24,436 research outputs found

    MASANet: Multi-Angle Self-Attention Network for Semantic Segmentation of Remote Sensing Images

    Get PDF
    As an important research direction in the field of pattern recognition, semantic segmentation has become an important method for remote sensing image information extraction. However, due to the loss of global context information, the effect of semantic segmentation is still incomplete or misclassified. In this paper, we propose a multi-angle self-attention network (MASANet) to solve this problem. Specifically, we design a multi-angle self-attention module to enhance global context information, which uses three angles to enhance features and takes the obtained three features as the inputs of self-attention to further extract the global dependencies of features. In addition, atrous spatial pyramid pooling (ASPP) and global average pooling (GAP) further improve the overall performance. Finally, we concatenate the feature maps of different scales obtained in the feature extraction stage with the corresponding feature maps output by ASPP to further extract multi-scale features. The experimental results show that MASANet achieves good segmentation performance on high-resolution remote sensing images. In addition, the comparative experimental results show that MASANet is superior to some state-of-the-art models in terms of some widely used evaluation criteria

    Spatial–Spectral Feature Fusion Coupled with Multi-Scale Segmentation Voting Decision for Detecting Land Cover Change with VHR Remote Sensing Images

    Get PDF
    Publisher's version (útgefin grein)In this article, a novel approach for land cover change detection (LCCD) using very high resolution (VHR) remote sensing images based on spatial-spectral feature fusion and multi-scale segmentation voting decision is proposed. Unlike other traditional methods that have used a single feature without post-processing on a raw detection map, the proposed approach uses spatial-spectral features and post-processing strategies to improve detecting accuracies and performance. Our proposed approach involved two stages. First, we explored the spatial features of the VHR remote sensing image to complement the insufficiency of the spectral feature, and then fused the spatial-spectral features with different strategies. Next, the Manhattan distance between the corresponding spatial-spectral feature vectors of the bi-temporal images was employed to measure the change magnitude between the bi-temporal images and generate a change magnitude image (CMI). Second, the use of the Otsu binary threshold algorithm was proposed to divide the CMI into a binary change detection map (BCDM) and a multi-scale segmentation voting decision algorithm to fuse the initial BCDMs as the final change detection map was proposed. Experiments were carried out on three pairs of bi-temporal remote sensing images with VHR remote sensing images. The results were compared with those of the state-of-the-art methods including four popular contextual-based LCCD methods and three post-processing LCCD methods. Experimental comparisons demonstrated that the proposed approach had an advantage over other state-of-the-art techniques in terms of detection accuracies and performance.This research was funded by National Natural Science Foundation of China (Grant Number 41571346 and 61701396), the Natural Science Foundation of Shaan Xi Province (2018JQ4009), and the Open Fund for Key laboratory of Degraded and Unused Land Consolidation Engineering, the Ministry of Natural Resource (Grant number SXDJ2017-10 and 2016KCT-23).Peer Reviewe

    Scale-aware neural network for semantic segmentation of multi-resolution remote sensing images

    Get PDF
    Assigning geospatial objects with specific categories at the pixel level is a fundamental task in remote sensing image analysis. Along with the rapid development of sensor technologies, remotely sensed images can be captured at multiple spatial resolutions (MSR) with information content manifested at different scales. Extracting information from these MSR images represents huge opportunities for enhanced feature representation and characterisation. However, MSR images suffer from two critical issues: (1) increased scale variation of geo-objects and (2) loss of detailed information at coarse spatial resolutions. To bridge these gaps, in this paper, we propose a novel scale-aware neural network (SaNet) for the semantic segmentation of MSR remotely sensed imagery. SaNet deploys a densely connected feature network (DCFFM) module to capture high-quality multi-scale context, such that the scale variation is handled properly and the quality of segmentation is increased for both large and small objects. A spatial feature recalibration (SFRM) module was further incorporated into the network to learn intact semantic content with enhanced spatial relationships, where the negative effects of information loss are removed. The combination of DCFFM and SFRM allows SaNet to learn scale-aware feature representation, which outperforms the existing multi-scale feature representation. Extensive experiments on three semantic segmentation datasets demonstrated the effectiveness of the proposed SaNet in cross-resolution segmentation

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin
    corecore