4 research outputs found

    Improved fMRI Time-Series Registration Using Joint Probability Density Priors

    Full text link
    Functional MRI (fMRI) time-series studies are plagued by varying degrees of subject head motion. Faithful head motion correction is essential to accurately detect brain activation using statistical analyses of these time-series. Mutual information (MI) based slice-to-volume (SV) registration is used for motion estimation when the rate of change of head position is large. SV registration accounts for head motion between slice acquisitions by estimating an independent rigid transformation for each slice in the time-series. Consequently each MI optimization uses intensity counts from a single time-series slice, making the algorithm susceptible to noise for low complexity endslices (i.e., slices near the top of the head scans). This work focuses on improving the accuracy of MI-based SV registration of end-slices by using joint probability density priors derived from registered high complexity centerslices (i.e., slices near the middle of the head scans). Results show that the use of such priors can significantly improve SV registration accuracy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85928/1/Fessler236.pd

    Model-Based Fusion of Multi-Modal Volumetric Images: Application to Transcatheter Valve Procedures

    Get PDF
    Abstract. Minimal invasive procedures such as transcatheter valve interventions are substituting conventional surgical techniques. Thus, novel operating rooms have been designed to augment traditional surgical equipment with advanced imaging systems to guide the procedures. We propose a novel method to fuse pre-operative and intra-operative information by jointly estimating anatomical models from multiple image modalities. Thereby high-quality patient-specific models are integrated into the imaging environment of operating rooms to guide cardiac interventions. Robust and fast machine learning techniques are utilized to guide the estimation process. Our method integrates both the redundant and complementary multimodal information to achieve a comprehensive modeling and simultaneously reduce the estimation uncertainty. Experiments performed on 28 patients with pairs of multimodal volumetric data are used to demonstrate high quality intra-operative patient-specific modeling of the aortic valve with a precision of 1.09mm in TEE and 1.73mm in 3D C-arm CT. Within a processing time of 10 seconds we additionally obtain model sensitive mapping between the pre-and intraoperative images

    Effect of optimization framework on Rigid and Non-rigid Multimodal Image Registration

    Get PDF
    The process of transforming or aligning two images is known as image registration. In the present era, image registration is one of the most popular transformation tools in case of, for example, satellite as well as medical imaging analysis. Images captured by difference devices that can be processed under same registration model are called multimodal images. In this work, we present a multimodal image registration framework, upon which ant colony optimization (ACO) and flower pollination algorithms (FPA), which are two meta heuristics algorithms, are applied in order to improve the performance of a proposed rigid and non-rigid multimodal registration framework and decrease its processing time. The results of the ACO and FPA based framework were compared against particle swarm optimization and Genetic algorithm-based framework's results and seem to be promising

    Designing image segmentation studies: Statistical power, sample size and reference standard quality.

    Get PDF
    Segmentation algorithms are typically evaluated by comparison to an accepted reference standard. The cost of generating accurate reference standards for medical image segmentation can be substantial. Since the study cost and the likelihood of detecting a clinically meaningful difference in accuracy both depend on the size and on the quality of the study reference standard, balancing these trade-offs supports the efficient use of research resources. In this work, we derive a statistical power calculation that enables researchers to estimate the appropriate sample size to detect clinically meaningful differences in segmentation accuracy (i.e. the proportion of voxels matching the reference standard) between two algorithms. Furthermore, we derive a formula to relate reference standard errors to their effect on the sample sizes of studies using lower-quality (but potentially more affordable and practically available) reference standards. The accuracy of the derived sample size formula was estimated through Monte Carlo simulation, demonstrating, with 95% confidence, a predicted statistical power within 4% of simulated values across a range of model parameters. This corresponds to sample size errors of less than 4 subjects and errors in the detectable accuracy difference less than 0.6%. The applicability of the formula to real-world data was assessed using bootstrap resampling simulations for pairs of algorithms from the PROMISE12 prostate MR segmentation challenge data set. The model predicted the simulated power for the majority of algorithm pairs within 4% for simulated experiments using a high-quality reference standard and within 6% for simulated experiments using a low-quality reference standard. A case study, also based on the PROMISE12 data, illustrates using the formulae to evaluate whether to use a lower-quality reference standard in a prostate segmentation study
    corecore