43,952 research outputs found

    A Bayesian approach to constrained single- and multi-objective optimization

    Get PDF
    This article addresses the problem of derivative-free (single- or multi-objective) optimization subject to multiple inequality constraints. Both the objective and constraint functions are assumed to be smooth, non-linear and expensive to evaluate. As a consequence, the number of evaluations that can be used to carry out the optimization is very limited, as in complex industrial design optimization problems. The method we propose to overcome this difficulty has its roots in both the Bayesian and the multi-objective optimization literatures. More specifically, an extended domination rule is used to handle objectives and constraints in a unified way, and a corresponding expected hyper-volume improvement sampling criterion is proposed. This new criterion is naturally adapted to the search of a feasible point when none is available, and reduces to existing Bayesian sampling criteria---the classical Expected Improvement (EI) criterion and some of its constrained/multi-objective extensions---as soon as at least one feasible point is available. The calculation and optimization of the criterion are performed using Sequential Monte Carlo techniques. In particular, an algorithm similar to the subset simulation method, which is well known in the field of structural reliability, is used to estimate the criterion. The method, which we call BMOO (for Bayesian Multi-Objective Optimization), is compared to state-of-the-art algorithms for single- and multi-objective constrained optimization

    Active learning for feasible region discovery

    Get PDF
    Often in the design process of an engineer, the design specifications of the system are not completely known initially. However, usually there are some physical constraints which are already known, corresponding to a region of interest in the design space that is called feasible. These constraints often have no analytical form but need to be characterised based on expensive simulations or measurements. Therefore, it is important that the feasible region can be modeled sufficiently accurate using only a limited amount of samples. This can be solved by using active learning techniques that minimize the amount of samples w.r.t. what we try to model. Most active learning strategies focus on classification models or regression models with classification accuracy and regression accuracy in mind respectively. In this work, regression models of the constraints are used, but only the (in) feasibility is of interest. To tackle this problem, an information-theoretic sampling strategy is constructed to discover these regions. The proposed method is then tested on two synthetic examples and one engineering example and proves to outperform the current state-of-the-art
    • …
    corecore