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Abstract—Integrating mobile edge computing (MEC) into
the Internet of Things (IoT) enables resource-limited mobile
terminals to offload part or all of the computation-intensive
applications to nearby edge servers. On the other hand, by intro-
ducing reconfigurable intelligent surface (RIS), it can enhance the
offloading capability of MEC, such that enabling low latency and
high throughput. To enhance the task offloading, we investigate
the MEC non-orthogonal multiple access (MEC-NOMA) network
framework for mobile edge computation offloading with the
assistance of a RIS. Different from conventional communication
systems, we aim at allowing multiple IoT devices to share the
same channel in tasks offloading process. Specifically, the joint
consideration of channel assignments, beamwidth allocation, of-
floading rate and power control is formulated as a multi-objective
optimization problem (MOP), which includes minimizing the
offloading delay of computing-oriented IoT devices (CP-IDs) and
maximizing the transmission rate of communication-oriented IoT
devices (CM-IDs). Since the resulting problem is non-convex,
we employ ϵ-constraint approach to transform the MOP into
the single-objective optimization problems (SOP), and then the
RIS-assisted channel assignment algorithm is developed to tackle
the fractional objective function. Simulation results corroborate
the benefits of our strategy, which can outperforms the other
benchmark schemes.

Index Terms—Reconfigurable intelligent surface (RIS), multi-
objective optimization problem (MOP), mobile edge computing
(MEC), non-orthogonal multiple access (NOMA).
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THE prevalence of mobile devices and rapid growth of
Internet of Things (IoT) have boosted an enormous

application range, which are generated by edge devices in
real-time, such as mobile phones, computers and sensors.
However, since most of IoT devices always have limited
computing capabilities, it is impractical to transmit and
storage the local resource information. Mobile edge computing
(MEC) as the most popular and realistic technology to relieve
the prominent contradiction between service requirement
and resource shortage, by providing real-time computing
capabilities within the IoT network in close proximity to
mobile subscribers [1]. Especially, computation offloading of
MEC is a promising user-oriented use case to reduce the
capital cost and provide flexibility.

In a MEC framework, the computation intensive or
delay-sensitive tasks of each IoT device can be offload to
the edge server instead of local execution, the performance
of system (e.g., computation and latency requirements) was
greatly enhanced [2]. Driven by the benefits of MEC, there
were a large number of studies were emerged to solve
joint communication and computation resource cooperation
problems [3]–[5]. MEC is usually deployed at the network
edge to provide fast-response data processing services and
relieve the backhaul load. Therefore, MEC takes considerable
advantages of offering energy savings for IoT devices,
reducing the latency, achieving higher reliability [6]–[8].
In addition, MEC can be also beneficial to collect more
information of interest about IoT location, preferences and
behaviors, which can promote system to improve the quality
of services (QoS) accordingly. The trend towards MEC is
expected to accelerate as more computing-oriented devices and
more intensive-oriented applications. Therefore, the emerging
MEC paradigm is recognized as a key enabling technology,
which has created an effective approach to realize IoT network.

Despite the benefits brought by MEC, the practical
implementation of task offloading faces severe coverage and
technical challenges. Due to the broadcast characteristics
of wireless electromagnetic transmission, the computation
tasks offloaded between IoT devices and the base station
(BS) may be interrupt by nearby obstacles. This obviously
could lead to severe the disruption risks to IoT devices [9].
The reconfigurable intelligent surface (RIS) is a promising
technique to ensure the links of task offloading in MEC
networks, due to its advantages of low cost, easy deployment
and directional signal enhancement for the MEC service.
By adjusting the phase shifts of RIS, incident signals can
be dynamically reflected according to the requirements of

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2023.3277005

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on July 11,2023 at 20:50:18 UTC from IEEE Xplore.  Restrictions apply. 



2

systems [10]–[12]. Especially, authors in [13] proposed the
cooperative reflection design for the RIS-aided multidevice
MEC communications, which is the potential to significantly
enhance the spectrum and energy efficiencies. Therefore, by
exploiting the benefits of RIS, the potential of MEC can
be significantly improved, including suppressing the channel
interference, improving antenna gain and boosting the desired
signal [14]–[16].

Another key characteristics of IoT is massive connection
density. According to 3GPP standard for IoT projections,
the number of the mobile devices will continue to rise and
reach 20.8 billion, which will be an enormous challenge for
the conventional orthogonal multiple access (OMA) to fulfill
the massive dense connectivity requirement [17]. To resolve
above challenge, non-orthogonal multiple access (NOMA)
technique [5], [18], [19] was developed as an alternative
for conventional OMA, due to the fact that it can be made
much larger than the number of orthogonal resource elements
therein and avoid severe delay. Thus, NOMA were actively
investigated, which can accommodate multiple users over
the limited number of available resources block, and exploit
the successive interference cancelation (SIC) to reduce the
co-channel interference.

Based on the above observations, MEC can provide a
considerable platform to NOMA networks, and RIS well
made up for the unstable wireless channels. As a result, it
is necessary to investigate the task offloading and resource
management for RIS-assisted MEC-NOMA system, while
ensuring the offload transmission requirements of IoT devices.
However, considering the requirements of disparities between
power-limited IoT devices and the stringent computation,
channel assignment and offloading decisions are required
to be optimized properly. Besides, it is generally difficult
to obtain channel state information (CSI) accurately in
most applications [20], [21]. These observations motivate
us to develop an RIS-assisted task offloading and channel
assignment mechanism for MEC-NOMA network.

A. Related Works

Motivated by the aforementioned backgrounds, several
pioneer MEC researches have been done to integrate MEC
and NOMA into IoT communication network [5], [22]–[27].
Specifically, to reduce the total execution delay time, a
joint SIC ordering and computation resource design was
investigated in the NOMA-aware MEC networks [24]. The
authors considered the single- and multiple-users scenarios for
NOMA-enabled multi-access MEC network [28]. By properly
offloading computation-task to the nearby MEC servers, the
NOMA transmission-time and the offloading workloads were
optimized, simultaneously. In [29], an asymptotically optimal
online offloading algorithm was developed to maximize the
long-term system utility in the NOMA-aided MEC network,
while balancing user fairness and the throughput of system.
The studies of [30] have combined MEC with network slicing
to investigate the average revenue maximization problem. In
[31], the authors put forward a resource scheduling-based
algorithm for computation-offloading in the device-to-device

(D2D)-aid MEC-NOMA communication, in which each IoT
device can offload its computation task to relieve the high
computing burden in D2D communications.

To further enhance the task offloading performance of the
resource-limited users, a few works developed RISs to jointly
optimize computing, phase shifts of RIS and communications,
in which various types of modeling schemes were exploited,
e.g., minimize latency [32], or maximize nonlinear learning
error of the learning task [33]. For example, the authors in [32]
and [34] proposed RIS-assisted MEC framework, in which the
RIS is properly deployed to guarantee the QoS requirements
of MEC services and system throughput. The authors in
[35] proposed an RIS-assisted multi-user MEC architecture
with multiplexing offloading to maximize the total completed
task-input bits. Considering the limited computing capability
of MEC-enabled network, [36] developed a cooperative
communication-computation offloading strategy among IoT
devices, which can reduce the total energy consumption
considerably. Due to user mobility and dynamic demands,
some part of hot-spot areas may cool down soon afterward
over time.

However, for certain dense connection area, it is possible for
multiple devices to request offloading services simultaneously.
Under such circumstances, the channel resources are
insufficient to assign one dedicated channel for each offloading
IoT device. In addition, the short distances among the IoT
devices result in strong mutual interference of frequency
channels. Fortunately, the same channels can be time-shared
by multiple IoT devices. To this end, we consider to
decide the fraction of the transmitted data that each IoT
devices should offload, and the fraction of channel time can
assigned to each IoT device. Unfortunately, the existing works
ignore channel assignments in computation services, which
is greatly restrict task offloading in considered RIS-assisted
MEC-NOMA scenario.

B. Motivation

In practical MEC-NOMA network, computing-oriented IoT
devices (CP-IDs) and communication-oriented IoT devices
(CM-IDs) usually are coexistence. The CP-IDs refer to the
computing tasks of IoT devices that can be offloaded to nearby
MEC servers. The CM-IDs usually refer to the communication
tasks of IoT devices, who mainly focus on data rate. It
should be noted that CM-IDs has strong timeliness. It is
worth noting that if the transmitted time can be divided
into a few of epochs, and the frequency channel is assigned
to multiple IoT devices based on the epochs of time. It is
benefit to enhance the procedure efficiency of CP-IDs and
the real-time communication ability of CM-IDs. Motivated
by the advantages of channel assignment, we focus on
MEC offloading with channel assignment, where CP-IDs and
CM-IDs will share the same channel resources to accomplish
its offloading tasks.

In this paper, we investigate the channel assignment-based
task offloading framework for the RIS-assisted MEC-NOMA
system. The main contributions of this paper are summarized
as follows.
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• Different from the existing works about task offloading,
we build an RIS-assisted MEC-NOMA offloading
framework, where the channel assignment-based task
offloading is proposed to more efficiently utilize the
available system resources. In the proposed framework,
a multi-objective optimization problem (MOP) is
formulated to maximize the MEC task offloading,
while ensuring the computation delay of successful task
execution below a tolerable level.

• To obtain the feasible solution, the proposed MOP
is decoupled into four independent subproblems by
exploiting means of ϵ-constraint method. By deriving
the explicit form of ϵ-constraint method, we employ the
SIC and penalty function-based methods to solve the
beamwidth allocation and offloading rate subproblems,
iteratively, and the approximate closed-from solution is
derived for the transmit power control subproblem.

• For the channel assignment problem, the time division
criteria is designed in accordance with channel matching
strategy, which is to guarantee that each channel is
allocated for at most one IoT device. In the channel
matching strategy, the channel assignment decision
with offloading ratio scheme is developed to determine
the optimum solution, while guarantee the fairness of
completion time.

The remainder of this paper is organized as follows.
Section II describes the system model, and the RIS-assisted
MEC-NOMA offloading problem is formulated. In Section
III, the problem formulation with channel assignment scheme
is illustrated. The corresponding optimization algorithm is
presented to solve the optimization problem in Section IV.
Numerical results confirm the performance of the obtained
solution in Section V. Finally, conclusions are given in Section
VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As illustrated in Fig. 1, we consider the MEC in a
RIS-assisted NOMA network. The BS equipped with an
MEC server to provide computation services for the single
antenna IoT devices, where MEC server is accessed through
the assistance of a RIS. The IoT devices are randomly
distributed in the cell, including CP-IDs and CM-IDs. The
CP-IDs and CM-IDs are indexed in sets I = {1, 2, ..., I} and
J = {1, 2, ..., J} respectively. I and J denote the number
of CP-IDs and CM-IDs, respectively. In the following, we
consider that the task at each IoT device m ∈ M can be
arbitrarily partitioned into two portions for offloading and
local computing, respectively, indexed by M = {1, 2, ...M}.
M is the number of IoT devices. There is only one
application of each portion from each IoT device, such that
the m′-th application is always from the m-th IoT device. The
computation of IoT device m may offload to the MEC server
with the corresponding channels.

A. RIS-assisted channel

Due to the multi-path effect and intrinsic random feature of
channel, the transmitted data may suffer from high propagation

Fig. 1. RIS-assisted MEC offloading in NOMA-enabled IoT networks.

loss, when the occlusion occurred between the IoT devices
and the MEC server [37]. To this end, we consider the RIS
to configure the channel by dynamically adjusting the phase
shift of each reflecting element; thus, the signal from IoT
device k to the BS includes both the direct link (Device-BS
link) and the reflected links (Device-RIS-BS links), where the
reflected link consists of the device side, the phase shifts of
RIS, and the RIS-BS side [38]. According to the characteristics
of RIS, we assume that the beamforming is reflected at the RIS
without beamforming gain loss. For each pair, the transmit and
receive beams are required to be aligned toward each other,
which is measured relative to perfect beam alignment. Both
transmitter and receiver antenna arrays have the same half
power beamwidth (HPBW), which corresponds to the angular
aperture of the main beam. Inspired by [39], we simplify the
actual antenna pattern by the sectorized gain pattern based
on the realistic pattern of ULA for the sake of mathematical
tractability. Thus, for a ULA with ℓ antenna elements, the
half power beamwidth can be expressed as a function of ℓ as
follows [40]

θ(ℓ) = 2

(
π

2
− arccos

2.784

ℓπ

)
≈ 1.7723

ℓ
. (1)

Thus it is widely used for coverage and rate analysis of
RIS-assisted wireless networks, which the antenna gain of
signal transmission can be given by

G = gidgRISt︸ ︷︷ ︸
id−RIS link

gRISr
gbs︸ ︷︷ ︸

RIS−BS

,
(2)

where gid and gbs denote the main lobe gain of IoT device
and BS, respectively. gn, n ∈ {RISt,RISr}, denotes the main
lobe gain of RIS. Furthermore, we have

gid =
2π − (2π − θ(ℓid)) zid

θ(ℓid)
,

gbs =
2π − (2π − θ(ℓbs)) zbs

θ(ℓbs)

gn =
2π − (2π − θ(ℓn)) zRIS

θ(ℓn)
.

(3)

where zid, zbs and zRIS denote side lobe gains of IoT device,
BS and RIS, respectively. θ(ℓid), θ(ℓbs) and θ(ℓn) are the
HPBW of user, BS and RIS, respectively. Since RIS can
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be deployed in advance, the small-scale fading channel is
considered to between RIS and BS link. In addition, θ(ℓid)
can be ignored with the single antenna IoT devices. Thus,
we consider the HPBW of RIS θ(ℓRISt) as a variable to be
optimized, while fixed the HPBW of BS θ(ℓbs) and θ(ℓRISr )
in the following.

Let a set of channels be K = {1, 2, . . . ,K}, the k th
channel is indexed by k ∈ K and K denotes the total number
of channels. For simplicity, we define channel indicator as
xm,k ∈ {0, 1}. If xm,k = 1, it means that IoT device m is
assigned to channel k and xm,k = 0, otherwise. Each offloaded
IoT device is assigned to at most one channel. We have∑

k∈K

xm, k ≤ 1, m ∈ {i, j}. (4)

In order to support more IoT devices offloading, the channel
assignment is exploited to multiple IoT devices that can
offload tasks with the same channel. Restricted by limited
geographical area, it is inevitable for strong interference
of channel during simultaneous transmissions. Instead, the
channel can be divided into a few of epochs, and each IoT
device can select a time epochs of channel for each application.
Let ym,k be the fraction of the channel time, the IoT device m
is assigned to channel k, which can be given by∑

m∈M

ym,k ≤ 1. (5)

We assume that variable ym,k satisfies ym,k ∈ [0, 1]. It
is obvious that if the time granularity of the channel is
sufficiently small, thus the relationship between xmk and ym,k

can be derived{
if ym, k ∈ (0, 1], then xm, k = 1,

if xm, k = 0, then ym, k = 0.
(6)

It follows that if ym, k satisfies ym, k ∈ (0, 1], the
corresponding channel k is assigned to IoT device m; On the
contrary, if the channel size is set as xm, k = 0, channel k will
not be assigned to IoT device m. Based on these observation,
we have the following equivalent relationship

ϵ1 < ym, k ≤ xm, k + (1− xm, k) ϵ1 (7)

with ϵ1 = 0. When ym, k ∈ (0, 1], it is observed that the left
of (7) holds, and then xm, k = 1 must be holds to satisfy the
right of (7); On the contrary, when xm, k = 0, both the left and
right sides of (7) are zero. Therefore, ym, k = 0 must be holds.

Based on the above analysis, to avoid the channel
interference of CM-ID link, we need to decode the transmitted
signal of CP-ID by using the principle of SIC, which is a
widely used assumption in the existing literatures [41]–[45].
Specifically, CP-ID sequentially decodes the signal from
devices with higher channel gains and regards all the other
signals (including CM-ID signal) as the interference, and
then removes their messages one by one. Furthermore, let
us assume that the decoding order of the SIC at a receiver
does not change as long as each user’s minimum SINR
requirement (i.e. minimum decoding threshold) is met, which
is a commonly-used assumption in the existing works such as

[40]. Thus, the corresponding SINR for active IoT devices can
be given by

γi,k =
xi,kpi,kGi,k |hi,k|2 Li∑

i′∈I,
i′ ̸=i

xi′,kpi′,kGi′,k |hi′,k|2 Li′

︸ ︷︷ ︸
CP−ID interference

+
∑
j∈J

xj,kpj,kGj,k |hj,k|2 Lj︸ ︷︷ ︸
CM−ID interference

+σ0

,

(8)

γj,k =
xj,kpj,kGj,k |hj,k|2 Lj∑

j′∈J ,j′ ̸=j xj′,kpj′,kGj′,k |hj′,k|2 Lj′ + σ0

, (9)

where pi,k and pj,k denote the transmit power for CP-ID i
and CM-ID j. Li and Lj are the large-scale fading gain of
IoT device i and j, respectively. Note that, hi,k and hj,k are
small-scale fading gains for IoT device i and j. The noise
is characterized by a additive white Gaussian noise (AWGN)
variable with σ0 being the noise power. Gi,k and Gj,k denote
the antenna gain of the CP-ID i and CM-ID j, respectively.

According to the (8) and (9), the data transmission rate Ri, k

and Rj, k can be given below

Rii, k = W log2 (1 + γii, k) , ii ∈ {i, j} (10)

where W denotes the bandwidth of system.
It follows that the average transmission rate for CP-ID i at

channel k is yi,kRi, k. when the channel time yi,k is used.

B. Task Computing Model

Define 0 ≤ λi, k ≤ 1 as the offloading rate of CP-ID i
assigned to channel k. By introducing a variable 0 < ϵ2 ≪ 1
and defining the following relationship

ϵ2xi, k ≤ λi, k ≤ xi, k, (11)

where xi, k is the indicator, whose role is to assign appropriate
channel for active IoT device. Specifically, the indicator xi, k =
1 means that the CP-ID i is assigned to channel k; otherwise,
xi, k = 0. Thus, we can obtain{

λi, k ∈ (0, 1]⇐⇒ xi, k = 1

λi, k = 0 ⇐⇒ xi, k = 0
(12)

Let Di be the amount of data to be processed for
application i. Given the offloading rate relationship between
the computation load and communication data, the offloaded
task is transmitted in consistent with channel k, denoted
by λi, kDi, and the transmission time of channel k for this
uploading data can be written as

τU
i, k = xi, k

λi, kDi

yi, kRi, k
. (13)

To prevent having zero denominator in (13), we rewrite the
variable ϵ1 that to be satisfied in range of 0 < ϵ1 ≪ 1. Thus,
the transmitted energy of IoT device i is given by

EU
i =

∑
k∈K

Piτ
U
i,k =

∑
k∈K

xi,kλi,k

yi,k

PiDi

Ri,k
, (14)

where Pi denotes the maximum transmit power of user i.
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The local energy consumption is determined by the
execution time of CPU and power overhead. Inspired by [46],
the power overhead is expressed as κ

(
fL

i

)3
, where fL

i denotes
the computational CPU speed of IoT device i and κ denote
the energy conversion coefficient. Based on this sake, the local
execution time for application i can be described as

τL
i =

(
1−

∑
k∈K xi,kλi, k

)
κDi

fL
i

. (15)

The local energy consumption of IoT device i for
computation can be written as

EL
i = κDi

(
fL

i

)2(
1−

∑
k∈K

xi,kλi,k

)
. (16)

Combined (14) and (16), the total energy consumption of
IoT device m is

Ei = EL
i + EU

i

= EL
i

(
1−

∑
k∈K

xi, kλi,k

)
+
∑
k∈K

xi, kλi, k

yi, k
EUi, k

(17)

where EL
i = κDi

(
fL

i

)2
and EUi, k =

PiDi
Ri, k

.
For the execution time of MEC server, the data transmission

assign to channel k is mathematically cast as:

τPi,k =
xi,kλi,kκDi

fs
, (18)

where fs is the processing capacity of the MEC server.

C. Problem Formulation

In this subsection, we formulate the channel
assignment-based task offloading for RIS-assisted
MEC-NOMA network. As discussed before, we assume
that the total delay of each CP-ID consists of the beam
alignment time τ0, the offloading task time τU

i,k, and the
computation time of MEC server τPi,k . Thus, the total delay
time of CP-IDs i within the assigned channel k can be
calculated as

τi = τ0 + τU
i,k + τPi,k , (19)

where τ0 is the execution time on the beam alignment of IoT
devices. By exploiting the point-to-point strategy, the beam
alignment time τ0 is

τ0 =
∑
∀i∈I

⌈
Ψid

θ(ℓt,i)

⌉
Tp +

∑
∀j∈J

⌈
Ψid

θ(ℓt,j)

⌉
Tp

≈ TpΨid

∑
∀i∈I

1

θ(ℓt,i)
+
∑
∀j∈J

1

θ(ℓt,j)

 ,

(20)

where Ψid is sector-level beamwidth at UE side, θ(ℓt,i) and
θ(ℓt,j) are beamwidth of RIS towards the CP-ID i and CM-ID
j, respectively. τU

i,k in (19) is the offloading task time of CP-ID
i to be assigned to channel k, which can be given by (13). Tp

is the time required for a pilot transmission.
Based on the above analysis, the following problem

formulation should be satisfied: 1) maximizing the

total spectral efficiency of CM-IDs; 2) minimizing the
average delay of CP-IDs. Defining P = {pi, k and
pj, k, ∀i ∈ I, ∀j ∈ J ,∀k ∈ K} includes power allocation
variables, Λ = {λi,k, ∀i ∈ I, ∀k ∈ K} includes offloading
rate variables and Ω = {θ(ℓt,i,k) and θ(ℓt,j,k), ∀i ∈ I, ∀j ∈
J , ∀k ∈ K} includes beamwidth allocation variables, the
MOP can be mathematically cast as

P0 : min
X ,P,Λ,Ω

{∑
i∈I βiτi

I

}
(21a)

max
X ,P,Λ,Ω

∑
j∈J

∑
k∈K

xj,kRj,k

 (21b)

s.t.

xi,k ∈ {0, 1}, xj,k ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J ,∀k ∈ K (21c)∑
k∈K

xi,k =
∑
k∈K

xj,k = 1, ∀i ∈ I, ∀j ∈ J (21d)∑
i∈I

xi,k +
∑
j∈J

xj,k ≤Mk, ∀i ∈ I, ∀j ∈ J (21e)

0 < λi,k ≤ 1, ∀i ∈ I (21f)
τi ≤ Ti, ∀i ∈ I (21g)

τLi ≤ Ti, ∀i ∈ I (21h)∑
k∈K

xj,kRj,k ≥ R0, ∀j ∈ J (21i)

EL
i + τUi,kpi,k ≤ Ei, ∀i ∈ I (21j)

θ0≤ θ(ℓt,i,k) ≤ θ1, ∀i ∈ I (21k)
θ0 ≤ θ(ℓt,j,k)≤ θ1, ∀j ∈ J (21l)
0 ≤ pi,k ≤ Pi, ∀i ∈ I (21m)
0 ≤ pj,k ≤ Pj , ∀j ∈ J (21n)

where βi is the energy consumption weight coefficients of
CP-IDs, which satisfies

∑
i∈I βi = 1. The objective function

(21a) denotes the average offloading delay of CP-IDs τavg =∑
i∈I βiτi

I , (21b) denotes the total data transmission rate of
CM-IDs. For ease of notation, X = {xi,k, ∀i ∈ I, ∀k ∈ K}
includes the CP-IDs assignment variables. The constraint (21c)
guarantee that each channel is allocated for at most one
CP-ID, while the constraint (21d) ensure that each CP-ID
is selected by one channel. The constraint (21e) means the
maximum number of IoT devices on a channel k. Constraint
(21e) shows the size of channel k, i.e., Mk = 1. Constraints
(21g) (21h) ensure that the offloading can be completed in
time requirement of Ti. The constraint (21i) ensures that
the instantaneous transmission rate of CM-IDs is larger than
R0. R0 denotes the minimum requirements of the offloaded
bits of each IoT device. In constraint (21j), we introduce
total energy consumption Ei to constraint the CP-IDs and
CM-IDs. Constraint (21k) and (21l) ensure the maximum and
minimum beamwidth requirements for the RIS. θ0 and θ1
are the maximum beamwidth of RIS. The maximum power
constraint of the CP-IDs and CM-IDs is given in (21m) and
(21n), respectively.

Note that the objective functions (21a) and (21a) is in
conflict with each other. To solve this issue, the MOP can
be adopted to find a solution that satisfies the predefined
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conditions of Pareto optimality. Then, the ϵ-constrain method
is employed to transform the proposed MOP into a
single-objective optimization problem (SOP). By introducing
the constraint to the objective function (21b), the problem P0

can be recast as follows

P1 : min
X ,P,Λ,Ω

{τavg} , (22a)

s.t., (21c)− (21n)

− Rtot ≤ ϵ = −R1, (22b)

where the constraint (22b) is to ensure that total transmission
rate of CM-IDs should be greater than R1, and Rtot is the total
data transmission rate of CM-IDs.

Lemma A. If τavg exists for all (X ,P,Λ,Ω),
(X ∗,P∗,Λ∗,Ω∗) is Pareto optimal solution of the MOP if
and only if there exists ϵ such that (X ∗,P∗,Θ∗,Ω∗) is the
unique optimal solution to the SOP.

Proof: The proof is given in Appendix A.
The Lemma A establishes the Pareto optimal solutions of

the proposed MOP (22) with ϵ-constrain strategy, which is
given by Appendix A. It concludes that the ϵ-constraint method
in Lemma A guarantee the Pareto optimal solutions of the
MOP.

By considering the time fairness, we split the minimum
transmission rate R1 in (22b) with regard to the transmission
requirements of each CM-ID. Substituting (21i) into (22b),
the corresponding optimization problem in P1 is reformulated,
which yields the following optimization problem

P2 : min
X ,P,Λ,Ω

{τavg} (23a)

s.t.,

xi,k ∈ {0, 1}, xj,k ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J , ∀k ∈ K (23b)∑
k∈K

xi,k =
∑
k∈K

xj,k = 1, ∀i ∈ I, ∀j ∈ J (23c)∑
i∈I

xi,k +
∑
j∈J

xj,k ≤Mk, ∀i ∈ I,∀j ∈ J (23d)

0 < λi,k ≤ 1, ∀i ∈ I (23e)
τi ≤ Ti, ∀i ∈ I (23f)

τLi ≤ Ti, ∀i ∈ I (23g)∑
k∈K

xj,kRj,k ≥ max {R0, γjR1} , ∀j ∈ J (23h)

EL
i + τPi pi,k ≤ Ei, ∀i ∈ I (23i)

ω1≤ ωi,k ≤ ω0, ∀i ∈ I (23j)
ω1 ≤ ωj,k≤ ω0, ∀j ∈ J (23k)
0 ≤ pi,k ≤ Pi, ∀i ∈ I (23l)
0 ≤ pj,k ≤ Pj , ∀j ∈ J (23m)

where γj in constraint (23h) denotes the transmission rate
proportion of CM-ID j and satisfies

∑
j∈J γj = 1. Note

that the constraint ω0 = 1/θ0, ωi, k = 1/θi, k(ℓt) and ωj, k =
1/θj, k(ℓr), ω1 = 1/θ1 in (23j) and (23k) are a transformation
of (21k) and (21l), respectively.

III. JOINT POWER CONTROL AND CHANNEL ALLOCATION
DESIGN

In this section, our goal is to find the locally optimal
solution of the problem P2. It is observed that when
the MOP in (21) is transformed into the problem P2,
the problem is still non-convex because of the channel
assignment variable X , offloading rate Λ, powers allocation
P and beamwidth allocation Ω constraints. To solve
the non-convex multi-variable problem P2, the SCA-based
alternating optimization scheme is employed to divide problem
P2 into four subproblems, which can be implemented as
follows.

A. Beamwidth Allocation

We focus on the beamwidth allocation problem in this
subsection. With the given channel assignment X , power
allocation P and offloading rate Λ, then, by introducing an
auxiliary variable z, the problem P2 with regard to beamwidth
allocation can be simplified into

P3 : {Ω∗} = argmin
Ω,z

{z | X ∗,P∗,Λ∗} , (24a)

s.t. τi ≤ Ti,∀i ∈ I, (24b)∑
k∈K

xj, kRj, k ≥ max {R0, γjR1} , ∀j ∈ J , (24c)

EL
i + τUi pi,k ≤ Ei,∀i ∈ I, (24d)

ω1≤ ωi,k ≤ ω0, ∀i ∈ I, (24e)
ω1 ≤ ωj,k≤ ω0, ∀j ∈ J , (24f)
τavg ≤ z. (24g)

Obviously, the problem (24) is still non-convex
combinatorial minimization problem due to the constraints
(24b), (24d) and (24g). To solve this issue, we introduce an
auxiliary variable ui, which satisfies (25). According to (18)
and (19), for ∀i ∈ I, the constraints (24b), (24d) and (24g)
can be re-written as

τ0 +
∑
k∈K

xi,kλi,kDi

yi,kRi,k
+

xi,kλi,kκDi

fs
≤ Ti, (26)

EL
i +

∑
k∈K

xi,kλi,kDipi,k

Wyi,k log2 (1 + ui)
≤ Ei, (27)

τ0+
1

WI

∑
∀i∈I

∑
k∈K xi,kλi,kDi

log2 (1 + ui)
+
1

I

∑
∀i∈I

xi,kλi,kκDi

fs
≤ z. (28)

It can be verified that (26), (27) and (28) are convex. For
the constraint (25), we introduce another auxiliary variable v,
then the constraint (25) can be further transformed as follows

uiv ≤ xi,kpi,kGi,k |hi,k|2 Li, (29)

where

v ≥
∑

i′∈I,i′ ̸=i

xi′,kpi′,kGi′,k |hi′,k|2 Li′+
∑
j∈J

xj,kpj,kGj,k |hj,k|2 Lj+σ0.

(30)
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ui ≤
xi, kpi,kGi,k |hi,k|2 Li∑

i′∈I,i′ ̸=i′ xi′,kpi′,kGi′,k |hi′,k|2 Li′ +
∑

j∈J xj, kpj,kGj,k |hj,k|2 Lj +N0

(25)

The upper bound of uiv is recast as follows

uiv ≤
v(t)

2u(t)i

x2i +
u(t)i

2v(t)
v2, (31)

where u(t)
i and v(t) are t-th iteration results of the ui and

v, respectively. Further, the (29) can be given by following
convex constraint

v(t)

2u(t)i

u2i +
u(t)
i

2v(t)
v2 ≤ xi,kpi,kGi,k |hi,k|2 Li (32)

Further, we can reformulate problem P3 as:

P4 : {Ω∗} = argmin
Ω,z,ui,v

{z | X ∗, P ∗,Λ∗} (33)

s.t. (24c), (24e), (24f), (26), (27), (28), (29), (31).

It is observed that the resulting problem P4 is a
convex optimization problem, and then the standard convex
optimization method is applied to solve it. On the other hand,
due to the existence of constraint (32), the solution of the
problem P3 can be achieved by solving the the problem
P4 iteratively. The convergence of the beamwidth allocation
algorithm can be proved in [47].

B. Offloading rate updating

In this subsection, we focus on the offloading rate
optimization problem while regarding X , P and Ω as fixed
values. The problem P2 will be transformed to the offloading
rate allocation subproblem

P5 : {Λ∗} = argmin
Λ
{τavg | X ∗,P∗,Ω∗} (34a)

0 < λi ≤ 1, ∀i ∈ I, (34b)
τi ≤ Ti, ∀i ∈ I, (34c)

τLi ≤ Ti, ∀i ∈ I, (34d)

EL
i + τUi pi,k ≤ Ei, ∀i ∈ I, (34e)

where

τavg = τ0 +
1

I

∑
∀i∈I

∑
k∈K xi,kλi,kDi

Ri,k
+

1

I

∑
∀i∈I

xi,kλi,kκDi

fs
.

Note that the objective function τavg of the problem P5 is a
monotonically increasing function of λi,k. Therefore, the lower
bound of λi,k can be easily obtained from (34c), which can be
expressed as:

λi,k ≤
∑

k∈K xi,kRi,kfs (Ti − τ0)

fsDi + κ
∑

k∈K xi,kRi,kDi
. (35)

Substituting (34e) into (35), we have

λi,k ≤
(
Ei − κfi

2Di
)∑

k∈K xi,kRi,k

Dipi,k + κfi
2Di

∑
k∈K xi,kRi,k

. (36)

Combined (34b), (35) with (36), it clearly has a upper bound
of λi as (37).

Furthermore, using (15) and (34d), we have

λi ≥ 1− Tifi
κDi

. (38)

Therefore, the optimal solution is obtained by taking the a
lower bound value of λi. That is

λi ≥ max

{
1− Tifi

κDi
, 0

}
. (39)

C. Powers allocation updating

In this subsection, we aim to obtain the approximate
optimal solution of the power allocation problem. With the
given channel assignment X , offloading rate Λ and channel
assignment Ω, the problem P2 is mathematically recast as

P6 : {P∗} = argmin
P

{τavg | X ∗,Λ∗,Ω∗} (40a)

s.t. τi ≤ Ti, ∀i ∈ I (40b)∑
k∈K

xj, kRj, k ≥ max {R0, γjR1} , ∀j ∈ J (40c)

EL
i + τUi pi,k ≤ Ei, ∀i ∈ I (40d)

0 ≤ pi,k ≤ Pi, ∀i ∈ I (40e)
0 ≤ pj,k ≤ Pj ,∀j ∈ J (40f)

Accordingly, based on the (20) and (10), it can be seen that
the objective function τavg of P5 is a monotonically reducing
function of pi,k, and is a monotonically increasing function of
pj,k. Therefore, the solution of P6 is obtained by taking the
lower bound of pj,k. From the constraint (40b), the power pj,k

should be satisfies (41). With the above constraint (40c), we
derive

pj,k ≥
(
2

Rmax
j
W − 1

) ∑
j′∈I,j′ ̸=j

xj′,kpj′,kGj′,k |hj′,k|2 Lj′ + σ0

Gj,k |hj,k|2 Lj
(42)

where Rmax
j = max {R0, γjR1}. Based on the above analysis,

the lower bound of pj,k can be written as follows

pmin
j,k =

(
2

Rmax
j
W − 1

) ∑
j′∈I,j′ ̸=j

xj′,kp
min
j′,k Gj′,k |hj′,k|2 Lj′ + σ0

Gj,k |hj,k|2 Lj
(43)

Combined (16), (40d) and (43), we have (44). Form the
(44), the upper bound of pi,k is obtained stems from an
increasing function with regard to the power pi,k. Based on this
observation, the Lambert-W function is exploited to obtain the
optimal pi,k. After some algebra manipulations, we obtain the
following solution

pmax
i,k = −

ΞA ×W
(
ΞF × 2ΞE

)
ΞC

− ΞG, (45)
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λi ≤ min

{∑
k∈K xi,kRi,kfs (Ti − τ0)

fsDi + κ
∑

k∈K xi,kRi,kDi
,

(
Ei − κfi

2Di

)∑
k∈K xi,kRi,k

Dipi,k + κfi
2Di

∑
k∈K xi,kRi,k

, 1

}
(37)

pi,k ≥
[
2

λi,kDifs

(fsTi−fsτ0−λi,kκDi)W − 1

]
×
∑

i′∈I,i′ ̸=i xi′,kpi′,kGi′,k |hi′,k|2 Li′ +
∑

j∈J xj,kpj,kGj,k |hj,k|2 Lj + σ0

Gi,k |hi,k|2 Li

(41)

λi,kDipi,k

W log2

(
1 + pi,kGi,k|hi,k|2Li∑

i′∈I,i′ ̸=i xi′,kpi′ ,kGi′ ,k|hi′ ,k|2Li′+
∑

j∈J xj,kpmin
j,k Gj,k|hj,k|2Lj+σ0

) ≤ Ei − κ (fi)
2
Di (1− λi,k) (44)

where W(·) is the Lambert-W function [47]. ΞA and ΞC are

ΞA =
[
Ei − κ (fi)

2
Di (1− λi)

]
W (46a)

ΞC = λi,kDi ln 2 (46b)

and ΞF and ΞG can be given by (47) and (48). Thus, the
optimal solution pi,k can be efficiently found by solving the
problem P6.

D. RIS-assisted channel assignments

The RIS-assisted channel assignment subproblem aims at
optimizing the channel assignment X . For given beamwidth
allocation Ω, offloading rate Λ and power allocation P , the
optimization problem P2 with respect to channel assignment
can be reformulated as

P7 : {X ∗} = argmin
X

{τavg | Ω∗,Λ∗, P ∗} (49a)

s.t. xi,k ∈ {0, 1}, xj,k ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J , ∀k ∈ K (49b)∑
k∈K

xi,k =
∑
k∈K

xj,k = 1, ∀i ∈ I, ∀j ∈ J (49c)∑
i∈I

xi,k +
∑
j∈J

xj,k ≤Mk, ∀i ∈ I, ∀j ∈ J (49d)

To solve the solution of problem P7, the channel matching
algorithm is developed to reduce the co-channel interference.
For the channel matching process, we define CP-ID set I and
channel set K, then the corresponding channel matching ϕ is
given by

∀i ∈ I, ϕ(i) ∈ K, |ϕ(i)| = 1 (50)

∀k ∈ K, ϕ(k) ∈ I, |ϕ(t)| ≤Mk (51)

Combining constraints (49b), (49c) and (49d), ϕ(i) = k
implies that xi,k = 1, otherwise xi,k = 0. The utility functions
for CP-ID i at k-th channel is

Ui = Uk = Ri, k, (52)

where Ri, k denote the transmission rate of CP-ID i at k-th
channel. As the definition of utility functions, the relationships
≻i and ≻k should be satisfied the following requirements

i ≻K i′ ⇔ Ui(ϕ) > Ui′ (ϕ
′)

k ≻i k′ ⇔ Uk(ϕ) > Uk′ (ϕ
′) .

Algorithm 1 RIS-assisted channel assignment algorithm
1: Initialization: Randomly initial IoT device, channel

allocation X and swap matrix C, where C = 1−X

2: for i ∈M do
3: if IoT device i ∈ C do
4: swapping the CP-ID with i, included in set Iswap.
5: if there exists i ∈ Iswap do
6: i and i′ leave the current channel and join other

channel;
7: For allocation matrix X , we have
8: Xi,k ← 0, Xi′,k′ ← 1
9: Xi,k′ ← 1, Xi′,k′ ← 0

10: For allocation matrix C, we have
11: Ci,k ← 0, Ci′,k′ ← 0
12: Ci,k′ ← 0, Ci′,k′ ← 0
13: end if
14: end if
15: By given X , update with Ω, P and Λ with Algorithm 2
16: end for

The detailed matching actions is provided in Alogrithm 1.
Crossover and variation action: The CP-ID i assigned channel
k execute crossover operation with CP-ID i′ assigned channel
k′.

Based on the above analysis, we provide the detailed
implementation of the channel matching algorithm in
Algorithm 1. The RIS-assisted channel assignment problem P7

is considered as the channel matching process, which means
each CP-IDs is assigned to the corresponding fraction of the
channel time. The optimal RIS-assisted channel assignment is
obtained with two players-based matching iteration. Besides,
the computational complexity of Algorithm 1 is given by
assuming that in each iteration, the optimal matching selected
from the preference list always conflicts with other matching
results, then each CP-ID matches at most K subchannel, and
its complexity is O(IK), where I is the number of CP-IDs.
In addition, the complexity of updating the preference list
for each CP-UE is O(K logK). Hence, the complexity of
Algorithm 1 can be expressed as O(Iiter(IK + IK logK)),
where Iiter is the number of iterations of point-to-point
matching.
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ΞF = −
λi,kDi

(∑
i′∈I,i′ ̸=i xi′,kpi′,kGi′,k |hi′,k|2 Li′ +

∑
j∈J xj, kp

min
j,k Gj,k |hj,k|2 Lj + σ0

)
[
Ei − κ (fi)

2
Di (1− λi,k)

]
WGi,k |hi,k|2 Li

(47)

ΞG =

∑
i′∈I,i′ ̸=i xi′,kpi′,kGi′,k |hi′,k|2 Li′ +

∑
j∈J xj,kp

min
j,k Gj,k |hj,k|2 Lj + σ0

Gi,k |hi,k|2 Li

(48)

Algorithm 2 SCA-based alternating iterative algorithm

1: Initialization: Initial variables Ω(0) and P(0); set a
termination threshold ζ > 0 and n = 0

2: while τ
(n+1)
avg − τ

(n)
avg > ζ do

1) Solve problem P3 for given X , P and Λ, and obtain
the solution of beamwidth allocation Ω;

2) Solve problem P5 for given X , P and Ω, and obtain
the solution of offloading rate Λ;

3) Solve problem P6 for given X , Λ and Ω, and obtain
the solution of powers allocation P;

4: end while
5: Output Ω, P , Λ.

The Algorithm 2 consists four stages. In the first stage,
Algorithm 1 is executed depending on the initialize variables
Ω, P and Λ. Then, we update the beamwidth allocation Ω by
given current matrix X , P and Λ; In the third stage, we update
the offloading rate Λ by given matrix X , P and Ω; Finally,
we update the power allocation P by given matrix X , Λ and
Ω.

IV. SIMULATION RESULTS

In this section, we provide simulation results to verify the
effectiveness of the RIS-assisted MEC-NOMA network. We
consider one BSs to serve 20 IoT devices in the RIS-assisted
network. The bandwidth of system is 100 MHz, which
is available to the BSs. The direct and reflected channels
are considered with independent and identically distributed
Rayleigh fading. For the convenience of notation, Table I
summarize the parameters used throughout the simulations.
Based on 3GPPP standards, the channel path loss model is
employed as 20 log 10( 4πλ ) + 10n log 10(d) + φ, where φ is
the shadowing margin, n is the path loss exponent, λ is the
carrier wavelength, and d is the distance from the transmitter
to the receiver.

Firstly, we examine the performance of the proposed
algorithm by taking three benchmark schemes: TDMA-MEC
transmission scheme, NO RIS and GPM NOMA-MEC scheme
[48]. We set the different main lobe gain of RIS as 3.6
and 25.6, respectively. An interesting observation from Fig.
2, when the number of input bits is relatively large, the
proposed RIS-assisted MEC-NOMA offloading can achieve a
significant energy consumption reduction, compared to other
three schemes. The reason is that when the number of input

TABLE I
THE PROPOSED RIS-ASSISTED MEC-NOMA FRAMEWORK PARAMETERS

FOR SIMULATION

Notation Parameters Value

W System bandwidth 100 MHz

gRIS,n the main lobe gain of RIS 3.6, 25.6

Tp Pilot transmission time 1 ms

I Sets of CP-IDs {1,2...,I}

J Sets of CM-IDs {1,2...,J}

zbs Side lobe gain of BS 0.001

zRIS Side lobe gain of RIS 0.001

σ2
0/W Noise power spectral density -174 dBm/Hz
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Fig. 2. The energy consumption versus the number of input bits for different
schemes.

data is large, the fraction of the channel assignment for the
proposed offloading scheme can support the transmission of
the IoT devices effectively. On the other hand, we can see
that energy consumption decreases with the different main
lobe gain of RIS. It is because RIS phases are optimized to
improve the channel conditions between the BS and users.
Furthermore, it can be seen that, as expected, the energy
consumed by MEC-NOMA offloading increases as the number
of input bits increases, which is due to the fact that a
larger input bits lead to more transmitted data offloading,
resulting in more energy to be consumed. It is also seen
that the performance gap between the proposed MEC-NOMA
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Fig. 4. Performance of CM-IDs under the proposed method.

with multi-objective scheme and the conventional compared
schemes increases as the number of channels increases,
which is more beneficial to the application of RIS-assisted
MEC-NOMA system. More importantly, it is shown that
the performances of RIS-assisted MEC-NOMA offloading are
always better than that of existing schemes, which elaborate
the necessity of the channel assignment-based MEC-NOMA
offloading in RIS-assisted communication scenarios.

In Fig. 3, different energy consumption ECP is considered
to evaluate the the average offloading tasks. It is observed that
the obtained average offloading delay increases with offloading
tasks of CP-IDs increases. It implies that the energy overhead
of CP-IDs increases with the corresponding MEC-NOMA
offloading tasks increasing, which resulting in CP-IDs cannot
complete the tasks offloading within average delay of time.
Therefore, practical channel assignment algorithm are crucial
to RIS-assisted MEC-NOMA offloading.

To demonstrate the validity of task offloading, the
relationship between the beamwidth allocation of the
RIS-assisted MEC-NOMA scheme with different energy
consumption ECP is illustrated. As illustrated in Fig. 4, with
average transmission rate increases, the beamwidth allocated
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to CM-IDs by the RIS-assisted MEC-NOMA will be reduced.
The reason is that under certain transmission rate constraints,
the problem P0 is transformed into the problem P1 in favour
of reducing the delay of beam alignment. It can conclude that,
the proposed RIS-assisted MEC-NOMA algorithm can fulfill
the transmission requirements of CM-IDs under the tolerable
range of offloading delay.

Fig. 5 plots the EE of the system versus the number of IoT
devices under the proposed scheme, the energy consumption
minimization scheme and the computation rate maximization
scheme. It can be observed that the EE of system of the
proposed scheme increases with the increasing IoT devices
due to the fact that a larger M provides more flexibility for
choosing IoT devices and allocating resources to achieve a
higher EE of system, while the system computation EE under
the computation rate maximization scheme shows a downward
trend. From the curves, one can see that the proposed scheme
outperforms other schemes, which verifies the superiority of
the proposed scheme.

In Fig. 6, we provide the convergence of the RIS-assisted
MEC-NOMA algorithm. After the RIS-assisted MEC-NOMA
algorithm tended to stabilize about 52 iterations, which
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indicates the efficiency of proposed algorithms. As can be
seen that the initial points is high. The reason is that at the
initial iteration process, all of variables is generated randomly.
Meanwhile, it is observed that for the curve of Fig. 6, there
exist the sudden oscillation and irregularity in the first 52
iterations. This phenomenon is due to the channel matching
mutation caused by the proposed algorithm, when the channel
matching algorithm is executed.

Finally, an optimal point is provide to trade-off
between maximizing f(X ,P,Λ,Ω) =

∑
i∈I βiτi

I and
minimizing g(X ,P,Λ,Ω) =

∑
j∈J

∑
k∈K xj,kRj,k. Fig. 7

illustrates the trend of system f(X ,P,Λ,Ω) with respect to
g(X ,P,Λ,Ω). It can be perceived that the tradeoff between
f(X ,P,Λ,Ω) and g(X ,P,Λ,Ω) for different numbers of
RIS reflecting elements, which confirms that f(X ,P,Λ,Ω)
and g(X ,P,Λ,Ω) are conflicting objective functions. In fact,
system throughput is by itself a function of system transmit
power, thus any increase in the throughput may results in
higher energy consumption as well. The point at optimal
Pareto which energy consumption exceeds g(X ,P,Λ,Ω)
gains, the overall f(X ,P,Λ,Ω) starts reducing. Furthermore,
the tradeoff region is enlarged by increasing the number
of RIS reflecting elements. This is the fact that for a ULA
with ℓ antenna elements, the half power beamwidth can be
expressed as θ(ℓ) = 2

(
π
2 − arccos 2.784

ℓπ

)
[49]. According to

(3), more reflecting elements can provide more antenna gain
of signal transmission.

V. CONCLUSION

In this paper, we investigated the channel assignment-based
task offloading for the RIS-assisted MEC-NOMA system,
where the data transmission demands from both CM-IDs and
CP-IDs were considered. For high task offloading demand,
the channel resources are insufficient to assign one dedicated
channel for each offloading IoT devices, which may cause
strong interference in the transmitting procedure. The channel
assignment-based MEC-NOMA task offloading approach is
proposed for multiple applications offloading simultaneously
through the fraction of the channel time scheme. Our
objective is to minimizing the average delay of CP-IDs,

while maximizing the transmission rate of CM-IDs. Based
on that, the MOP for task offloading has been formulated,
and joint four-stage iterative algorithm is developed to solve
the formulated non-convex task offloading problem. Numerical
results assess that performance improvement can be obtained
by leveraging the channel assignment-based task offloading
algorithm comparing with conventional schemes.

APPENDIX A
PROOF OF THE LEMMA 1

Proof: Firstly, the proof of the sufficiency is provided by
defining

f1(x) = τavg ,

f2(x) = −Rtot ,

where x = (X ,P,Λ,Ω).
For a given ϵ, we assume that x∗ is the unique optimal

solution of the SOP, where x satisfies the constraints (21c) to
(21l). Thus, we have

f1 (x
∗) ≤ f1(x). (53)

If x∗ is not Pareto optimal solution of the MOP, the solution
of problem SOP exist x′ and x′ ̸= x that satisfies

fk (x
′) ≤ fk (x

∗) , ∀k = 1, 2, (54)

and there exist at least one k ∈ {1, 2} such that fk (x
′) <

fk (x
∗). It is obviously that the contradicts with the uniqueness

assumption. Hence, it concludes that x∗ is Pareto optimal
solution of the MOP.

Next, the proof of the necessity is provided. For ϵ = f2 (x
∗),

if x∗ is a Pareto optimal solution for MOP and x∗ is not the
optimal solution for SOP, it exists a solution x′, thus we have

f1 (x
′) ≤ f1 (x

∗)

and
f2 (x

′) ≤ ϵ = f2 (x
∗) .

This result also contradicts with the uniqueness assumption.
The necessity is also proved.
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