3,805 research outputs found

    Reconfigurable Intelligent Surface Assisted MEC Offloading in NOMA-Enabled IoT Networks

    Get PDF
    Integrating mobile edge computing (MEC) into the Internet of Things (IoT) enables resource-limited mobile terminals to offload part or all of the computation-intensive applications to nearby edge servers. On the other hand, by introducing reconfigurable intelligent surface (RIS), it can enhance the offloading capability of MEC, such that enabling low latency and high throughput. To enhance the task offloading, we investigate the MEC non-orthogonal multiple access (MEC-NOMA) network framework for mobile edge computation offloading with the assistance of a RIS. Different from conventional communication systems, we aim at allowing multiple IoT devices to share the same channel in tasks offloading process. Specifically, the joint consideration of channel assignments, beamwidth allocation, offloading rate and power control is formulated as a multi-objective optimization problem (MOP), which includes minimizing the offloading delay of computing-oriented IoT devices (CP-IDs) and maximizing the transmission rate of communication-oriented IoT devices (CM-IDs). Since the resulting problem is non-convex, we employ ϵ-constraint approach to transform the MOP into the single-objective optimization problems (SOP), and then the RIS-assisted channel assignment algorithm is developed to tackle the fractional objective function. Simulation results corroborate the benefits of our strategy, which can outperforms the other benchmark schemes

    Resolving Multi-task Competition for Constrained Resources in Dispersed Computing:A Bilateral Matching Game

    Get PDF
    With the explosive emergence of computation-intensive and latency-sensitive applications, data processing could be envisioned to perform closer to the data source. Similar to edge and fog computing, dispersed computing is considered as a complementary computing paradigm, which can excavate potential computation resources in the network to users, and serve as a supplement for sharing computational burden when the edge is overloaded. In this paper, we first make full use of idle and geographically dispersed computation resources via task offloading, contributing to conserve energy for mobile devices. Specially, a dispersed computing offloading framework concerning the interests of users and networked computation points is proposed. We further transform the initial problem into a multi-objective optimization problem subject to latency and resource constraints. To tackle such a complex problem, an energy-saving bilateral matching algorithm is designed to obtain the optimal task offloading strategy. The simulation results demonstrate that our proposed algorithm can outperform the benchmark schemes in terms of user fairness and can achieve a relatively balanced energy cost ratio. Furthermore, comparative experiments with edge computing are implemented in Amber Response and Disaster Relief scenarios respectively to reveal the advantages of the proposed framework

    Dynamic Computation Offloading for MIMO Mobile Edge Computing Systems with Energy Harvesting

    Get PDF
    By providing spatial diversity gain, the incorporation of multiple antennas into mobile edge computing (MEC) systems can improve the transmission performance. Meanwhile, employing energy harvesting (EH) helps enhance the system sustainability. In this paper, we focus on multi-input multi-output (MIMO) MEC systems with EH and studies the computation offloading. The design objective is to minimize the time average of a weighted sum of energy consumption and execution delay, meanwhile stabilizing the battery energy queue. To this end, we formulate the problem as a statistic program and propose a dynamic computation offloading (DCO) algorithm in which the transmitter covariance matrix, CPU-cycle frequencies for local computing, and partial offloading ratio are jointly optimized. Based on Lyapunov optimization, the program is first transformed into a nonconvex per-time slot problem. Then, we solve it by the successive convex approximation (SCA) technique, where a sequence of convex problems are created and solved. Simulation results demonstrate that the proposed algorithm is asymptotically optimal and outperforms several benchmark schemes in terms of both the average system cost and task drop ratio

    Cooperative computation offloading and resource allocation for blockchain-enabled mobile edge computing: A deep reinforcement learning approach

    Get PDF
    Mobile edge computing (MEC) is a promising paradigm to improve the quality of computation experience of mobile devices because it allows mobile devices to offload computing tasks to MEC servers, benefiting from the powerful computing resources of MEC servers. However, the existing computation-offloading works have also some open issues: 1) security and privacy issues, 2) cooperative computation offloading, and 3) dynamic optimization. To address the security and privacy issues, we employ blockchain technology that ensures the reliability and irreversibility of data in MEC systems. Meanwhile, we jointly design and optimize the performance of blockchain and MEC. In this paper, we develop a cooperative computation offloading and resource allocation framework for blockchain-enabled MEC systems. In the framework, we design a multi-objective function to maximize the computation rate of MEC systems and the transaction throughput of blockchain systems by jointly optimizing offloading decision, power allocation, block size and block interval. Due to the dynamic characteristics of the wireless fading channel and the processing queues at MEC servers, the joint optimization is formulated as a Markov decision process (MDP). To tackle the dynamics and complexity of the blockchain-enabled MEC system, we develop an A3C-based cooperation computation offloading and resource allocation algorithm to solve the MDP problem. In the algorithm, deep neural networks are optimized by utilizing asynchronous gradient descent and eliminating the correlation of data. Simulation results show that the proposed algorithm converges fast and achieves significant performance improvements over existing schemes in terms of total reward

    Optimal association of mobile users to multi-access edge computing resources

    Get PDF
    Multi-access edge computing (MEC) plays a key role in fifth-generation (5G) networks in bringing cloud functionalities at the edge of the radio access network, in close proximity to mobile users. In this paper we focus on mobile-edge computation offloading, a way to transfer heavy demanding, and latency-critical applications from mobile handsets to close-located MEC servers, in order to reduce latency and/or energy consumption. Our goal is to provide an optimal strategy to associate mobile users to access points (AP) and MEC hosts, while contextually optimizing the allocation of radio and computational resources to each user, with the objective of minimizing the overall user transmit power under latency constraints incorporating both communication and computation times. The overall problem is a mixed-binary problem. To overcome its inherent computational complexity, we propose two alternative strategies: i) a method based on successive convex approximation (SCA) techniques, proven to converge to local optimal solutions; ii) an approach hinging on matching theory, based on formulating the assignment problem as a matching game
    • …
    corecore