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Computing Systems with Energy Harvesting
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Abstract—By providing spatial diversity gain, the incorpora-
tion of multiple antennas into mobile edge computing (MEC)
systems can improve the transmission performance. Meanwhile,
employing energy harvesting (EH) helps enhance the system
sustainability. In this paper, we focus on multi-input multi-output
(MIMO) MEC systems with EH and studies the computation
offloading. The design objective is to minimize the time average
of a weighted sum of energy consumption and execution
delay, meanwhile stabilizing the battery energy queue. To this
end, we formulate the problem as a statistic program and
propose a dynamic computation offloading (DCO) algorithm in
which the transmitter covariance matrix, CPU-cycle frequencies
for local computing, and partial offloading ratio are jointly
optimized. Based on Lyapunov optimization, the program is first
transformed into a nonconvex per-time slot problem. Then, we
solve it by the successive convex approximation (SCA) technique,
where a sequence of convex problems are created and solved.
Simulation results demonstrate that the proposed algorithm
is asymptotically optimal and outperforms several benchmark
schemes in terms of both the average system cost and task drop
ratio.

Index Terms—Mobile edge computing, MIMO, Lyapunov
optimization, energy harvesting.

I. INTRODUCTION

Increasing mobile terminals and diversified service types

bring challenges to mobile networks. To address it, mobile

edge computing (MEC) is proposed to partly transfer the

functions originally located in the cloud computing center to

the edge of the network [1]. In this way, network congestion

and system pressure can be relieved. On the other front,

mobile terminals, especially small Internet of Things (IoT)

devices, are often plagued by limited battery energy [2].

Fortunately, energy harvesting (EH) technology can improve

this situation by capturing green energy. The integration of

EH into MEC will enhance sustained computation ability

of mobile devices, having potential applications such as

wearable medical systems, environmental monitoring, and

disaster relief, which has received a lot of attention [3]–[12].

The MEC systems with EH, termed as MEC-EH, can be

classified into two types according to the EH model. For the

first type, the terminal harvests radio frequency (RF) energy

from the access point (AP) which usually integrates both the
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MEC server and energy transmitter [3]–[7]. In [3], a multiuser

wireless powered MEC network was considered, where the

AP broadcasted RF energy to distributed terminals. By jointly

optimizing the individual mode selection and transmission

time allocation, the sum computation rate was maximized. In

[5], the authors studied the problem of maximizing the sum

computation bits of all users in a backscatter-assisted MEC

network.

While the second type of MEC-EH system adopts a more

general EH model in which the terminal harvests ambient

energies, including the solar energy, vibration of mechanical

energy, RF energy, etc. [8]–[12]. Compared with the RF-type

EH, the ambient type is much more random, leading to that it

is difficult to be predicted. The system optimization objective

turns to the time average of energy consumption or execution

latency. The corresponding resources scheduling policy is also

parameterized by time and referred to as dynamic scheduling.

In [8], the authors proposed a Lyapunov optimization-based

dynamic computation offloading algorithm, to minimize the

time average latency, meanwhile stabilizing the battery energy

queue. In [9], the authors studied the tradeoff between the

energy consumption and execution delay for MEC systems

with an energy queue and several task-buffer queues.

Currently, most works on MEC networks with EH focused

on the single-antenna case except that only a few works

studied the multi-input single-output (MISO) case, e.g. [6].

To the best of our knowledge, there has been no work on

MIMO MEC with EH. Clearly, multiple antennas can provide

the spatial diversity gain and the incorporation of MIMO is

able to improve the transmission performance. On the other

front, the ambient energy is easily accessible and does not

require an energy transmitter. Motivated by the above, we

study MIMO MEC networks with the ambient-type EH and the

associated offloading strategy. The contributions and novelties

are summarized as follows. 1) Model: Different from the

models in existing works, we incorporate MIMO into MEC

networks with EH; besides, partial offloading is adopted since

it is more suitable for tasks with strict latency requirement.

2) Algorithm: The system design involves both the energy

consumption and execution delay and aims at minimizing the

long-time average of a weighted sum of them; a dynamic

computation offloading (DCO) algorithm is proposed based

on successive convex approximation (SCA) [13], [14] under

the Lyapunov optimization framework. 3) Results: Multiple

antennas and the optimization of transmission covariance

matrix help reduce the system cost and the task drop ratio.

Notations: E(·) denotes the statistical expectation; Cm×n

represents the space consisting of m × n complex matrices.

For a matrix X, the notations X∗, XH, and Tr(X) denote its
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conjugate, Hermitian transpose, and trace, respectively; Im is

an m×m identity matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system consists of an MEC server and a mobile

terminal which can harvest energy from surroundings. The

MEC server and terminal are equipped with NT and NR

antennas, respectively. Based on the channel condition, the

terminal can offload the task partially onto the MEC server.

Assume that the time is slotted and the length of each slot

is τ . Denote the time slot set by Γ
Δ
= {0, 1, · · ·}. At the

beginning of each time slot, the task of length L in unit of bit

arrives at the terminal with probability ρ, which is modelled

as an i.i.d Bernoulli process. Further, assume that the task

is response-time sensitive and should be finished within one

time slot. Each task can be computed or simply dropped due to

insufficient system resources, with an indicator Iexe(n) = 1(0)
representing that the task is executed (discarded). If computed,

the task can be separated into two parts: one part is computed

locally while the other is offloaded and computed by the server.

A. Computation Model

At the n-th slot, assume that α(n)L bits of the task are

executed locally and (1 − α(n))L bits are offloaded to the

MEC server.

1) Local computation: The processing time for local

computation is expressed as

Dl(n) = α(n)Lη/f(n), (1)

where η is the number of cycles of processing one bit,

and f(n) is the CPU frequency at time slot n. The energy

consumption is expressed as

El(n) = α(n)βLηf2(n), (2)

where β is the coefficient that depends on the chip architecture.

2) MEC computation: The processing time for MEC

computation is given by

DMEC(n) = (1− α(n))L/r(Q(n)), (3)

where Q(n) is the transmitter covariance matrix with

tr(Q(n)) ≤ PT and PT is the maximum transmission power.

In (3), the uplink transmission rate is

r(Q(n)) = BW log2det(INR
+H(n)Q(n)HH(n)/σ2),

where H(n) ∈ C
NR×NT is the uplink channel matrix; WB

is the bandwidth of the MEC sever and σ2 is the noise

power. Note that both the feedback delay and MEC execution

delay are omitted since they are usually small. The energy

consumption for the mobile terminal is given by [15]

EMEC(n) = (1− α(n))Ltr(Q(n))/r(Q(n)). (4)

From (3) and (4), we can obtain an insight on the system.

3) System latency and energy consumption: With (1),

(2), (3), and (4), define the total time delay and energy

consumption of the system as

Dsys(n)
Δ
= 1(Iexe(n)=1) ·max [Dl(n), DMEC(n)] , (5)

Esys(n)
Δ
= 1(Iexe(n)=1) · [El(n) + EMEC(n)] , (6)

where 1(.) is the indicator function.

B. Energy Harvesting Model
Assume that the arrived energy EH(n) is uniformly

distributed in the interval [0, EMAX
H ]. Clearly, the practical

harvested energy e(n) satisfies 0 ≤ e(n) ≤ EH(n). The

battery energy, denoted as B(n), is updated according to the

following equation

B(n+ 1) = B(n) + e(n)− Esys(n). (7)

Note that B(n) refers to the energy level at the beginning of

time slot n [8], whereas e(n) refers to the harvested energy

during the period of time of length τ .
For the MEC system with the RF-type EH, the collected

energy at slot n, e(n), can be predicted and hence it can be

used for the current time slot. However, for the system with

the ambient EH, e(n) can not be predicted and it is known at

the end of slot n. Hence, the harvested energy e(n) cannot be

used at the current time slot n and can only be used for the

next time slot. Consequently, the system energy consumption

should satisfy

0 ≤ Esys(n) ≤ B(n). (8)

C. Problem Formulation
The energy consumption and latency are two important

factors in measuring the system performance, which are used

to optimize the offloading policy. Due to the lack of battery

energy or the deep fading of the channel, some tasks have to

be dropped. Considering this, we introduce the task dropping

cost Φ into the system cost function, which stands for a kind

of ‘penalization’. A large Φ means that the system prefers to

execute the task, even if the channel condition is not good or

the energy consumption is high, while a small Φ means the

opposite. At time slot n, the system execution cost is defined

as

Fcost(n)=[Esys(n)+wDDsys(n)] + Φ · 1(Iexe(n) = 0), (9)

where wD is the weight on the execution delay. Usually,

we prefer executing a task to drop it, which leads to Φ ≥
max [Esys(n)+wDDsys(n)] . Since Esys(n)+wDDsys(n) ≤
EMAX + wDτ holds, we may set Φ ≥ EMAX + wDτ .

Then, the problem is formulated as P1. In P1, C1 is

the latency constraint, C2 and C3 are energy constraints

with EMAX being the maximum energy consumption, C5 is

the transmission power constraint, and C6 is the frequency

constraint for local computation with fMAX representing the

maximum CPU frequency.

P1 : min
{Iexe(n),Q(n),f(n),α(n),e(n)}

lim
T→∞

1
T E

[
T−1∑
n=0

Fcost (n)

]
s.t. C1 : Dsys (n) ≤ τ

C2 : Esys (n) ≤ EMAX

C3 : 0 ≤ Esys (n) ≤ B (n)
C4 : 0 ≤ e (n) ≤ EH (n)
C5 : 0 ≤ tr (Q (n)) ≤ PT · 1 (Iexe (n)=1)
C6 : 0 ≤ f (n) ≤ fMAX · 1 (Iexe (n)=1)
C7 : 0 ≤ α(n) ≤ 1
C8 : Iexe (n) ∈ {0, 1} , n ∈ Γ.
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III. THE PROPOSED DYNAMIC COMPUTATION

OFFLOADING METHOD

In this section, we first perform transformations on P1 to

make it satisfy the prerequisite of Lyapunov optimization.

Then, we solve the transformed problem.

A. The DCO Algorithm

Lyapunov optimization technique is suitable to solve the

problem involving time averages and queues. P1 is just an

example of this type. However, the technique cannot be applied

to it directly. Because in C3, B(n)′s at different time slots are

not independent so that the decision sets of P1 at different time

slots are related. This violates the prerequisite of Lyapunov

optimization. To remove C3, we introduce an energy lower

bound EMIN and construct a virtual energy queue B̃(n) [8],

[9].

First, introduce EMIN into C2, obtaining a modified version

of P1.

P2 : min
{Iexe(n),Q(n),f(n),α(n),e(n)}

lim
T→∞

1
T E

[
T−1∑
n=0

Fcost (n)

]
s.t. C1, C3 − C8

C ′
2 : Esys (n) ∈ {0} ∪ [EMIN, EMAX]

For EMIN → 0, the optimal value of P2 approaches that of

P1 [8], [9].

Second, construct a virtual energy queue B̃(n)
Δ
= B(n)−θ.

Here, θ is a perturbation parameter satisfying

θ ≥ ẼMAX + V (Φ · E−1
MIN − 1), (10)

where ẼMAX = min
(
βLηf2

MAX + PT τ, EMAX

)
and V is a

control parameter. By doing so, we can ignore C3 and the

resultant solution can automatically satisfy C3, as will be

proved later.

Third, omitting C3 of P2, we adopt the classic Lyapunov

optimization to solve it. Note that B̃(n) also satisfies (7) and

the queue to be stabilized in P2 is B̃(n) instead of B(n).
Define the Lyapunov drift function as

Δ
(
B̃(n)

)
=
1

2
E

[(
B̃(n+ 1)

)2

−
(
B̃(n)

)2

|B̃(n)
]
.

Using similar technique in [8], [9], it is easy to derive that

Δ
(
B̃(n)

)
≤ C0+E

[
B̃ (n) (e (n) −Esys (n)) |B̃ (n)

]
, where

C0 = 1
2

[(
EMAX

H

)2
+ Ẽ2

MAX

]
. Consequently, the Lyapunov

drift-plus-penalty function is upper bounded by

Δ
(
B̃(n)

)
+ V

[
Fcost (n) |B̃ (n)

]
≤ C0 +

{
B̃ (n)

× [e (n)− Esys (n)] |B̃ (n)
}
+ V

[
Fcost (n) |B̃ (n)

] .

The Lyapunov optimization-based technique minimizes the

upper bound of the drift-plus-penalty function per time slot

so as to reduce the system cost, meanwhile keeping the queue

B̃(n) stable. Based on the above, the dynamic computation

offloading algorithm is proposed and summarized in Algorithm
1. Further, we have the following two lemmas about this

algorithm.

Lemma 1: The optimal solution of P3 satisfies C3.

Algorithm 1: The Proposed DCO algorithm.

1: Initialize the total iteration number Tmax and n = 0.

2: When the task arrives, obtain B(n), EH(n), H(n), and

compute B̃(n).
3: Solve the following per-time slot problem.

P3 : min
{Iexe(n),Q(n),f(n),α(n),e(n)}

B̃ (n)[e (n)−Esys (n)]+V Fcost(n)

s.t. C1, C
′
2, C4 − C8

4: Increase n := n+ 1 and update B(n) .

5: If n > Tmax, end this procedure; otherwise repeat steps

2-5.

Proof: To begin with, note that the optimization of e (n)
only involves C4 and is not related with other variables. The

optimal e (n) can be obtained by solving the sub-problem of

P3:

P3−1 : min B̃ (n) e (n) , s.t. C4.

The optimal solution is ē (n)=EH (n) ·1
(
B̃ (n) ≤ 0

)
. Then,

we consider two cases. For B (n) ≥ ẼMAX, it is clear that

Esys (n) ≤ ẼMAX and hence Esys (n) ≤ B (n). For B (n) <
ẼMAX, it is clear that B̃ (n) < 0 and the objective of P3 for

executing the task is

B̃ (n) [EH (n)− Esys (n)] + V Esys (n) + V wDDsys (n)

= B̃ (n)EH (n) +
[
V − B̃ (n)

]
Esys (n) + V wDDsys (n)

> B̃ (n)EH (n) + V ΦE−1
MINEMIN

= B̃ (n)EH (n) + V Φ.

Note that B̃ (n)EH (n) + V Φ is the objective of P3 for

dropping the task. This means that we should drop this task,

which results in Esys(n)=0≤B(n). Therefore, Lemma 1 holds.

Lemma 2: F̄P2
cost ≤ F̄DCO

cost ≤ F̄P2
cost + C0/V , where F̄DCO

cost

and F̄P2
cost are the average costs achieved by the DCO algorithm

and solving problem P2, respectively.

The proof of Lemma 2 can be referred to [8] and [16,

Section 4.5]. Here, we will not go into more details.

From the proof of Lemma 1 and Lemma 2, we can obtain

the following insights on the system.

Remark 1: For B (n) < ẼMAX, the task will be dropped.

This means that the system keeps on discarding tasks in order

to charge the battery initially. Besides, when B̃ (n) > 0, i.e.,

B (n) > θ, the system will discard the harvested energy. It is

inferred that the battery energy is stable around the expected

level θ, which will be verified by simulation results later.

Remark 2: Lemma 1 implies that the solution of P3 is also

feasible for P1 and P2. With Lemma 2, F̄DCO
cost → F̄P2

cost when

V → +∞. Recall that F̄P2
cost → F̄P1

cost when EMIN → 0. It

follows that for EMIN → 0 and V → +∞, F̄DCO
cost → F̄P1

cost,

where F̄P1
cost is the average cost of P1. In other words, the

proposed DCO method asymptotically achieves the optimal

value of P1.

B. The Algorithm of Solving the Per-time Slot Problem P3

In the DCO algorithm, the key step is to solve the per-time

slot problem P3. This subsection will develop a SCA based
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algorithm to solve this problem. From the previous subsection,

the optimal e(n) is obtained by solving P3−1 and the left is to

optimize the task assignment. Since the solution for dropping

the task is simple, we just consider the case of execution,

which is expressed by another subproblem of P3.

P3−2 : min
{Q(n),f(n),α(n)}

[
−B̃ (n)+V

]
Esys(n)+V wDDsys(n)

s.t. C1, C5 − C7

C ′′
2 : EMIN ≤ Esys (n) ≤ EMAX

P3−2 is non-convex due to the objective function and

energy constraint. Tackling it needs the introduction of

auxiliary variables and some convex transformations. This

problem can be divided into two cases according to whether

−B̃ (n) + V ≥ 0.

1) −B̃ (n) + V ≥ 0: Introducing auxiliary variables S1,

S2, and S3, P3−2 can be equivalently written as

P4 : min
{Q(n),f(n),α(n),S1,S2,S3}

[
−B̃ (n)+V

]
(S1+S2)+V wDS3

s.t. C1−1 : α (n)Lη − f (n)S3 ≤ 0
C1−2 : (1− α (n))L− r (Q (n))S3 ≤ 0
C1−3 : S3 ≤ τ
C2−1 : βLηf

2 (n) /S1 ≤ 1/α (n)
C2−2 : (1− α (n)) tr (Q (n)) /S2 − r (Q (n)) /L ≤ 0
C2−3 : EMIN ≤ S1 + S2 ≤ EMAX

C2−4 : S1 ≥ 0, S2 ≥ 0
C ′

5 : 0 ≤ tr (Q (n)) ≤ PT

C ′
6 : 0 ≤ f (n) ≤ fMAX

C7 : 0 ≤ α(n) ≤ 1, n ∈ Γ
Observe that, C1−1, C1−2, C2−1 and C2−2 are not convex

and hence need convexification. Clearly,

f1 (α (n) , f (n))
Δ
= α(n)

f(n)

≤ 1
2

[
b1

(k)(α (n))
2
+ 1

b1(k)(f(n))2

]
Δ
=g1

(
α (n) , f (n) ; b1

(k)
)
,

where b
(k)
1 denotes the value of b1 in the k-th iteration. Using

the convex upper bound of f1(·), we replace C1−1 by the

convex constraint C ′
1−1:

Lηg1

(
α (n) , f (n) ; b1

(k)
)
≤ S3.

Similarly, we have the following inequalities.

f2 (α (n) , S3)
Δ
= 1−α(n)

S3

≤ 1
2

[
b2

(k)(1− α (n))
2
+ 1

b2(k)S2
3

]
Δ
= g2

(
α (n) , S3; b2

(k)
)
,

f3 (α (n))
Δ
= 1

α(n)

≥ 1

b
(k)
3

− 1[
b
(k)
3

]2
(
α (n)− b

(k)
3

)
Δ
= g3

(
α (n) ; b

(k)
3

)
,

and

f4 (α (n) ,Q (n) , S2)
Δ
= (1− α (n)) tr (Q (n)) /S2

≤ 1
3

{
b
(k)
4 (1− α (n))

3
+ b

(k)
5 [tr (Q (n))]

3
+ 1

b
(k)
4 b

(k)
5 S3

2

}
Δ
= g4

(
α (n) ,Q (n) , S2; b

(k)
4 , b

(k)
5

)
,

where b
(k)
2 ∼ b

(k)
5 have similar definitions to b

(k)
1 . Using

the inequalities above, we replace C1−2, C2−1, and C2−2

by the following convex constraints C ′
1−2, C ′

2−1, and C ′
2−2,

respectively.

C ′
1−2 : g2

(
α (n) , S3; b2

(k)
)
≤ r(Q(n))

L ;

C ′
2−1 : βLηf

2 (n) /S1 ≤ g3

(
α (n) ; b

(k)
3

)
;

C ′
2−2 : g4

(
α (n) ,Q (n) , S2; b

(k)
4 , b

(k)
5

)
≤ r(Q(n))

L .

With C ′
1−1, C ′

1−2, C ′
2−1 and C ′

2−2, we construct the convex

problem P
(k)
4 that is parameterized by b

(k)
1 ∼ b

(k)
5 .

P
(k)
4 : min

{Q(n),f(n),α(n),S1,S2,S3}

[
−B̃ (n)+V

]
(S1+S2)+V wDS3

s.t. C ′
1−1, C

′
1−2, C1−3, C

′
2−1, C

′
2−2, C2−3, C2−4, C

′
5, C

′
6, C7

Note that the new constraints C ′
1−1, C ′

1−2, C ′
2−1 and C ′

2−2

are much tighter, therefore the feasible points of P
(k)
4 are also

feasible for P4.

Besides, when

b
(k)
1 = 1/ [α(n)f(n)] , (11a)

b
(k)
2 = 1/ [(1− α(n))S3] , (11b)

b
(k)
3 = α(n), (11c)

b
(k)
4 = tr (Q(n)) /S2/[1− α (n)]

2
, (11d)

b
(k)
5 = [1− α (n)] /S2/ [tr (Q(n))] , (11e)

the functions f1 (·) ∼ f4 (·) and g1 (·) ∼ g4 (·) satisfy [14,

Property A], the prerequisite of the SCA-based method.

Based on the above, the SCA-based algorithm of solving P4

is proposed and summarized in Algorithm 2. This algorithm

solves a sequence of problems {P (k)
4 }. It is easy to verify

that the optimal solution of P
(k)
4 is feasible for P

(k+1)
4 . Thus,

the objective obtained in the (k + 1)-th iteration is less than

or equal to that in the n-th iteration. Since the objective, no

less than zero and hence lower bounded, decreases with n,

this algorithm is convergent. Usually, the SCA-based algorithm

converges to a good local optimal solution.

Algorithm 2: Solve Problem P4.

1: Initialize b
(0)
1 ∼ b

(0)
5 and iteration index k = 0.

2: Solve P
(k)
4 and obtain the optimal solution: Q̄ (n) , f̄ (n),

and ᾱ (n).
3: k := k + 1.

4: Update b
(0)
1 ∼ b

(0)
5 according to (11). Note that we replace

Q (n) , f (n), and α (n) with Q̄ (n) , f̄ (n), and ᾱ (n) in

(11), respectively.

5: Repeat steps 2-5 until convergence.

Remark 3: b
(k)
3 in C ′

2−1 is predetermined at the k-th iteration

and should be treated as a constant; the function f2 (n) /S1

is a quadratic-over-linear function, which is convex. Hence,

C ′
2−1 is convex.

Remark 4: In P4, the values of S1 ∼ S3 and the objective

function depend on a sequence of P
(k)
4 and they can be

obtained after the convergence of this sequence. From a P
(k)
4
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in a single iteration, the associated convergence values cannot

be obtained.

2) −B̃ (n) + V < 0: The processing steps in this part are

similar to the previous ones. Introducing auxiliary variables

S1, S2, and S3, we transform P3−2 into an equivalent problem.

P5 : min
{Q(n),f(n),α(n),S1,S2,S3}

[
−B̃ (n)+V

]
(S1+S2)+V wDS3

s.t. C1−1, C1−2, C1−3, C2−3, C2−4, C
′
5, C

′
6, C7

C̄2−1 : βLηf
2 (n) /S1 ≥ 1/α (n)

C̄2−2 : (1− α (n)) tr (Q (n)) /S2 − r (Q (n)) /L ≥ 0

Clearly, the following inequalities hold.

f5 (S1, α (n))
Δ
=

√
S1

α(n) ≤ 1
2

[
b
(k)
6 S1 +

1

b
(k)
6 α(n)

]
Δ
= g5

(
S1, α (n) ; b

(k)
6

)
,

f6 (S2, α (n) ,Q (n))
Δ
= S2

(1−α(n))tr(Q(n)) ≤ 1
3

{
b
(k)
7 S3

2+

b
(k)
8

[1−α(n)]3
+

[
b
(k)
7 b

(k)
8

]−1

[tr(Q(n))]3

}
Δ
=g6

(
S2,α (n) ,Q (n) ;b

(k)
7 , b

(k)
8

)
,

and

f7 (Q (n))
Δ
= 1

r(Q(n)) ≥ r
(
Q

(k)
0

)
− 1[

r
(
Q

(k)
0

)]2×

tr
[
∇Q∗(n)r

(
Q

(k)
0

)
·
(
Q (n)−Q

(k)
0

)]
Δ
=g7

(
Q (n);Q

(k)
0

)
,

where ∇Q∗(n)r (·) is the gradient of r (·) with respect to the

conjugate of Q (n) and

∇Q∗(n)r
(
Q

(k)
0

)
=
BWHH(n)

ln 2 · σ2

[
I+

H(n)Q
(k)
0 HH(n)

σ2

]−1

H(n).

Note that, since both ∇Q∗(n)r (·) and
(
Q (n)−Q

(k)
0

)
are Hermitian, it is easy to verify that

tr
[
∇Q∗(n)r

(
Q

(k)
0

)
·
(
Q (n)−Q

(k)
0

)]
is a real number.

We use the above inequalities to convexify C̄2−1 and C̄2−2,

obtaining

C̄ ′
2−1 :

√
βLηf (n) ≤ g5

(
S1, α (n) ; b

(k)
6

)
C̄ ′

2−2 :g6

(
S2, α (n) ,Q (n) ; b

(k)
7 , b

(k)
8

)
≥L·g7

(
Q (n) ;Q

(k)
0

)
.

With C ′
1−1, C

′
1−2, C̄

′
2−1 and C̄ ′

2−2, construct the convex

problem P
(k)
5 , parameterized by b

(k)
1 , b

(k)
2 , b

(k)
6 ∼b(k)8 , and Q

(k)
0 .

P
(k)
5 : min

{Q(n),f(n),α(n),S1,S2,S3}

[
−B̃ (n)+V

]
(S1+S2)+V wDS3

s.t. C ′
1−1, C

′
1−2, C1−3, C̄

′
2−1, C̄

′
2−2, C2−3, C2−4, C

′
5, C

′
6, C7

Besides, when (11a)–(11b) hold and

b
(k)
6 = 1/

√
S1α (n), (12a)

b
(k)
7 = 1/

[
(1− α (n)) tr (Q (n))S2

2

]
, (12b)

b
(k)
8 = S2(1− α (n))

2
/tr (Q (n)), (12c)

Q
(k)
0 = Q(n), (12d)

the functions f5(·) ∼ f7(.) and g5(·) ∼ g7(.) satisfy [14,

Property A].

Based on the above, it is easy to design the algorithm to

solve P5. Since it is similar to Algorithm 2 in structure, we

omit the details. The main differences from Algorithm 2 lie in

two aspects: 1) Step 1 initializes b
(0)
1 , b

(0)
2 , b

(0)
6 ∼ b

(0)
8 ,Q

(k)
0

instead of b
(0)
1 ∼ b

(0)
5 ; 2) Step 4 updates these variables

according to (11a), (11b), and (12). Finally, we present the

algorithm of solving the per-time slot problem P3, summarized

in Algorithm 3.

Algorithm 3 : SCA-based Algorithm for the Per-time Slot

Problem P3.

1: Obtain the optimal harvested energy ē (n)=EH (n) ·
1
(
B̃ (n) ≤ 0

)
.

2: If −B̃ (n) + V ≥ 0, solve P4 by Algorithm 2; otherwise,

solve P5 by the similar algorithm. Denote the optimal

solution and its objective as
{
Q̄ (n) , f̄ (n) , ᾱ (n)

}
and

F̄obj, respectively.

3: If F̄obj < V Φ, set the optimal Īexe(n) = 1 and

output
{
Īexe(n), Q̄ (n) , f̄ (n) , ᾱ (n) , ē (n)

}
; otherwise

Īexe(n) = 0 and output
{
Īexe(n), ē (n)

}
.

Remark 5: The problem P4 can be solved by the block

coordinate descent (BCD) approach, by which the coupling

among variables of P4 can be tackled. However, it can not

solve P5 — another subproblem of the per-time slot problem

P3, where the main obstacle lies in the constraint C̄2−2.

Because when optimizing Q(n), the constraint C̄2−2 is not

convex even if we fix all other variables. In summary, the BCD

approach can solve P4 but not P5, leading to that it cannot

solve P3. To give a uniform framework for the solution of

problems P3, P4 and P5, we adopt the SCA-based algorithm

in this work.

IV. SIMULATION RESULTS

In this section, computer simulation is deployed to investi-

gate the performance of the proposed algorithm. The uplink

channel is modeled as H(n) = 0.01
d2 Hω(n), where d is the

distance between transmitter and receiver and set to 80 m;

Hω(n) is a random matrix with i.i.d. zero-mean and unit

variance complex Gaussian random variables. For the mobile

terminal, the task of length L = 2000 bits arrives with

probability ρ = 0.4; the arrived energy is uniformly distributed

in 0 ∼ EMAX
H = 120 μJ. Besides, β = 10−28 J · s2,

τ = 2 ms, EMAX = 1 mJ, Φ = 2 mJ, BW = 1 MHz,
PT = 1 W, fMAX = 1.5 GHz, η = 750 cycles/bit, the

noise power σ2 = 3.4×10−13 W. Unless otherwise specified,

NT = NR = 2, the weight factors V = 0.16 mJ and

wD = 0.5 W, EMIN = 0.05 mJ, and the expected battery

level θ = ẼMAX + V (Φ · E−1
MIN − 1).

Five benchmark schemes are included for comparison:

the local-only scheme [9], MEC-only scheme [9], greedy

offloading scheme [9], isotropic transmission, and the ‘DCO-f’

scheme. The isotropic transmission means the proposed DCO

with fixed Q(n) =
√
PT I; the ‘DCO-f’ scheme refers to the

proposed DCO with fixed f(n) = fMAX.

Observe from Fig. 1(a) that the battery energy of the

proposed DCO increases in the first 0.4 s and keeps stable
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around the expected battery level. For the other two schemes,

their energies fluctuate at a lower level due to lack of effective

energy management. In Fig. 1 (b), the average cost of DCO

converges to 0.2 mJ, lower than the costs achieved by the local-

only and greedy offloading schemes. However, its convergence

speed is slow because the battery energy management forces

many tasks to be abandoned at the beginning, resulting in a

high initial cost. In Fig. 2, with increasing V and decreasing

EMIN, DCO’s cost decreases and it converges to around 0.2

mJ eventually, which verifies DCO’s asymptotic optimality

mentioned in Lemma 2. Given appropriate V and EMIN, e.g.,

V ≥ 0.1 and EMIN ≤ 0.1, the proposed DCO is able to

achieve the lowest average cost among the six schemes.

Table I presents the task drop ratios under six schemes.

When the number of antennas increases, resulting in more

channel gains, the drop ratios for the proposed DCO, istropic,

DCO-f, MEC-only and Greedy offloading decrease. Clearly,

the drop ratio of the DCO is always the lowest among the six

schemes.

To sum up, the proposed DCO is superior to other schemes

in terms of the average cost and drop ratio performance.
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Fig. 1 Battery energies and average costs of several schemes v.s. time.
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Fig. 2 Average cost v.s. V .

TABLE I
TASK DROP RATIOS OF DIFFERENT SCHEMES

Schemes
Number of antennas (NT = NR)

1 2 3
DCO 0.0020 0 0

Local-only 0.090 0.090 0.090
MEC-only 0.66 0.26 0.043

Greedy 0.088 0.061 0.0075
Isotropic 0.0040 0 0
DCO-f 0.26 0.15 0

V. CONCLUSIONS

In this letter, we proposed a DCO scheme for MIMO

MEC-EH systems, where the offloading ratio, transmission

covariance matrix, and CPU-cycle frequency were jointly

optimized to minimize the average weighted sum of energy

consumption and latency. Further, two lemmas were presented

to support the proposed scheme. Simulation results show that,

given appropriate parameters, the proposed DCO algorithm

has better performance than the benchmark schemes, in terms

of both the system cost and task drop ratio. For the future

work, we would like to extend the findings in this work to the

scenarios with multiple edge users or with complicated noise

[17].
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