5,973 research outputs found

    A Comprehensive Review of Bio-Inspired Optimization Algorithms Including Applications in Microelectronics and Nanophotonics

    Get PDF
    The application of artificial intelligence in everyday life is becoming all-pervasive and unavoidable. Within that vast field, a special place belongs to biomimetic/bio-inspired algorithms for multiparameter optimization, which find their use in a large number of areas. Novel methods and advances are being published at an accelerated pace. Because of that, in spite of the fact that there are a lot of surveys and reviews in the field, they quickly become dated. Thus, it is of importance to keep pace with the current developments. In this review, we first consider a possible classification of bio-inspired multiparameter optimization methods because papers dedicated to that area are relatively scarce and often contradictory. We proceed by describing in some detail some more prominent approaches, as well as those most recently published. Finally, we consider the use of biomimetic algorithms in two related wide fields, namely microelectronics (including circuit design optimization) and nanophotonics (including inverse design of structures such as photonic crystals, nanoplasmonic configurations and metamaterials). We attempted to keep this broad survey self-contained so it can be of use not only to scholars in the related fields, but also to all those interested in the latest developments in this attractive area

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Design Control and Power Management of Small Satellite Microgrids

    Get PDF

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Printable Spacecraft: Flexible Electronic Platforms for NASA Missions

    Get PDF
    Why printed electronics? Why should NASA use printed electronics to make a spacecraft? Three words provide the answer: universal, impactful, progressive. The technology is universal because the applications it can affect are broad and diverse from simple sensors to fully functional spacecraft. The impact of flexible, printed electronics range from straightforward mass, volume and cost savings all the way to enabling new mission concepts. The benefits of the technology will become progressively larger from what is achievable today so that investments will pay dividends tomorrow, next year and next decade. We started off three years ago asking the question can you build an entire spacecraft out of printed electronics? In other words, can you design and fabricate a fully integrated, electronic system that performs the same end-to-end functions of a spacecraft - take scientific measurements, perform data processing, provide data storage, transmit the data, powers itself, orients and propels itself - all out of thin flexible sheets of printed electronics? This "Printable Spacecraft" pushes the limits of printed flexible electronics performance. So the answer is yes, more or less. In our studies for the NIAC (NASA Innovative Advanced Concepts) program, we have explored this question further, to explain more completely what "more or less" means and to outline what is needed to make the answer a definitive "yes". Despite its appealing "Flat Stanley"-like (a book series by Jeff Brown) qualities, making a Printable Spacecraft is not as easy as flattening the Cassini spacecraft with a bulletin board, as was Stanley Lamchop's fate. But, if NASA invests in the design challenges, the materials challenges, the performance challenges of printed electronics, it might find itself with a spacecraft that can enable as many adventures and advantages as Flat Stanley including putting it in an envelope and mailing it to the planet of your choice. You just have to let your imagination take over. In this report we document the work of the Phase 2 Printable Spacecraft task conducted under the guidance and leadership of the NIAC program. In Phase One of the NIAC task entitled "Printable Spacecraft", we investigated the viability of printed electronics technologies for creating multi-functional spacecraft platforms. Mission concepts and architectures that could be enhanced or enabled with this technology were explored. In Phase 2 we tried to answer the more practical questions such as can you really build a multi-functional printed electronic spacecraft system? If you do, can it survive the space environment? Even if it can, what benefit does a printable system provide over a traditional implementation of a spacecraft

    Energy Harvesting and Energy Storage Systems

    Get PDF
    This book discuss the recent developments in energy harvesting and energy storage systems. Sustainable development systems are based on three pillars: economic development, environmental stewardship, and social equity. One of the guiding principles for finding the balance between these pillars is to limit the use of non-renewable energy sources

    Modeling and Analysis of Power Processing Systems

    Get PDF
    The feasibility of formulating a methodology for the modeling and analysis of aerospace electrical power processing systems is investigated. It is shown that a digital computer may be used in an interactive mode for the design, modeling, analysis, and comparison of power processing systems

    Small business innovation research. Abstracts of 1988 phase 1 awards

    Get PDF
    Non-proprietary proposal abstracts of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA are presented. Projects in the fields of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robots, computer sciences, information systems, data processing, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered
    • …
    corecore