements that

the each sensor should obtain, and to allocate power to the selected sensors using the

demand and the production plan vectors of the SM and the SNs, respectively. Further,

we computed the price of the measurements collected by the individual sensors, and

used the price of data as the weight given to the corresponding sensor to evaluate the

global posterior density (see Eq. (5.17)). During the interaction between the SNs and

the SM, the SM will request for a higher number of measurements from the SN which

improves the utility function of the SM. In order to meet the demand, this SN will

increase the price of data it collects. As a result, the SNs which improve the utility

function will give a higher price to the data they collect, and therefore, the price of

the data can act as a measure of importance of the data.

In order to find the demand vector, the production plan vector, and the price, i.e.,

{x, {yj}5j=1,p}, we computed the ε-approximate Walrasian equilibrium for market

model using Algorithm 4. We used a branch-and-bound technique [112] to solve the

constrained optimization problems given by Eqs. (5.12) and (5.16). For the auction

algorithm, we chose ε = 3 and Nth = 1000. To find the estimates of the state vector,
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we used a particle filter with Np = 1500 particles. The simulations were averaged

over Nmc = 100 Monte-carlo iterations.

We can see from Fig. 5.1(a) that the system was able to accurately estimate the

number of targets when sensor management was used. On the other hand, not using

sensor management resulted in an incorrect estimation of the number of targets.

It can also been seen that employing sensor management resulted in higher correct

identifications of the target categories compared to the case when sensor management

was not used. However, from Figs. 5.1(c) and 5.1(d), it can be seen that the average

RMSE in the range and the velocity, per target, for the correctly identified targets,

using sensor management, increased after a few iterations and was comparable to the

average RMSE obtained without using sensor management. This is because when

the number of targets changes in a particular tracking interval, there are a very few

particles that correspond to the changed target number. A price theory approach to

sensor management gives higher weights to these particles and computes the state

estimates based on these fewer particles. As a result, the RMSE in the range and the

velocity estimates increases. When sensor management is not used, the actual target

number is not estimated correctly. As a result, there are several particles, that do

not correspond to the actual target state, that get a higher weight which results in

a lower RMSE in this case. Hence, the RMSE using the price theory approach for

sensor management increases at the intervals where the number of the targets change.

In Fig. 5.2, we plot the performance metrics for the second scenario. For this case,

it can be seen that using sensor management resulted in an accurate estimate of

the number of targets, higher correct identifications, and a lower average RMSE in

range and velocity estimates. As the number of targets remained same throughout
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Figure 5.2: Performance comparison of the two approaches for the second scenario.

the tracking period, there was no sudden increase in RMSE of the range and velocity

estimates unlike the first scenario.

In Figs 5.3 and 5.4, we plot the output of the sensor selection, resource allocation and

data fusion for the two scenarios that we considered. The SM seeks more measure-

ments from the human scout compared to the other sensors. This is expected since

the scout is trained in accurately counting the number of targets and their categories

compared to other sensors. The power allocated to the other sensors and the weights

assigned to them change with the utility function.
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Figure 5.3: Solutions to the SS, RA, and DF problems for the first scenario.

5.6 Summary

We considered the problems of sensor selection (SS), resource allocation (RA) and

data fusion (DF) that comprise the sensor management in multi-modal networks, and

we developed a framework, based on economic price theory, to jointly solve SS, RA,

and DF. We illustrated this framework using a scenario where the task is to track

an unknown and time-varying number of targets, using the measurements obtained

by three different kinds of sensors: a multistatic radar, an infrared camera and a

human scout. Numerical examples showed that the proposed framework for sensor

management was effective in estimating the number of targets, accurately identifying

the target categories, and producing lower root mean-squared error in the range
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Figure 5.4: Solutions to the SS, RA, and DF problems for the second scenario.

and velocity estimates of the targets when compared to the root mean-squared error

obtained when sensor management was not employed.
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Chapter 6

Concurrent Particle Filtering for

MTT in the Presence of

Association Errors13

In this chapter, we develop a filtering method that addresses the issue of data asso-

ciation ambiguity that arises in multiple-target tracking.

6.1 Introduction

MTT becomes challenging when the measurements at the receiver(s) comprises mea-

surements due to moving targets and those due to clutter, which are generally con-

sidered false alarms. Some times, due to the low target detection probability, some

targets do not produce any measurements during a scan. As a result, before the state

estimation, we need to identify which measurements are target-originated and which

13Based on P. Chavali and A. Nehorai, “Concurrent particle filtering and data association using
game theory for tracking multiple maneuvering targets”, in IEEE Trans. on Signal Processing, vol.
61, pp. 4934-4948, Oct. 2013. c©[2013] IEEE
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measurements are clutter-originated. This problem of assigning a measurement to

each target is called the data association. When the number of targets and clutter

rate increase, the data association becomes exponentially more complex [1].

When the targets themselves are moving according to various kinematic models

(which we will call as modes from now on), in addition to associating measurements

to targets and estimating the target state, we also needs to estimate the mode of

each target at each point in time. With time, the problem of keeping track of target

kinematics also grows exponentially hard [1]. Approximate methods such as the in-

teracting multi-model (IMM) filters [115],where a bank of filters with each filter tuned

to a specific mode, are often used to solve this problem. Monte-Carlo methods for

target mode tracking [116], [115] are also available to overcome the exponential com-

plexity, and it has been shown that the IMM particle filters offer a better performance

compared to the traditional IMM filters [117].

6.1.1 Review of Related Work

All the existing multiple target tracking algorithms that consider the problem data

association can be divided into two main classes [1]. Unique-neighbor data associa-

tion methods that associate each measurement to one of the existing targets (tracks),

and all-neighbors data association methods that use all the measurements for up-

dating the track of each target. Nearest neighbor (NN) [1] is one of the simplest

methods of the data association. In NN, at each time step, a single nearest mea-

surement is associated to each target by assuming that all the other measurements

are generated from clutter. The NN algorithm performs a local optimization in that

it operates target by target. This can lead to several targets being associated with

139



the same measurement, which might lead to poor tracking performance. The global

version of the nearest neighbor (GNN), searches for the best global association, con-

sidering all targets and measurements simultaneously. Multiple Hypothesis testing

(MHT) [118], another unique-neighbor association method, carries forward all the

association hypothesis to the next time step and aggregates them over the time. A

best possible hypothesis for a previous time is evaluated in retrospect. The proba-

bilistic data association (PDA) framework [119] is an all-neighbor data association

method that associates a linear combination of measurements to each target and the

joint probabilistic data assocoation (JPDA) [120] finds the association probabilities

by considering all the targets and the measurements simultaneously. JPDA requires

an exhaustive enumeration of all possible associations at the current time step, which

can lead to exponential complexity. Hence, gating is used to reduce the number of

associations to a feasible level. Probabilistic MHT (PMHT) [121] is another filtering

technique where the association probabilities of each target are assumed to be inde-

pendent, and are evaluated independently, thereby eliminating the need for gating.

Unfortunately, none of the above algorithms cope with nonlinear and non-Gaussian

models.

Recently, there has been a surge of work using the SMC based approaches in multiple-

target tracking. SMC methods belong to the class of unique-neighbor data association

methods, and they can be applied in non-linear and non-Gaussian scenarios. There

are several variations of the SMC methods that are used. In [122], the authors de-

velop a hybrid bootstrap filter in which the resampling step is replaced by a step

that fits a finite mixture distribution to the posterior samples, and the samples are

drawn from the mixture density; in [123], data-association is considered as a missing

data problem, and Gibbs sampling is used in order to obtain samples of the unknown
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association variable; in [124], and [82], Monte Carlo approaches to JPDA filtering are

proposed; in [125], a Rao-blackwellized Monte Carlo data association is proposed for

the case of conditional linear models; and in [82], the authors propose two particle

filter architectures called sequential sampling particle filter (SSPF) and the indepen-

dent partition particle filter (IPPF). In order to draw samples of the target state from

a proposal distribution, all the above methods either employ sequential sampling, in

which samples are drawn for individual targets sequentially, or invoke an independent

target association assumption and draw samples for each target independently (for

example, in IPPF). Although the independence assumption addresses the computa-

tional limitations of the sequential sampling, it has serious performance degradation,

especially in the cases where the probability of detection is low and the clutter rate

is high.

In this chapter, we extend the SSPF and the IPPF developed in [82] to the case of

maneuvering targets. We combine the Monte-Carlo approaches for data association

and multi-mode particle filters to design filters that can track multiple maneuvering

targets in the presence of data association ambiguity. We describe the choice of the

target and the association state proposals and then derive the weight update equa-

tions. We call the resulting filters the IMM-SSPF and the IMM-IPPF, respectively.

Next, we propose a new particle filter, which we refer to as the interacting multi-

model concurrent particle filter (IMM-CPF) to track maneuvering targets. IMM-CPF

combines the advantages of both IMM-SSPF and IMM-IPPF architectures to obtain

better tracking accuracy and lower implementation complexity. The key difference

between the proposed filter and the existing SSPF/IPPF architectures is that we

develop and employ a game-theoretic formulation to solve the data association in a

deterministic fashion. Once the associations are known, each target can be tracked

141



independently and simultaneously (hence the name concurrent). Since our methods

uses a deterministic approach to find the data association, it follows hard-gating. We

emphasize here that our approach is different from the distributed particle filtering

[126], [127], [128], [129] in the sense that the goal of our approach is to track all

the targets simultaneously using the measurements from a sensor(s), whereas in a

distributed particle filtering the goal is to track a target(s) using measurements from

several interacting sensors.

To solve the association ambiguity, we formulate the problem of data association

as a game between multiple trackers. We specify the strategy set and the utility

functions of each tracker. We then use a regret-based learning algorithm called regret

matching to find the equilibrium this game in a distributed manner. The distributed

implementation enables all the trackers to simultaneously assign a measurement to

an existing target track, without making an assumption of independent association.

6.2 System Model

In this section, we formulate the problem of multiple maneuvering target tracking

in the presence of data association ambiguity. We first describe the state model

for maneuvering targets, and then describe the measurement model that considers

association ambiguities.
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6.2.1 State-Space Model

We will provide a brief description of the state-space model for maneuvering targets in

this section. We assume that the number of targets is known, which is denoted by K.

For the kth target, we denote the target state at time t as θk,t = [xk,t, yk,t, ẋk,t, ẏk,t]
T ,

where xk,t, yk,t are the x-position and the y-position at time t, and ẋk,t, ẏk,t are the

x-velocity and y-velocity, respectively.

Unlike the state models used in other chapter, we assume that the target kinemat-

ics follow multiple modes in this chapter. In this model, each target can switch the

kinematic modes between the M possible modes (e.g. stopped, moving with constant

velocity, accelerating, or co-ordinated turn). The switch is assumed to happen instan-

taneously. Let M = {1, 2, . . . ,M} denote the set of all possible modes of the target

and αk,t ∈ M denote the mode of the kth target at time t. The temporal evolution

of the kth target state is then given by the state transition equation

θk,t = g(θk,t−1, αk,t, vk,t−1), k = 1, . . .K, t ∈ N, (6.1)

where vk,t is the process noise modeled as white Gaussian with the covariance matrix

Σv,k. Note that in general, the process noise can be mode-dependent. For simplic-

ity, we assume that the process noise does not depend on the mode. Further, we

assume that the state transition equations corresponding to individual targets are

independent of each other.

For each target, we model the mode transition using a stationary Markov chain, where

the transition probabilities are given as

Pr(αk,t = m | αk,t−1 = n) = pnm, (6.2)
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with P = [pnm]. Note that we assumed the mode transition probabilities to be same

for all the targets, for simplicity. The mode transition probabilities are known a

priori. At a given time, we use πk,t = [π1
k,t, . . . , π

M
k,t]

T to represent the probabilities

with which the kth target follows each of the M modes, i.e., πm
k,t = Pr(αk,t = m). The

initial probability vectors πk,0 are assumed to be known for all the targets.

6.2.2 Measurement Model

We assume that the measurements are collected by a single sensor located at the

origin of the coordinate system. At time t, the sensor receives a measurement vector

yt = {y1, . . . ,yNt
}, where Nt is the number of measurements collected at time t.

Note that the number of measurements varies with time. The measurement vector

yt comprises two parts: the detection measurements from the targets and the false

alarms from the clutter. Let Nd
t be the number of detections and N c

t be the number

of false alarms. As we do not know the origin of each measurement, an additional

variable, called the association variable, is introduced to describe the associations

between the targets and the measurements. For each target, we define the association

variable λk,t as:

λk,t =







n if the kth target generates nth measurement

0 if the kth target is not detected.

(6.3)

Note that in our definition of the association variable, we associate each target to a

measurement. This definition is different from the commonly used definition, which

associates each measurement to a target. However the two approaches are equivalent

[82]. From the definition of the association variable, it can be seen that the association
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variable for two different targets should be different, since no two targets can be

associated to same measurement. We use feasibility of the association vector as a

means to characterize this property.

Definition 2. An association vector λ is called a feasible association vector if for

k1 6= k2, either λk1 6= λk2 or λk1 = λk2 = 0.

If the nth measurement is obtained from the kth target, i.e., λk,t = n, we model the

measurement as

yn,t = f(xk,t) +wn,t, (6.4)

where wn,t is the additive measurement noise, that is assumed to be white Gaussian

with the covariance matrix Σw. Further, for n1 6= n2, the stochastic noise processes

wn1,t and wn2,t are assumed to be independent of each other. Therefore we have,

p(yn,t | λk,t = n, θk,t) = N
(

yn,t; f(θk,t),Σn

)

. (6.5)

We model the number of clutter measurements as a Poisson random variable, with

parameter γV , where V is the volume of the observation area, and the number of

detection measurements as a Binomial random variable. We have

Pr(N c
t = n1) =

(γV )le−γV

l!
, and, (6.6)

Pr(Nd
t = n2) =

(

K

n2

)

P n2

d (1− Pd)
K−n2, (6.7)
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where Pd is the probability of detection for a single target. The clutter measurements

are uniformly distributed over the measurement area, and their likelihood is given by

p(yn,t | n /∈ λt) =
1

V
. (6.8)

In most practical applications, the association variables are not known, and they need

to be estimated along with other unknowns. In order to solve the data association,

some assumptions are commonly made [1], [123]:

A1 Each measurement is either a false alarm or is originated from at most one

target.

A2 Each target generates at most one measurement at one time. This assumption

implies that λk,t, k = 1, 2, · · ·K are dependent random variables.

Some times assumption A2 is replaced by the assumption A3 [130], [131], [132], which

is also called as the PMHT assumption, following the name of the filtering technique

that employs this assumption.

A3 Each target can generate zero or several measurements at one time. This as-

sumption implies that λk,t, k = 1, 2, · · ·K are independent random variables.

6.3 Data Association using Monte-Carlo Methods

In this section, we describe a solution to MTT using a particle filter. We derive

the expressions for the time update and the measurement update in the presence of

data association ambiguity for the maneuvering targets. After augmenting the target
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state θt with the unknown associations λt, and the unknown mode αt, the time and

measurement update equations can be written as

p(θt,λt,αt | y1:t−1) = p(λt)× p(αt | y1:t−1)

×
∫

p(θt | θt−1,αt)
∑

λt−1
αt−1

p(θt−1,λt−1,αt−1 | y1:t−1)dθt−1, (6.9)

p(θt,λt,αt|y1:t) =
1

z
p(yt | θt,λt)p(θt,λt,αt | y1:t−1). (6.10)

In the above p(λt) is the association prior given as

p(λt) = Pr(N c
t ) Pr(N

d
t )p(λt | Nd

t , N
c
t ),

= Pr(N c
t ) Pr(N

d
t )

K∏

k=1

p(λk,t | λ1:k−1,t), (6.11)

where

p(λk,t = n | λ1:k−1,t) =







1− Pd if n = 0

0 if n > 0 and n ∈ {λ1,t, . . . , λk−1,t}

Pd

Nu
k,t

otherwise,

(6.12)

and Nu
k,t = Nt− |{l : λl,t 6= 0, l = 1, . . . , k − 1}| is the number of unassigned measure-

ments.

A standard particle filter (SPF) computes a discrete weighted approximation to the

true posterior distribution p(θt,λt,αt | y1:t) using a set of particles

p(θt,λt,αt | y1:t) ≈
Ns∑

i=1

w
(i)
t δ(x

(i)
t ,λ

(i)
t ,α

(i)
t ), (6.13)
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where
{

θ
(i)
t ,λ

(i)
t ,α

(i)
t

}Ns

i=1
are the samples that characterize the probability distribu-

tion p(θ,λt,αt | y1:t), and
{

w
(i)
t

}Ns

i=1
are the associated weights. The weight update

equation is obtained as [82], [133]

w̃
(i)
t ∝ w

(i)
t−1

p(yt | θ(i)
t ,λ

(i)
t )p(λ

(i)
t )p(α

(i)
t | y1:t−1)p(x

(i)
t | θ(i)

t−1,α
(i)
t )

q(θ
(i)
t ,λ

(i)
t ,α

(i)
t | θ(i)

t−1,α
(i)
t−1,y1:t)

, (6.14)

with the normalized weights given as

w
(i)
t =

w̃
(i)
t

∑Ns

i=1 w̃
(i)
t

. (6.15)

The SSPF and the IPPF proposed in [82] combat the curse-of-dimensionality problem

by appropriately partitioning the state space. After partitioning, samples of each

substate are obtained independently from the corresponding proposal distribution

which results in an improved performance. In the following subsections, we extend

the SSPF and IPPF architectures to the case of maneuvering targets.

6.3.1 Interacting Multi-Model Sequential Sampling Particle

Filtering

The idea of an IMM-SSPF is to sample and update the weight for individual targets

in a sequential fashion. The proposal distribution q(θt,λt,αt | θt−1,αt−1,y1:t) in the

weight update equation given by Eq. (6.14) can be factorized over the individual

targets as

q(θt,λt,αt | θt−1,αt−1,y1:t) =
K∏

k=1

q(λk,t | λ1:k−1,t,θk,t,y1:t)

q(αk,t | αk−1,t,y1:t)q(θk,t, | θk,t−1, αk,t,y1:t), (6.16)

148



where q(θk,t, | θk,t−1, αk,t,y1:t) is the state proposal, q(αk,t | αk−1,t,y1:t) is the kine-

matic mode proposal, and q(λk,t | λ1:k−1,t, θk,t,y1:t) is the association proposal of the

kth target, respectively.

State Proposal

The optimal choice for the state proposal distribution q(θk,t, | θk,t−1, αk,t,y1:t) of the

kth target that minimizes the variance of the associated weights is of the form p(θk,t |

θk,t−1, αk,t,y1:t) [18], [20]. However sampling from the optimal proposal distribution

is not feasible in practice. Therefore, we choose the proposal to be:

q(θk,t, | θk,t−1, αk,t,y1:t) = p(θk,t, | θk,t−1,αk,t). (6.17)

Kinematic Mode Proposal

We choose the kinematic mode proposal distribution to be q(αk,t | αk−1,t,y1:t) =

p(αk,t | y1:t−1). Define πm
k,t|t−1 = Pr(αk,t = m | y1:t−1) (since αk,t is a discrete random

variable, we use Pr(.) to denote its probability distribution from now on.). We can

evaluate πm
k,t|t−1 as

πm
k,t|t−1 = Pr(αk,t = m | y1:t−1)

=

M∑

n=1

Pr(αk,t = m | αk,t−1 = n) Pr(αk,t−1 = n | y1:t−1)

=

M∑

n=1

pnmπ
n
k,t−1|t−1. (6.18)
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The update for πm
k,t|t is evaluated as

πm
k,t|t = Pr(αk,t = m | y1:t)

=
p(yt | αk,t = m,y1:t−1)p(αk,t = m | y1:t−1)

p(yt | y1:t−1)

∝ p(yt | αk,t = m,y1:t−1)π
m
k,t|t−1, (6.19)

where

p(yt | αk,t = m,y1:t−1) =

∫

θk,t

∑

λk,t

p(yt | θk,t, λk,t, αk,t = m,y1:t−1)p(θk,t, λk,t | αt = m,y1:t−1)dθk,t

≈
∑

i:α
(i)
k,t

=m

w
(i)
t−1p

(

yt | θ(i)
k,t, λ

(i)
k,t

)

. (6.20)

In the above, the samples
{

θ
(i)
k,t

}Ns

i=1
are samples drawn from the distribution p(θk,t |

θk,t−1, αk,t) and
{

λ
(i)
k,t

}Ns

i=1
are samples drawn sequentially from the proposal distribu-

tion q(λk,t | λ1:k−1,t, θk,t,y1:t) described below.

Association Proposal

Here, we describe sampling from the association proposal distribution q(λk,t | λ1:k−1,t, θk,t,y1:t)

in Eq. (6.16). Sampling the association variables λk,t during filtering, and using these

samples to update the weights is called soft-gating procedure [134]. We choose the

proposal distribution q(λk,t = n | λ1:k−1,t,xk,t,yt) to be of the same form given in [82]

q(λk,t = n | λ1:k−1,t, θk,t,yt) =







qk,0V
−1

qk,0V −1+
∑Nt

n=1 qk,np(yn,t|θk,t)
n = 0,

qk,np(yn,t|θk,t)

qk,0V −1+
∑Nt

n=1 qk,np(yn,t|θk,t)
n ∈ {1, 2, . . . , Nt},

(6.21)
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where qk,n = p(λk = n | λ1:k−1) is the association prior defined in Eq. (6.12) and the

likelihood term p(yn,t | θk,t) is defined below in Eq. (6.23).

The likelihood distribution p(yt | θt,λt) in Eq. (6.14) is computed as

p(yt | θt,λt) = V −Nc
t

K∏

k=1
λk,t∈{1,...,Nt}

p(yλk,t,t
| θk,t), (6.22)

where

p
(

yt | θk,t, λk,t

)

= p(yλk,t,t
| θk,t) =







1
V

if λk,t = 0,

N
(

yλk,t
; h(θk,t),Σw

)

else.

(6.23)

Substituting the expressions for the proposal distribution, the likelihood distribution

and the prior distribution in the weight update equation given by Eq. (6.14), we get

w
(i)
t ∝ w

(i)
t−1

[

p(N
c,(i)
t )p(N

d,(i)
t )V −N

c,(i)
t

]

w
(i)
K,t,

Ns∑

i=1

w
(i)
t = 1, (6.24)

where

w
(i)
k,t = w

(i)
k−1,t × p(yλk,t,t

| θ(i)
k,t)×

p(λ
(i)
k,t | λ

(i)
1:k−1,t)

q(λ
(i)
k,t | λ

(i)
1:k−1,t,θ

(i)
k,t,yt)

×
p(α

(i)
k,t | y1:t−1)

q(α
(i)
k,t | y1:t−1)

×
p(θ

(i)
k,t | θ

(i)
k,t−1, α

(i)
k,t)

q(θ
(i)
k,t | θ

(i)
k,t−1, α

(i)
k,t,y1:t)

, (6.25)

and N
c,(i)
t , N

d,(i)
t are explicitly given by the association vector λ

(i)
t . The representation

of the weight update in Eq. (6.24) enables a sampling procedure where the target

state, kinematic mode state and the association state are constructed in a sequential

fashion for each target. Such a sequential construction enables a resampling steps for
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the individual targets when the variance of the weights associated with the samples

of the individual targets, i.e., w
(i)
k,t becomes high. However, this kind of sampling is

sensitive to the order in which the individual targets are sampled. In order to over-

come this dependence on the sampling order, the authors in [82] suggest repeating

this procedure a number of times for different orderings of the targets, and then ob-

taining the final Monte-Carlo representation by combining the samples obtained from

the individual runs. The overall algorithm for the IMM-SSPF is given in Algorithm

5.

Algorithm 5 IMM-SSPF Algorithm for MTT with Association Ambiguities.

1: Initialize set of particles {θk,0}Ns
i=1, the weights w

(i)
k,0 = 1/Ns and the target mode

probabilities πk,1|0 for k = 1, . . . , K.
2: for t = 1 : T do
3: for k = 1 : K do
4: Draw samples {α(i)

k,t}Ns
i=1 from the kinematic mode proposal given by Eq.

(6.18).

5: Draw samples {θ(i)
k,t}Ns

i=1 from the state proposal given by Eq. (6.17).

6: Draw samples {λ(i)
k,t}Ns

i=1 from the association proposal given by Eq. (6.21).

7: Update the weights {w(i)
k,t}i=1Ns following Eq. (6.25) and normalize the

weights such that
∑Ns

i=1w
(i)
k,t = 1.

8: Update the mode probabilities using Eq. (6.19), and Eq. (6.20).

9: Depending on the weights w
(i)
k,t, resample the set {θ(i)

k,t}Ns
i=1 to obtain a new

particle set.
10: end for
11: Compute the overall weights using Eq. (6.24) and normalize

∑Ns

i=1w
(i)
t = 1.

12: Obtain the estimates using θ̂t =
∑Ns

i=1w
(i)
t θ

(i)
t and resample if necessary.

13: end for

152



6.3.2 Interacting Multi-Model Independent Partition Parti-

cle Filtering

In an IMM-IPPF, the assumption A2 is replaced by A3, i.e., the target associations are

assumed to be independent of each other. The independence assumption is achieved

by choosing the prior to be

p(λk,t = n | λ1:k−1,t) = p(λk,t = n) ∝







1− Pd n = 0,

Pd

K
else.

(6.26)

As a result of this choice, the proposal distribution corresponding to individual target

associations will become independent of each other, and hence an efficient target-wise

sampling and weight updating procedure can be used. The weights for the kth target

are updated using

w
(i)
k,t ∝ p(yλk,t,t

| θ(i)
k,t)×

p(λ
(i)
k,t)

q(λ
(i)
k,t | θ

(i)
k,t,yt)

×
p(α

(i)
k,t | y1:t−1)

q(α
(i)
k,t | y1:t−1)

×
p(θ

(i)
k,t | θ

(i)
k,t−1, α

(i)
k,t)

q(θ
(i)
k,t | θ

(i)
k,t−1,α

(i)
k,t,y1:t)

,

(6.27)

where the association proposal q(λk,t | θk,t,yt) is obtained following Eq. (6.21) and

is given as

q(λk,t | θk,t,yt)







qk,0V
−1

qk,0V −1+
∑Nt

n=1 qk,np(yn,t|θk,t)
n = 0,

qk,np(yn,t|θk,t)

qk,0V −1+
∑Nt

n=1 qk,np(yn,t|θk,t)
n ∈ {1, 2, . . . , Nt},

(6.28)
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where qk,n = p(λk = n) is the association prior defined in Eq. (6.26). The overall

weight update equations are given as

w
(i)
t ∝ w

(i)
t−1

[

p(N
c,(i)
t )p(N

d,(i)
t )V −N

c,(i)
t

] K∏

k=1

w
(i)
k,t,

Ns∑

i=1

w
(i)
t = 1. (6.29)

We call this filtering the IMM-IPPF. Since the association variable of each target is

obtained independent of each other, the inner loop in IMM-IPPF can be implemented

in a parallel fashion, and this implementation leads to a lower computational time.

However, the independence assumption A3 used in IMM-IPPF is not realistic when

the probability of detection is low and the clutter density is high. Hence, the filter

performance degrades significantly in such scenarios. The Algorithm is summarized

6.

6.4 Game theory Preliminaries

Game theory [135], [136] is a popular tool for distributed control in multi-agent sys-

tems. Using game theory for distributed control requires modeling the interactions

between the multiple agents. The central component of this modeling is identifying

the agents themselves, identifying the strategy space for the agents, and assigning a

utility function to each agent. The goal is to design utility functions such that the

resulting game possess desirable properties.
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Algorithm 6 IMM-IPPF Algorithm for MTT with Association Ambiguities.

1: Initialize set of particles {θk,0}Ns
i=1, the weights w

(i)
k,0 = 1/Ns and the target mode

probabilities πk,1|0 for k = 1, . . . , K.
2: for t = 1 : T do
3: parfor k = 1 : K do
4: Draw samples {α(i)

k,t}Ns
i=1 from the kinematic mode proposal given by Eq.

(6.18).

5: Draw samples {θ(i)
k,t}Ns

i=1 from the state proposal given by Eq. (6.17).

6: Draw samples {λ(i)
k,t}Ns

i=1 from the association proposal given by Eq. (6.28).

7: Update the weights {w(i)
k,t}i=1Ns following Eq. (6.27) and normalize the

weights such that
∑Ns

i=1w
(i)
k,t = 1.

8: Update the mode probabilities using Eq. (6.19), and Eq. (6.20).

9: Resample the set {θ(i)
k,t}Ns

i=1 according to w
(i)
k,t, to obtain a new particle set,

and reinitialize the weights as w
(i)
k,t = 1/N, ∀i.

10: end for
11: Compute the overall weights using

w
(i)
t ∝ w

(i)
t−1

[

p(N
c,(i)
t )p(N

d,(i)
t )V −N

c,(i)
t

]

and normalize
∑Ns

i=1w
(i)
t = 1.

12: Obtain the estimates using θ̂t =
∑Ns

i=1w
(i)
t θ

(i)
t and resample if necessary.

13: end for
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6.4.1 Normal Form Game

A normal (or a strategic) form game Λ consists of a set Ω = {1, 2, . . . , N} of N

players, where each player n ∈ Ω has a strategy set Sn and a utility function un :

S → R, with S = S1 × S2 × · · · SN being the set of strategy profiles. For a strategy

s = (s1, . . . , sN) ∈ S, we write s−n to denote the profile of all player strategies other

than the player n, i.e.,

s−n = (s1, . . . , sn−1, sn+1, . . . , sN). (6.30)

With this notation, we sometimes represent the utility un(s) as un(sn, s−n).

6.4.2 Nash Equilibrium

Nash Equilibrium (NE) is a well-known equilibrium concept that emerges in nonco-

operative games. A strategy profile s∗ = (s∗1, . . . , s
∗
N) is called a pure strategy Nash

equilibrium iff

un(s
∗
n, s

∗
−n) ≥ un(sn, s

∗
−n), for any sn ∈ Sn and ∀n ∈ Ω. (6.31)

Computing a NE, given a normal form game is a fundamental problem in game theory.

The problem is combinatorial, and it belongs to a class of complex algorithms called

PPAD [137] 14. It should also be noted that the NE does not always lead to the best

performance in a distributed, multiplayer game when the players are coordinating.

Correlated Equilibrium (CE) is a generalization of NE that considers the ability of

14PPAD stands for “polynomial party argument”; see [138] for a formal definition and examples of
other PPAD problems. It is believed that PPAD-complete problems are not solvable in polynomial
time, but are simpler than NP-complete problems, although this remains an open problem [137].
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Stop Go
Stop (4,4) (1,5)
Go (5,1) (0,0)

Table 6.1: Utilites of the players for the traffic signal game

players to coordinate actions. Hence, CE leads to a higher degree of cooperation and

a better solution compared to the non-cooperative NE.

6.4.3 Correlated Equilibrium

Consider a simple traffic game with two players, where each player has two strategies:

’stop’ or ’go’. The utilites obtained by these players are tabulated as shown in Table

6.1, where the row corresponds to the strategy of the first player and the column

corresponds to the strategy of the second player.

It can be seen that this game has two pure strategy Nash equilibria given by (Stop,Go)

and (Go,Stop), and one mixed strategy Nash equilibrium where each player chooses

one of the strategies with a probability 1/2. The utility of each player by playing

the mixed strategy equilibrium can be shown to be 2.5. Now, suppose that there is

a traffic signal installed that tells one of the players to stop and other player to go.

Such a fair random signal recommending actions to each player will result in a new

equilibrium that eliminates the lower payoff outcomes. This kind of an equilibrium,

where a trusted source provides a ‘private’ recommendation to each player is called

as a correlated equilibrium (CE) [139]. In a CE, there is no incentive for either

player to deviate from the recommendation given by the signal. Further, it can be

shown that the utility obtained by the players using the CE will be higher (in this

example, the utility using the CE will be 3) than the utility obtained from the Nash
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equilibrium. For a general game, if the source draws a strategy profile s from a

probability distribution π and announces to each player n separately (and privately)

n’s own component, then the player will have no incentive to choose another strategy,

assuming that the other players also conform to the recommendation provided by the

source. Finally note that the strategies of the players in a CE are not independent of

each other, as they depend on a commonly observed signal.

Mathematically, a probability distribution π is called a correlated equilibrium if for

all players n ∈ Ω and all strategies i, j ∈ Sn , we have

∑

s∈S:sn=i

π(s)
[

un(j, s−n)− un(s)
]

≤ 0. (6.32)

It can be seen that a CE is a generalization of the Nash Equilibrium. Every Nash

Equilibrium is a CE. In fact, Nash equilibria correspond to the special case where π

is a product measure, i.e., the players select the actions independently. In this case,

the recommendations provided are (stochastically) independent across the players.

The CE has several important advantages. The set of correlated equilibria is nonempty,

closed and convex [139] They are simple to understand, guaranteed to exist, and com-

putationally feasible (CE can be found in polynomial time for any number of players

and strategies by linear programming [140]).
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6.5 Concurrent Data Association via Game The-

ory

In this section, we will solve the data association problem by formulating it as a game.

We will find the equilibrium of the game using regret matching learning algorithm,

which will produce an association vector. Using regret matching, each target can be

associated to the measurement simultaneously, thereby enabling a parallel implemen-

tation. Hence, we call our approach as concurrent. We will first describe the game,

and then talk about the equilibrium.

6.5.1 Data Association Game

Consider a game with a set Ω of K trackers as the players. Each player wants to

track a particular target, which is assumed to be known to the player and remains

unchanged throughout the duration. The strategy set Sk = {0, 1, 2, . . . , Nt} of each

player corresponds to the set of measurements that are known to all of the players,

and the strategy sk ∈ Sk allows the player to choose one measurement from the

set of all measurements or 0 in case the corresponding target does not produce any

measurement. For example, sk = 1, implies that the kth player uses measurement y1

to update the weights corresponding to the kth target. For each player, we define a

utility function uk(sk, s−k) : S → R, with S = S1 × · · · × SK in the next subsection.

We use U to denote the set of utility functions of all the players, i.e., U = {uk}Kk=1.

The game Γ
(

Ω,S,U
)

defined by the set of players Ω, the strategy set S, and the

utility functions U is called the data association game.
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6.5.2 Utility Functions

For the kth player, we define the utility function as follows:

uk (sk, s−k) =







dk(sk) + µ1gk(sk, s−k) sk 6= 0,

µ2 sk = 0,

(6.33)

where

dk(sk) = − 1

K − 1

[(

ysk
− f(θ̃k)

)T

Σ−1
w

(

ysk
− f(θ̃k)

)

− dmax

]

(6.34)

is the scaled Mahalonobis distance between the true measurement ysk
and the pre-

dicted measurement f(θ̃k), and the function gk(sk, s−k) is defined as

gk(sk, s−k) =
1

K − 1

K∑

l=1
l 6=k

‖sk − sl‖`0. (6.35)

In Eq. (6.33) above, µ1 > 0, µ2 > 0 are fixed constants, and dmax denotes half

the maximum Mahalonobis distance between the actual measurement and the pre-

dicted measurement. Note that the scaled Mahalonobis distance dk(sk) is bounded

as −dmax ≤ (K − 1)dk(sk) ≤ dmax, ∀sk, and gk(sk, s−k) ≤ 1, ∀s ∈ S.

The function in Eq. (36) models the utility that the kth target derives by choosing

a measurement sk from the set of all the available measurements, as function of

the measurement sk itself and the measurements chosen by other targets, which we

denoted using s−k. The utility function when sk 6= 0, i.e., when the kth target produces
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a measurement, has two terms:

uk (sk, s−k) = dk(sk)
︸ ︷︷ ︸

first term

+µ1gk(sk, s−k)
︸ ︷︷ ︸

second term

(6.36)

The first term corresponds to the negative of (scaled) Mahalonobis distance between

the true measurement and the predicted measurement. It is easy to observe that this

term does not depend on other targets’ measurement choice. The larger this term,

the higher the probability that the kth target actually produces the measurement

ysk
. The second term quantifies the feasibility of the measurement that a particular

target chooses. If none of the other targets choose the measurement ysk
, then the

second term takes its maximum value (which is unity for our case). If one of the

other targets chooses the same measurement ysk
, then the value of the second term

decreases. Hence, the overall utility decreases as well. Thus, for the utility to be high,

each target chooses a measurement that (i) maximizes the negative of the distance (or

equivalently minimize the distance) between the true measurement and the predicted

measurement; and (ii) none of the other targets choose.

6.5.3 Correlated Equilibrium using Regret Matching

In this section, we will describe how a correlated equilibrium of the data association

game can be reached using a learning mechanism. First, the existence of CE for the

data association game is guaranteed using the following Lemma.

Lemma 1. For the data association game Γ
(

Ω,S,U
)

, a CE always exists.
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Proof. Theorem 1 of [141] proves that every finite game has a non-empty set of

correlated equilibria. It is obvious that Γ
(

Ω,S,U
)

is a finite game. Hence, Theorem

1 applies directly, and a CE exists.

We use an iterative learning algorithm called the regret matching [142] to find the

CE. Let sk(j) denote the strategy of the kth player in the jth iteration. Note that

sk(j) ∈ {0, 1, 2, . . . , Nt}, where Nt is the number of strategies. Each player computes

the average regret for choosing the nth strategy for n ∈ {0, 1, 2, . . . , Nt} in the jth

iteration

rn(j) = max{Rn(j), 0} (6.37)

Rn
k(j) =

1

j − 1

j−1
∑

l=1

[

uk

(
n, s−k(l)

)
− uk

(
s(l)
)]

. (6.38)

Lemma 2. The kth player can recursively compute the nth component of Rk as

Rn
k (j) =

(
j − 2

j − 1

)

Rn
k(j − 1) +

1

j − 1

[

uk

(

n, s−k(j − 1)

)

− uk

(

s(j − 1)

)]

. (6.39)

Proof. Consider

Rn
k (j) =

1

j − 1

j−1
∑

l=1

[

uk

(

n, s−k(l)

)

− uk

(

s(l)

)]

=
1

j − 1

j−2
∑

l=1

[

uk

(

n, s−k(l)

)

− uk

(

s(l)

)]

+
1

j − 1

[

uk

(

n, s−k(j − 1)

)

− uk

(

s(j − 1)

)]

=

(
j − 2

j − 1

)

Rn
k (j − 1) +

1

j − 1

[

uk

(

n, s−k(j − 1)

)

− uk

(

s(j − 1)

)]

. (6.40)
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The expression rnk (j) has an interpretation as the measure of the average regret at

time j for not having played the strategy n up to time j. Let pnk denote the probability

that the kth player chooses nth strategy. In regret matching, each player chooses a

strategy according to the distribution pk(j) which is proportional to the regret vector

of the player. Let s(j − 1) = (l, s−k(j − 1)). Then ∀ k

pnk(j) =







1
µ
rnk (j) if l 6= n

1−∑n∈{0,1,...,Nt}
n 6=l

pnk(j) l = n.

(6.41)

The constant µ > 0 is fixed throughout the procedure and is generally chosen to be

µ > 2max(dmax + µ1, µ2)(Nt + 1) [142]. This choice of µ guarantees that there is

always a positive probability of playing same strategy as in the previous step. We

give below two results from [142] (see [142] for proofs) that characterize the dynamics

of regret-based learning.

Lemma 3. If every player k plays according to the adaptive distributions given by

Eq. (6.41), then the empirical distributions of play converge almost surely as t → ∞

to the set of correlated equilibrium.

Lemma 4. Let s(j) =
(
l, s−k(j)

)
, j ∈ N be a sequence of plays of the kth player and

let ε ≥ 0. Then lim supt→∞ rnk (j) ≤ ε for every k ∈ Ω and n ∈ {0, 1, . . . , Nt}, n 6= l if

and only if the empirical distributions πj(s) defined as πj(s) =
1
j
|{τ ≤ j : s(τ) = s}|

converge to set of correlated equilibria.

It can be seen that in regret matching the correlation in the plays of different players

arises from the commonly observed history. Thus, the history serves as a signal in

giving the private recommendation to each player. Further, since the update for Rk
n(j)

requires the associations of other targets at (j − 1)th iteration, only the association
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vector corresponding to (j − 1)th iteration, i.e., s(j − 1) has to be communicated to

each of the trackers.

6.5.4 Equilibrium Characterization of Data Association Game

All the results we stated in the above subsection hold for any finite game. In this

subsection, we will characterize the equilibrium points that are obtained via regret

based learning for a data association game through a series of Lemmas. Following

Lemma 4, observe that the empirical distributions p(j) converge to pure equilibrium if

it exists, or they must be infinitely often outside the set of correlated equilibria, since

after correlated equilibrium is reached the play doesn’t change as the regrets converge

to zero (see also [142]). We are interested in the case when the empirical distributions

pk(j) converge to pure equilibrium, ∀ k. We show using numerical simulations that

this will be the case for data association games.

We now characterize the feasibility of the equilibrium obtained using regret matching

in data association games. We provide sufficient conditions for the equilibrium to be

a feasible association vector.

Lemma 5. If s∗ is a pure strategy equilibrium of the data association game Γ
(

Ω,S,U
)

and µ1 > 2dmax, then s∗ is a feasible association vector.

Proof. Since s∗ is a pure correlated equilibrium, it is necessarily a Nash equilibrium.

We prove the lemma using contradiction. Suppose that the equilibrium s∗ is not

feasible, i.e, there exists at least one pair l, k, such that l 6= k, s∗k = s∗l and s∗k, s
∗
l 6= 0.

We will construct a strategy s′ which is feasible in the following manner. First, we

consider the case where Nt > K. Let s∗ = (s∗k, s
∗
−k). Construct s′ = (s′k, s

∗
−k) such
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that s′k 6= s∗l l = 1, 2, . . . , K, i.e., expect for the kth component of the strategy vector,

s′ is same as s∗. We select the kth component of s′ such that it is a feasible vector.

Since Nt > K, we can find at least one such construction15. For the kth player, we

have

uk(s
∗
k, s

∗
−k)− uk(s

′
k, s

∗
−k) = dk(s

∗
k) + µ1gk(s

∗
k, s

∗
−k)− dk(s

′
k)− µ1gk(s

′
k, s

∗
−k)

=
(

dk(s
∗
k)− dk(s

′
k)
)

+
µ1

K − 1

( K∑

l=1
l 6=k

‖s∗k − s∗l ‖`0 −
K∑

l=1
l 6=k

‖s′k − s∗l ‖`0
)

≤ 1

K − 1

[

2dmax + µ1

[

(K − 2)− (K − 1)
]]

=
1

K − 1
[2dmax − µ1]

< 0. (6.42)

The inequality implies that (s∗k, s
∗
−k) is not a NE. If Nt < K, then we construct s′

such that the s′k = 0, s′l = s∗l , l 6= k. Following exactly the same argument as above,

it can be shown that s∗ is not a NE for this case also. Thus, our assumption on the

feasibility of the NE is wrong and s∗ is feasible.

Next, we provide necessary and sufficient conditions in terms of the parameters µ1

and µ2 for the regret matching algorithm to incorrectly associate the measurements.

We consider two types of errors: the false alarms and the missed detections, which

we define below.

Definition 3. A false alarm occurs if for any k, λact
k = 0 and λest

k = m where m > 0.

15In a similar way, we can construct a strategy vector for the cases where there is more than one
location where the strategies are the same, i.e., s∗k = s∗l for more than one l. The proof for this
scenario follows the similar steps as above. However, for this scenario the new vector will not be
feasible anymore. But the proof steps will remain the same.
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Definition 4. A missed detection occurs if for any k, λact
k = m and λest

k = 0 where

m > 0.

In the above, λact
k and λest

k are the actual and the estimated associations for the kth

target respectively.

Lemma 6. Assume that λact
k = 0 for some target k ∈ Ω. Let λest

k be the estimated

association for the kth target. Then the necessary and sufficient condition for λest
k =

m, where m 6= 0 is dk(m) ≥ µ2 − µ1.

Proof. We know that the association vector λest is a pure correlated equilibrium of

the data association game. Therefore λest should necessarily be a NE. Using this fact,

and that λest is feasible, we have a necessary and sufficient condition

uk(n, s−k)− uk(m, s−k) ≤ 0 ∀ n 6= m

⇔ uk(0, s−k)− uk(m, s−k) ≤ 0

⇔ µ2 −
(

dk(m) + µ1gk(m, s−k)
)

≤ 0

⇔ µ2 − dk(m)− µ1 ≤ 0

⇔ dk(m) ≥ µ2 − µ1 (6.43)

It can be seen that regret matching assigns any clutter measurement m satisfying

dk(m) ≥ µ2−µ1 to targets that do not produce measurements, and thereby produces

false alarms.
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Lemma 7. Assume that λact
k = m 6= 0 for a target k ∈ Ω. Let λest

k be the estimated

association for the kth target. Then the necessary and sufficient condition for λest
k = 0,

is dk(m) ≤ µ2 − µ1.

Proof. Since λest
k is a pure correlated equilibrium and a feasible association vector, we

have that the necessary and sufficient condition for λest
k = 0 when λact

k 6= 0 is

uk(0, s−k)− uk(m, s−k) ≥ 0

⇔ µ2 −
(

dk(m) + µ1gk(m, s−k)
)

≥ 0

⇔ µ2 − dk(m)− µ1 ≥ 0

⇔ dk(m) ≤ µ2 − µ1 (6.44)

It can be seen now that when a target measurement m is such that dk(m) ≤ µ2 −µ1,

then it will be wrongly associated to as a missed detection, and hence produces

missed detections. Lemmas 6 and 7 provide a way to choose the parameter µ2 for

the utility functions. If we choose µ2 such that µ2 − µ1 is small, then for any noisy

target originated measurement m from the kth target, the probability Pr[dk(m) ≥

µ2−µ1] will be high. As a result, kth target will be correctly associated to the actual

measurement decreasing the probability of a miss. However, for a clutter originated

measurement l the probability Pr[dk(l) ≥ µ2−µ1] is high if µ2−µ1 is small. Therefore,

every time the kth target does not produce a measurement, it will be associated to

the lth clutter, increasing the probability of false alarm. On the other hand if µ2

is chosen such that µ2 − µ1 is large then, for target originated measurement m,

Pr[dk(m) ≤ µ2 − µ1] is high and hence the probability of a miss increases. But for a
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clutter originated measurement m, Pr[dk(m) ≥ µ2 − µ1] is low and hence probability

of false alarms decreases. In this manner, the choice of the parameters µ2 and µ1

determine the trade off between the probability of false alarms and the probability of

miss.

6.6 Interacting Multi-Model Concurrent Particle

Filtering

In this section, we propose a concurrent filtering (IMM-CPF) method that combines

the advantages of both IMM-SSPF and IMM-IPPF, i.e., we develop a particle filtering

technique that enables a parallel implementation without using the independence

assumption A3. In IMM-CPF we first deterministically find the best association

between the targets and the measurements by formulating the data association as

a game, as discussed in the previous section. We then find the equilibrium of the

game using regret matching algorithm in a concurrent manner. The equilibrium will

produce a feasible association vector, which we use for all the samples of the target

state and the kinematic mode state. Further, once the association is known, the joint

filtering distribution factorizes completely over the individual targets. Each of the

targets is then independent of each other and thus, K particle filters operating in a

parallel fashion are used to obtain the estimates of the individual target states. The

weight update equation corresponding to the kth particle filter is given as

w
(i)
k,t = p(yλk,t,t

| θ(i)
k,t)×

p(α
(i)
k,t | y1:t−1)

q(α
(i)
k,t | y1:t−1)

p(θ
(i)
k,t | θk,t−1, α

(i)
k,t)

q(θ
(i)
k,t | θ

(i)
k,t−1, α

(i)
k,t,y1:t)

. (6.45)
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Since the association vector is same for all the particles, IMM-CPF avoids the com-

putation of the overall weights and the state corresponding to each target can be

found independently. As a result, we can implement tracking filters for all the targets

simultaneously. The overall Algorithm is summarized in 7.

Algorithm 7 IMM-CPF Algorithm for MTT with Association Ambiguities.

1: Initialize set of particles {θk,0}Ns
i=1, the weights w

(i)
k,0 = 1/Ns and the target mode

probabilities πk,1|0 for k = 1, . . . , K.
2: for t = 1 : T do
3: Find the association vector λ using regret matching in a distributed manner.
4: parfor k = 1 : K do
5: Draw samples {α(i)

k,t}Ns
i=1 from the kinematic mode proposal given by Eq.

(6.18).

6: Draw samples {θ(i)
k,t}Ns

i=1 from the state proposal given by Eq. (6.17).

7: Update the weights {w(i)
k,t}i=1Ns following Eq. (6.45) and normalize the

weights such that
∑Ns

i=1w
(i)
k,t = 1.

8: Update the mode probabilities using Eq. (6.19), and Eq. (6.20).

9: Resample the set {θ(i)
k,t}Ns

i=1 according to w
(i)
k,t, to obtain a new particle set.

10: Obtain the estimates using θ̂k,t =
1
Ns

∑Ns

i=1 θ
(i)
k,t.

11: end for
12: end for

6.7 Numerical Results

In this section, we use numerical examples to demonstrate the performance of the

tracking filters. We consider three tracking scenarios with varying complexity and

evaluate the performance of the four tracking filters for these scenarios. We will

describe the simulation setup first and then discuss the results.

We consider surveillance of a region for a period of 30 tracking intervals. The duration

of each tracking interval was 0.1 s (∆t = 0.1s). We assume that there is one sensor
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located at the origin of the coordinated system (0, 0). Each measurement yn,t =

[y1,n,t, y2,n,t, y3,n,t]
T is a 3-dimensional vector with

y1,n,t =
√

ρ2x,k,t + ρ2y,k,t + w1,n,t, (6.46)

y2,n,t = tan−1(
ρy,k,t
ρx,k,t

) + w2,n,t and, (6.47)

y3,n,t =
ρ̇x,k,tρx,k,t + ρ̇y,k,tρy,k,t
√

ρ2x,k,t + ρ2y,k,t

+ w3,n,t (6.48)

if the nth measurement originates from the kth target and θk,t = [ρx,k,t, ρy,k,t, ρ̇x,k,t, ρ̇y,k,t]
T

is the state of the kth target. Equations (6.46), (6.47) and (6.48) together consti-

tute the measurement model given by Eq. (6.4). The covariance matrix Σw =

diag{σ2
w,1, σ

2
w,2, σ

2
w,3} is a diagonal matrix with σ2

w,1 = 100, σ2
w,2 = 1 × 10−4 and

σ2
w,3 = 1 × 10−2. We considered tracking under three scenarios: easy, medium and

hard. For each of these scenarios, we chose the probability of detection Pd and the

clutter density γ/V (see Eq. (6.6)) as

Easy Pd = 1, γ/V = 0.5

Medium Pd = 0.8, γ/V = 3

Hard Pd = 0.6, γ/V = 5

We assume that there are three targets (K = 3) moving in the region of interest, and

each of the these targets to have three kinematic modes (M = 3). For each target,

the state transition equation given by Eq. (6.1) takes the form

θk,t = F αk,t
θk,t−1 + vk,t−1, (6.49)
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where F αk,t
is the state transition matrix corresponding to the mode αk,t. In this

work, we choose the first mode to be a constant velocity model with

F 1 =












1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1












,

and the second and third modes to be co-ordinated turn models with

F 2 =












1 0 sin(π∆t)
∆t

1−cos(π∆t)
∆t

0 1 −(1−cos(π∆t))
∆t

sin(π∆t)
∆t

0 0 cos(π∆t)
∆t

− sin(π∆t)
∆t

0 0 sin(π∆t)
∆t

cos(π∆t)
∆t












and F 3 =












1 0 sin(5π/6∆t)
∆t

1−cos(5π/6∆t)
∆t

0 1 −(1−cos(5π/6∆t))
∆t

sin(5π/6∆t)
∆t

0 0 cos(5π/6∆t)
∆t

sin(5π/6∆t)
∆t

0 0 − sin(5π/6∆t)
∆t

cos(5π/6∆t)
∆t












The process noise, vk,t, is assumed to be Gaussian distributed, with a zero mean and

a covariance matrix given by Eq. (2.12). We chose ε1 = ε2 = ε3 = 5 × 10−1 in this

chapter. The initial positions of the targets are set to be (450, 300), (480, 200) and

(400, 350), respectively, whereas the initial velocities are set to be (0,−10), (5, 0) and

(15, 0) respectively. The second and the third targets make one co-ordinated turn

each during the tracking duration and the first target makes two co-ordinated turns.

For each target the mode transition matrix P is given as

P =









0.9 0.05 0.05

0.05 0.9 0.05

0.05 0.05 0.9









.
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In Fig. (6.1), we plot the actual and the estimated trajectories using the standard

particle filter (SPF) which implements the weight update following Eq. (6.14), the

IMM-SSPF, the IMM-IPPF and the IMM-CPF for the three tracking scenarios. We

used 1000 particles for the simulations and averaged the results over 25 Monte-Carlo

iterations. We represented the error variance in the x− and the y− axes using el-

lipsoids with the axis length equal to the standard deviation. It can be seen that

the estimated trajectories became less accurate as the difficulty of the problem in-

creased. Further, the standard particle filter is consistently outperformed by all the

other algorithms. This is due to the fact that the other algorithms all partition the

state-space and operate over the individual partitions, and the performance of the

filtering improved as the dimension of the state-space decreased. We also observed

that the performance of the IMM-IPPF rapidly degraded as the problem difficulty

increased. This proves that the PMHT assumption (A3) required to obtain the IMM-

IPPF does not hold as the clutter density increases and the probability of detection

decreases. Hence, this assumption has a harmful effect on the data association which

degraded the performance. The IMM-CPF performed consistently well compared to

the relative performance of other algorithms. The performance improvement is due

to the fact that IMM-CPF does not use the PMHT assumption.

In Figs. (6.2), (6.3), (6.4), we plot the cumulative root mean squared-error (CRMSE)

in the state estimates as a function of the tracking index for the easy, medium and

hard scenarios, respectively. The CRMSE was computed as:

CRMSEt =
1

4

4∑

m=1

√
√
√
√ 1

NmcK

K∑

k=1

Nmc∑

i=1

(x̂k,t,i,m − xk,t,m)2, (6.50)
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where x̂k,t,i,m is the estimate of the mth component of the kth target state vector

at time t in the ith Monte-Carlo simulation. It can be seen that the performance

of IPPF degraded rapidly as the problem complexity increased. DPF on the other

hand performed well and its performance was similar to the performance obtained by

SSPF.

In the next set of figures we compare performance of the algorithms as a function

of the number of particles. In Fig. (6.5), we plot total CRMSE (TCRMSE) as a

function of the number of the particles. The TCRMSE was computed as:

TCRMSE =
1

T

T∑

t=1

CRMSEt. (6.51)

It can be seen that the performance of the filters improved as the number of particles

increased. However, this performance improvement was not significant as the problem

became harder.

In order to quantify the performance of data association and maneuver tracking, we

defined two other performance metrics: incorrect to correct association ratio (ICAR)

and the incorrect to correct mode ratio (ICMR) which are defined as follows

ICAR =
1

TNmc

Nmc∑

i=1

T∑

t=1

∑K
k=1 In(λk,t,i 6= λ̂k,t,i)

∑K
k=1 In(λk,t,i = λ̂k,t,i) + ε

(6.52)

ICMR =
1

TNmc

Nmc∑

i=1

T∑

t=1

∑K
k=1 In(αk,t,i 6= α̂k,t,i)

∑K
k=1 In(αk,t,i = α̂k,t,i) + ε

, (6.53)

where In(.) is an indicator function, and ε > 0 is a small constant. In this work,

we choose ε to be 1 × 10−1. It can be seen from the definitions of ICAR and ICMR

that the smaller these values, the better the performance of association and mode
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tracking. We plot ICAR and ICMR as a function of number of the particles for

various algorithms in Figs. (6.6) and (6.7), respectively.

It can be seen that for all the algorithms both ICAR and ICMR increased as the prob-

lem complexity increased. The ICAR of IMM-IPPF increased significantly whereas

this increase was not significant for other algorithms when a larger number of particles

were used. All the algorithms except SPF had a similar ICMR for an easy problem,

but ICMR of IMM-IPPF increased as the problem complexity increased. ICMR of

IMM-CPF was comparable to that of IMM-SPF for a hard problem. It can also be

seen that the decrease in the ICAR and ICMR with the number of particles was not

significant as the problem complexity increased.

In Table 6.2, we tabulate the average time taken (in seconds) for each of the algorithms

for various problem scenarios and number of particles. IMM-SSPF took a longer

time compared to any of the other methods. IMM-IPPF was the fastest when the

number of particles was small, but IMM-CPF became slightly better as the number

of particles increased. The computational time of all the algorithms increased slightly

as the problem complexity increased.

In Fig. (6.8), we plot the empirical receiver operating characteristic (ROC) graphs

obtained by employing IMM-CPF with 1000 particles for a hard problem for various

values of µ2, with µ1 fixed. For this simulation, we choose µ1 = 301, since dmax = 150

for the values of the measurement noise that we used for the experiments. It can

be seen that for a given value of µ2, as the probability of detection increased, the

probability of false alarm also increased. It can also be seen that for a fixed false alarm

probability, the probability of detection increases (or equivalently the probability of
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No of Particles
100 300 500 800 1000

Easy

SPF 0.08 0.25 0.42 0.67 0.85
SSPF 0.25 0.76 1.25 2.02 2.58
DPF 0.07 0.09 0.15 0.26 0.33
IPPF 0.07 0.19 0.32 0.54 0.71

Medium

SPF 0.1 0.45 0.50 0.59 1.00
SSPF 0.33 0.96 1.52 1.57 3.08
DPF 0.12 0.44 0.36 0.69 0.53
IPPF 0.08 0.30 0.41 0.52 0.84

Hard

SPF 0.12 0.36 0.56 0.91 1.09
SSPF 0.36 1.07 1.70 2.76 3.33
DPF 0.24 0.25 0.28 0.61 0.72
IPPF 0.10 0.29 0.46 0.76 0.95

Table 6.2: Average execution time for various algorithms.

miss decreases) with the decrease in the value of µ2. This behavior supports our

discussion following Lemma 7.

In Fig. (6.9), we plot the weights given to each of the strategies by the regret matching

algorithm at a given time, as a function of the iteration number. We used 1000

particles for a hard problem. It can be seen that the weight given to one strategy

goes to one, while the other weights converge to zero. The same behavior is exhibited

by all the targets. We obtained similar results for all the problem scenarios. The

same behavior was seen as the number of particles changed for a given problem

scenario. This simulation supports our observation empirical distributions of the

regret matching always lead to a pure strategy equilibrium in data association games.
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6.8 Summary

In this chapter, we developed Monte Carlo methods for tracking maneuvering targets

in clutter. First, we extended the sequential sampling particle filter (SSPF) and the

independent partition particle filter (IPPF) of [82] to the case of maneuvering targets,

which we call the IMM-SSPF and the IMM-IPPF, respectively. In IMM-SSPF, the

association samples the individual targets are drawn sequentially by factorizing the

importance weights, and in IMM-IPPF, the samples are drawn independent of each

other. The independence assumption leads to a faster implementation for IMM-IPPF,

and provides a good performance when the clutter rate is low and the probability of

detection is high. However, the performance degrades significantly at higher clutter

rate and the probability of detection decreased.

With this motivation, we developed a new particle filtering technique which we call

the interacting multi-model concurrent particle filtering (IMM-CPF) that uses game-

theory to solve the data association. In IMM-CPF, we solve the association problem

by formulating it as a game among the trackers. We defined the strategy spaces and

the utility functions of each player, and we used regret matching to find the equi-

librium of the game. We showed using numerical simulations that regret matching

converges to a pure strategy equilibrium. We derived sufficient conditions for the

resulting equilibrium to be a feasible data association vector, and necessary and suf-

ficient conditions for the equilibrium to result in false alarms and missed detections.

We evaluated the performance of the algorithms by providing a number of simulation

results. We considered synthetic tracking problems of different complexities for the

simulations, and compared the performance of the algorithms. We observed that

all the algorithms showed a superior performance compared to the standard particle
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filtering (SPF). The performance of the IMM-IPPF degraded rapidly as the difficulty

of the problem increased. For this scenario, the IMM-SSPF performed well at a cost of

additional computational complexity. Our proposed algorithm, the IMM-CPF showed

similar performance as IMM-SSPF as the problem complexity increased, but takes

significantly less computational time. Further, the IMM-CPF can be implemented in

a parallel fashion and this implementation provides an added advantage, especially

when the number of targets becomes large. The IMM-CPF also had fewer association

errors compared to IMM-SSPF.
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Figure 6.1: Estimated vs the actual trajectories of the targets obtained using different
algorithms for (a), (d), (g), (j) easy, (b), (e), (h), (k) medium, and (c), (f), (i), (l)
hard problems.
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Figure 6.2: CMRSE in the state estimation of various algorithms for an easy problem.
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Figure 6.3: CMRSE in the state estimation of various algorithms for medium problem.
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Figure 6.4: CMRSE in the state estimation of various algorithms for hard problem.
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Figure 6.5: TCRMSE of various algorithms as a function of number of particles for
(a) easy, (b) medium and (c) hard problems.
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Figure 6.6: ICAR of various algorithms as a function of number of particles for (a)
easy, (b) medium and (c) hard problems.
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Figure 6.7: ICMR of various algorithms as a function of number of particles for (a)
easy, (b) medium and (c) hard problems.
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Figure 6.8: ROC graph for various values of µ2.
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Figure 6.9: Probability distributions over the strategies as a function of the iteration
number for (a) Target 1 (b) Target 2 and (c) Target 3.
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Chapter 7

Conclusions

In this dissertation, we developed computationally efficient tracking algorithms for

multiple-target tracking in three complex scenarios: (i) targets moving in a time-

varying multipath environment; (ii) unknown and time-varying number and types of

targets; (iii) targets with low probability of detection moving in dense clutter. We

will first summarize the contributions of this dissertation and then provide directions

in which this work can be extended.

7.1 Summary of Contributions

We proposed a sparsity-based algorithm for tracking targets moving in a time-varying

multipath environment. The channel state that describes the multipath environment

was assumed to be known. We developed a sparse measurement model for the received

signal, by considering a finite dimensional representation of the system function that

characterizes the multipath environment and then reformulated the problem of MTT

as a block support recovery problem from the sparse measurement model. We ex-

ploited the structure of the dictionary matrix to develop a computationally efficient

182



block support recovery algorithm (and thereby a multiple-target tracking algorithm).

Further, we also derived an upper bound on the overall error probability of wrongly

identifying the support of the sparse signal.

Next, we developed a particle filter for jointly estimating both the target and the

channel states (when the channel state is unknown to the radar). The dimension of

the overall state is high, and hence the standard particle filter requires a large number

of particles making it computationally expensive. We exploited the structure in the

measurement model to develop Multiple Rao-Blackwellized Particle Filter (MRBPF)

to jointly estimate both the target and the channel state. MRBPF is a hybrid filter

that uses one particle filter for each target’s state partition, and uses a Kalman filter

to analytically find an estimate of the channel state. Since MRBPF operates on low

dimensional subspaces, it reduces the complexity involved with high-dimensional state

space. We also computed the posterior Cramér-Rao bound (PCRB) on the estimates

of the target state and the channel state. Using PCRB as a metric, we obtained a

suitable subset of antennas to be used for transmission in each tracking interval, as

well as the power to be transmitted by these antennas.

We then considered the problem of tracking an unknown and time-varying number

and types of targets using a multi-modal sensor network. In a multi-modal sensor

network, different quantities associated with the same state are measured using sen-

sors of different kinds. We first developed a general filtering technique to estimate the

unknown state from the multi-modal measurements for a special class of problems

which can be modeled hierarchically. The proposed filter, the Hierarchical Particle

Filter (HPF), estimates the global posterior density of the unknown state in multiple

stages, by partitioning the state and the measurement spaces into lower dimensional
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subspaces. At each stage, an estimate of one partition is obtained using the measure-

ments from the corresponding partition, and the information from the previous stages.

In this way, the proposed filter combines the information from different sensors. We

then model the problem of MTT using a hierarchical model and demonstrate the pro-

posed filtering for joint initiation, termination and tracking of an unknown number

of targets.

We also proposed a unified framework for multi-modal sensor management that com-

prises sensor selection (SS), resource allocation (RA) and data fusion (DF). Our ap-

proach is inspired by the trading behavior of economic agents in commercial markets.

We model each sensor node (SN) as a seller who wants to sell the data it collects,

the sensor network manager (SM) as a buyer, and the interaction among them as a

double sided market with both consumers and producers. We proposed an iterative

double auction mechanism for computing the equilibrium of such a market. We relate

the equilibrium point to the solutions of SS, RA and DF.

We also proposed a new particle filter, the interacting multi-model concurrent particle

filter (IMM-CPF) to track multiple maneuvering targets in the presence of associa-

tion ambiguities. We treated the data association and state estimation as separate

subproblems and we developed a game-theoretic framework to address the data associ-

ation. We modeled each tracker as a player and the set of measurements as strategies.

We developed utility functions for each player, and then used a regret-based learning

algorithm to find the equilibrium of this game. The game-theoretic approach allowed

us to associate measurements to all the targets simultaneously.
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7.2 Future Directions

There are several directions in which the work presented in this dissertation can

be extended. For sparsity-based tracking, the problem of dictionary design is of

great interest. Such a design will enable the sparsity-based recovery algorithms to

become more robust to the grid mismatch problem. There has been a lot of interest

in designing optimal dictionary matrices, however to the best of our knowledge all

such designs are restricted to the static case, i.e., design based only on the current

measurements. Since the problem of MTT is inherently dynamic, it it natural to think

of a design paradigm that will use all the measurements available and the predicted

value of the state to efficiently design a dictionary matrix for each time.

The problems of analyzing the convergence rate of the double auction mechanism

and the regret matching algorithm proposed in this dissertation is an interesting

mathematical problem and needs further research.

Recently, there has been a growing interest in using graphical model to address in-

ference problems. Graphical models are successfully employed in a lot of communi-

cation and signal processing applications. However, most of these applications use

linear models and hence the message updates can be computed analytically. For the

problem of MTT, since the models are nonlinear we should resort to particle based

approximations. Combining the particle methods with graphical models is a very

interesting direction for future research. Several practical problems can be addressed

within this framework if computationally feasible algorithms that use particle meth-

ods for message passing in dynamic graphical models can be developed.
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We would also like to extend the proposed methods to deal with scenarios where the

measurements at different sensors are correlated. Developing efficient particle filtering

algorithms to exploit this correlation will be an interesting research problem.

Finally, validating the performance of our proposed techniques with real radar data

is an important issue, and needs to be addressed in the future.
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Appendix A

Proof of Theorem 4

The log-likelihood of the measurement vector can be written as

log p(yt+1|ξt+1) = log
∏

p∈πt+1

p(yp,t+1|ξt+1)

=
∑

p∈πt+1

(yp,t+1 − µ
p
t+1)

HΣ−1
w,p(yp,t+1 − µ

p
t+1), (A-1)

where

µ
p
t+1 =

∑

q∈πt+1

∑

k∈{1,··· ,K}

√
γqΦpqkβpqk,

=
∑

q∈πk+1

√
γqµ

pq.

(A-2)
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The Hessian of the log-likelihood with respect to the complex vector, ξt+1, is evaluated

as follows.

−∆
ξt+1

ξt+1
log p(yt+1|ξt+1)

= −∆ξt+1

{

∆ξt+1 log p(yt+1|ξt+1)
}H

= −
∑

p∈πt+1

∆ξt+1

{

∆ξt+1(yp,t+1 − µ
p
t+1)

HΣ−1
w,p(yp,t+1 − µ

p
t+1)

}H

= −
∑

p∈πt+1

∆ξt+1

{(
∂µp

t+1

∂ξt+1

)
∂

∂µp
t+1

(yp,t+1 − µ
p
t+1)

HΣ−1
w,p(yp,t+1 − µ

p
t+1)

}H

= −2
∑
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<
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−1
w,p

(
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p
t+1

)
(
∂µp

t+1

∂ξt+1

)H
}

= −2
∑

p∈πt+1

<
{

Σ−1
w,p

(
yp,t+1 − µ

p
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) ∂

∂ξt+1

(
∂µp

t+1

∂ξt+1

)H

−
(
∂µp

t+1

∂ξt+1

)

Σ−1
w,p

(
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t+1

∂ξt+1
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(A-3)

Therefore we have

Ey|ξ

[

−∆
ξt+1

ξt+1
log p(yt+1|ξt+1)

]

= 2
∑

p∈πt+1

<
{(

∂µp
t+1

∂ξt+1

)

Σ−1
w,p

(
∂µp

t+1

∂ξt+1

)H
}

. (A-4)

Substituting the value of µp
t+1, we get

Ey|ξ

[

−∆
ξt+1

ξt+1
log p(yt+1|ξt+1)

]

= 2
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p,q,r∈πt+1
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Appendix B

Evaluation of Partial Derivatives

The partial derivative
∂µpq

t+1

∂ξt+1
can be computed as follows. First, the vector ξt+1 is

partitioned as

ξt+1 =
[
(θ1

t+1)
T , · · · , (θM

t+1)
T , (<{β11

t+1})T , (={β11
t+1})T , · · · , (<{βPP

t+1})T , (={βPP
t+1})T

]T

(B-1)

Following the definition of the complex vector differentiation [143], we have

∂µpq
t+1

∂ξt+1

=

[

∂µpq
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t+1

, · · · , ∂µ
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2

(

∂µpq
t+1

∂<{βPP
t+1}

− j
∂µpq

t+1

∂={βPP
t+1}

)]

,

(B-2)

where the partial derivatives with respect to the target state and the channel state

vector can be derived as,

• ∂µpq
t+1

∂θk
t+1

=

(

βT
pqk ⊗ ILN

)

∂vec(Φpqk)

∂ϕpqk
t+1

Λpqk

• ϕpqk = [τpqk, νpqk]
T is a vector of the delay-Dopplers corresponding to the kth

target and the qth, pth transmit-receive pair
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• Λpqk = ∂ϕpqk

∂θk
t+1

is a 2× 4 matrix

• ∂µpq
t+1

∂<{βuv
t+1}

=
∂µpq

t+1

∂={βuv
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Here, the matrix Λpqk is given as: Λpqk =
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[24] M. F. Bugallo and P. Djurić, “Complex systems and particle filtering,” in Fourty
Second Asilomar Conf. on Signals, Systems and Computers. Asilomar, CA:
IEEE, Nov. 2008, pp. 1183–1187.

192



[25] J. L. Krolik, J. Farrell, and A. Steinhardt, “Exploiting multipath propagation
for GMTI in urban environments,” in IEEE Conference on Radar. Verona,
Newyork: IEEE, Apr. 24-27, 2006, pp. 65–68.

[26] B. D. Rigling, “Urban RF multipath mitigation,” in IET radar, sonar and
navigation, vol. 2, Dec. 2008, pp. 419–425.

[27] B. Krach and R. Weigel, “Markovian channel modeling for multipath mitigation
in navigation receivers,” in European Conf. Antennas and Propagation, Mar.
2009, pp. 1441–1445.

[28] B. Chakraborty, Y. Li, J. J. Zhang, T. Trueblood, A. Papandreou-Suppappola,
and D. Morrell, “Multipath exploitation with adaptive waveform design for
target tracking in urban terrain,” in International Conference on Acoustics,
Speech, and Signal Processing. Dallas, Texas: IEEE, Mar. 14-19, 2010, pp.
3894–3897.

[29] Y. Jin, J. M. Moura, and N. O’Donoughue, “Time reversal in multiple-input
multiple-output radar,” IEEE Journal of Selected Topics in Signal Processing,
vol. 4, no. 1, pp. 210–225, Feb. 2010.

[30] M. A. Herman and T. Strohmer, “High-resolution radar via compressive sens-
ing,” IEEE Trans. on Signal Processing, vol. 57, no. 6, pp. 2275–2284, Jun.
2009.

[31] S. Sen and A. Nehorai, “Sparsity-based multi-target tracking using OFDM
radar,” IEEE Trans. on Signal Proc., vol. 59, no. 4, pp. 1902–1906, Apr. 2011.

[32] S. Gogineni and A. Nehorai, “Target estimation using sparse modeling for dis-
tributed MIMO radar,” IEEE Trans. on Signal Proc., vol. 59, pp. 5315–5325,
Nov. 2011.

[33] M. R. Bell, “Information theory and radar waveform design,” IEEE Trans. on
Information Theory, vol. 39, no. 5, pp. 1578–1597, Sep. 1993.

[34] P. Z. Peebles, Radar Principles. New York: Wiley, 1998.

[35] P. Bello, “Characterization of randomly time-variant linear channels,” IEEE
Trans. on Communications, vol. 11, no. 4, pp. 360–393, Dec. 1963.

[36] J. G. Proakis, Digital Communications, 4th ed. McGraw-Hill, 2001.

[37] A. Sayeed and B. Aazhang, “Joint multipath-doppler diversity in mobile wireless
communications,” IEEE Trans. on Communications, vol. 47, no. 1, pp. 123–132,
Jan. 1999.

[38] N. Levanon and E. Mozeson, Radar Signals. New York : Wiley, 2004.

193



[39] Y. Wang, X. Li, and Y. Wang, “Novel spread-spectrum radar waveform,” Proc.
of SPIE, Radar Sensor technologies, vol. 3066, pp. 186–193, Jun. 1997.

[40] Z. S. Dobrosavljevic and M. L. Dukic, “A method of spread spectrum
radar polyphase code design by nonlinear programming,” European Trans. on
Telecommunications, vol. 7, no. 3, pp. 239–242, May 1996.

[41] Y. C. Eldar and P. Kuppinger, “Block sparse signals: Uncertainity relations
and efficient recovery,” IEEE Trans. on Signal Processing, vol. 58, no. 6, pp.
3042–3054, Jun. 2010.

[42] B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM J.
on Computing, vol. 24, no. 2, pp. 227–234, 1995.

[43] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pur-
suit,” SIAM J. on Sci. Comp., vol. 20, no. 1, pp. 33–61, 1998.

[44] E. Candés, J. Romberg, and T. Tao, “Stable signal recovery from incomplete
and inaccurate information,” Commun. Pure and Applied Mathematics, vol. 59,
pp. 1207–1233, Aug. 2006.

[45] E. J. Candés and T. Tao, “The Dantzig selector: Statistical estimation when p
is much larger than n,” Annals of Statistics, vol. 35, no. 6, pp. 2313–2351, 2007.

[46] J. A. Tropp, “Greed is good: Algorithmic results for sparse approximation,”
IEEE Trans. on Information Theory, vol. 50, pp. 2231–2242, Oct. 2004.

[47] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Trans. on Information Theory, vol. 53,
pp. 4655–4666, Dec. 2007.

[48] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete
and inaccurate samples,” Appl. and Comp. Harmonic Analysis, vol. 26, pp. 301–
321, May 2009.

[49] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Trans. on
Signal Processing, vol. 56, pp. 2346–2356, Jun. 2008.

[50] D. P. Wipf and B. Rao, “Sparse bayesian learning for basis selection,” IEEE
Trans. on Signal Processing, vol. 52, pp. 2153–2164, Aug. 2004.

[51] G. Tang and A. Nehorai, “Performance analysis for sparse support recovery,”
IEEE Trans. on Information Theory, vol. 56, pp. 1383–1399, Mar. 2010.

[52] H. L. V. Trees, Detection, Estimation and Modulation Theory. New York:
Wiley, 2001, vol. One.

194



[53] J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering,
1st ed. London, U.K: Wiley, 1965.

[54] R. A. Altes, “Target position estimation in radar and sonar, and generalized
ambiguity analysis for maximum likelihood parameter estimation,” Proc. of
IEEE, vol. 67, no. 6, pp. 920–930, Jun. 1979.

[55] L. Xu, J. Li, and P. Stoica, “Target detection and parameter estimation for
MIMO radar systems,” IEEE Trans. on Aerospace and Electronic Sys., vol. 44,
no. 3, pp. 927–939, Jul. 2008.

[56] J. Min, R. Niu, and R. S. Blum, “Bayesian target location and velocity esti-
mation for MIMO radar,” IET Sonar and Navigation, no. 60972152, pp. 1–10,
2010.

[57] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex pro-
gramming,” Stanford University, http://stanford.edu/boyd/cvx, web page and
software, Jun. 2009.

[58] S. Joshi and S. Boyd, “Sensor selection via convex optimization,” IEEE Trans.
on Signal Processing, vol. 57, no. 2, pp. 451–462, Feb. 2009.

[59] H. Godrich, A. Petropulu, and H. V. Poor, “Resource allocation schemes for
target localization in distributed multiple radar architectures,” in European
Signal Processing Conf. Aalborg, Denmark: IEEE, Aug., 23-27 2010.

[60] ——, “A combinatorial optimization framework for subset selection in dis-
tributed multiple-radar architectures,” in Intl. Conf. on Acoustics, Speech and
Signal Processing. Prague, Czech Republic: IEEE, May 2011.

[61] R. Tharmarasa, T. Kirubarajan, M. L. Hernandez, and A. Sinha, “PCRLB-
based multisensor array management for multitarget tracking,” IEEE Trans.
on Aerospace and Electronic Systems, vol. 43, no. 2, pp. 539–555, Apr. 2007.

[62] M. F. Bugallo, L. Ting, and P. M. Djuric, “Target tracking by multiple particle
filtering,” in Aerospace Conf. Big Sky, MT: IEEE, Mar. 2007, pp. 1–7.

[63] T. Schon, G. Gustafsson, and P. J. Nordlund, “Marginalized particle filters for
mixed linear/nonlinear state-space models,” IEEE Trans. on Signal Processing,
vol. 53, no. 7, pp. 2279–2289, Jul. 2005.

[64] M. Frederic, M. Bolic, and M. Bouchard, “Rao-Blackwellised particle filters: Ex-
amples of applications,” in Canadian Conf. on Electrical and Computer Engg.,
Ottawa, Ont., May 2006, pp. 1196–1200.

195



[65] A. Doucet, N. De Freitas, K. Murphy, and S. Russell, “Rao-Blackwellised par-
ticle filtering for dynamic Bayesian networks,” in Proceedings of the Sixteenth
Conference on Uncertainty in Artificial Intelligence. Citeseer, 2000, pp. 176–
183.

[66] P. Tichavsk, C. H. Muravchik, and A. Nehorai, “Posterior Cramér-Rao bounds
for discrete-time nonlinear filtering,” IEEE Trans. on Signal Processing, vol. 46,
no. 5, May 1998.

[67] B. Han, S. W. Joo, and L. S. Davis, “Multi-camera tracking with adaptive
resource allocation,” Intl. Jour. of Computer Vision, vol. 91, pp. 45–58, Jan.
2011.

[68] E. Kenneth, A. Rajendra, N. Kannathal, and C. M. Lim, “Data fusion of mul-
timodal cardiovascular signals,” in 27th Annual Intl. Conf. of the Engineering
in Medicine and Biology Society. Shangai, China: IEEE, 2005, pp. 4689–4682.
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