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Saša Grbić1,3, Razvan Ionasec1, Yang Wang1, Tommaso Mansi1, Bogdan
Georgescu1, Matthias John2, Jan Boese2, Yefeng Zheng1, Nassir Navab3, and

Dorin Comaniciu1

1 Image Analytics and Bioinformatics, Siemens Corporate Research, Princeton, USA
2 Siemens AG, Healthcare Sector, Forchheim, Germany

3 Technical University Munich, Germany

Abstract. Minimal invasive procedures such as transcatheter valve in-
terventions are substituting conventional surgical techniques. Thus, novel
operating rooms have been designed to augment traditional surgical
equipment with advanced imaging systems to guide the procedures. We
propose a novel method to fuse pre-operative and intra-operative in-
formation by jointly estimating anatomical models from multiple image
modalities. Thereby high-quality patient-specific models are integrated
into the imaging environment of operating rooms to guide cardiac in-
terventions. Robust and fast machine learning techniques are utilized to
guide the estimation process. Our method integrates both the redundant
and complementary multimodal information to achieve a comprehensive
modeling and simultaneously reduce the estimation uncertainty. Exper-
iments performed on 28 patients with pairs of multimodal volumetric
data are used to demonstrate high quality intra-operative patient-specific
modeling of the aortic valve with a precision of 1.09mm in TEE and
1.73mm in 3D C-arm CT. Within a processing time of 10 seconds we
additionally obtain model sensitive mapping between the pre- and intra-
operative images.

1 Introduction

There has been a major trend in cardiac therapy towards minimally invasive
transcatheter procedures to reduce the side effects of classical surgical techniques.
Instead of full sternotomy, instruments and devices are introduced through small
incisions, advanced through vessels and positioned to perform various procedures
[1]. Without direct access and view to the affected structures those interventions
are usually performed in so-called Hybrid ORs, operating rooms outfitted with
advanced imaging equipment. Thus, procedures such as the Transcatheter Aortic
Valve Replacement (TAV) are permanently guided via real-time intra-operative
images provided by C-arm X-ray and Transesophageal Echocardiography sys-
tems [2].
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Traditionally the field of medical image analysis has been focusing on the con-
struction of patient-specific anatomical models from well established diagnostic
modalities (e.g. CT and MR) to aid disease analysis and treatment planning
[3]. In the context of valvular disease management, the authors in [4] and [5]
proposed the modeling of the aortic valve from cardiac CT. Models of the mi-
tral valve from MR have been proposed in [6]. However, these methods have
not been developed to cope with the reduced quality and contrast characteristic
to intra-operative images, hence their usage is strictly limited to pre-operative
decision making.

Delivering high-quality models into the operating room to guide cardiac ther-
apy will be a major focus of future clinical applications. The fusion of pre-
operative models with intra-operative images for mitral valve replacement has
been proposed by [7]. The pre-op model of the mitral valve was annotated from
CT data and registered into the intra-op MR and echocardiography images.
Major limitation is the required tracking equipment and semi-automatic delin-
eation of the mitral annuls. Alternatively, multi-modal image registration has
been proposed to fuse multi-modal data. In [8] the mutual information is used
as the metric to cope with the intensity inconsistencies between CT and MR.
Recently [9] proposed a method to register intracardiac echocardiography (ICE)
with pre-op CT images. Hereby a recomputed simulated ultrasound reflection
volume was extracted from the CT data and registered using standard techniques
to the ICE volume. [10] proposed a novel similarity metric which incorporates
knowledge of previously registered images. In [11] an atlas-based approach was
presented to track the myocardium and left and right ventricles from MR data.
The registration is used to align the cardiac atlas to the patient data. However,
these methods are computationally expensive, and without the appropriate guid-
ance of a shape prior likely to converge into local minima.

As we seek to provide both, the fusion of pre- and intra-operative imag-
ing and patient-specific models of relevant anatomical structures, the field of
simultaneous registration and segmentation is important to our work. In [12]
a probabilistic framework was proposed where registration is performed jointly
with segmentation. It was applied to the segmentation of brain tissues and their
substructures in uni-modal MR data. [13] recently proposed a method to jointly
segment the prostate and provide registration in MR. It introduced point sets to
allow fast initial registration. However most of these methods suffer from long
run-times, as the problem of registration and segmentation is trying to be solved
simultaneously, and the necessity of manual initialization.

We propose a novel method to fuse pre-operative and intra-operative infor-
mation by jointly estimating anatomical models from multiple image modalities.
Thereby high-quality patient-specific models are integrated into the imaging en-
vironment of operating rooms to guide cardiac interventions. Robustness and
efficiency are achieved by relying on machine learning techniques to drive the
joint estimation process whereby similarities between multiple modalities are
exploited. Statistical models of the anatomy are utilized within the probabilis-
tic estimation framework to ensure physiologically compliant results. The main



benefits of our method are: 1) Completeness - by exploiting the complementary
information from multiple modalities, 2) Robustness - by exploiting the redun-
dant information from multiple modalities to reduce the estimation uncertainty,
and 3) Fusion - by obtaining a model-sensitive integration of the pre-operative
and intra-operative modalities.

Fig. 1. Diagram of the problem formulation showing the surface model M , anatomical
landmarks m, transformation φ to map the intra-op image I2 to the pre-op data I1.

2 Problem formulation

Our goal is to estimate a 3D anatomical patient-specific model M from volumet-
ric multi-modal datasets I1 and I2, where I1 is the pre-op and I2 the intra-op
image, and the transformation φ which maps the intra-op model M2 to the
pre-op model M1 (see Fig 1).

(φ̂, M̂) = argmax
M,φ

logP (M,φ |I1, I2 ) (1)

φ is composed of an affine- A and a non-linear warping transformation D,
φ = D A. D is modeling the small deformation of M due to respiration and
uncertainties in the acquisition phase between the pre- and intra-op data. The
model M is represented as a point distribution model. Using the transformation
φ the pre-M1 and intra-opM2 models can be computed:M = M1,M = D A M2

and M2 = A−1 D−1 M .

3 Method

In general finding an optimal solution to Eqn. 1 is difficult and has high computa-
tional cost therefore we approximate the problem by expanding the formulation
and exploiting independencies. In addition a shape constraint term is added
to restrict the estimated model M in a shape space built from a database of
annotations.

(φ̂, M̂) = argmax
M,φ

log (P (M |I1 ) · P (M |φ(I2) ) · P (M |I1,φ(I2) ) · P (M,φ |µ,Σ )) (2)



All the probabilities in our formulations are modeled using robust learning
based algorithms. The first P (M |I1 ) and the second term P (M |φ(I2)) define the
independent model estimations in the multi-modal images I1 and I2. As proposed
in [4] a classifier is trained using the probabilistic boosting tree and Haar-features
to estimate the posterior probability. The best model parameters for M are
selected based on a joint probability term P (M |I1,φ(I2) ) explained in chapter
3.1. The transformation φ is modeled as a warping transform with Gaussian
radial basis functions. The last term P (M,φ |µ,Σ ) symbolizes a regularization
of the shape M and the transformation φ based on the learned statistical shape
model defined as a Gaussian distribution with the mean µ and the covariance
matrix Σ learned from manual annotations. Both the affine A and the non-linear
transformation D are updated in this stage. A bias is applied towards the pre-op
model M = M1 as the model estimation is more robust in the pre-op images. In
our case I1 represents the CT image and I2 the TEE and 3D C-arm CT image.

In this work we focus on the estimation of the aortic valve model. The valve
is modeled hierarchically using two layers. On the coarse level it is represented
as a landmark model m with 6 points (3 commissures and 3 hinges). They define
the most important morphological and functional properties of the valve. The
finer level is defined as a point distribution model M with 1440 points spread
along a 36×20 parametric grid.

3.1 Similarity learning

The joint term P (M |I1,φ(I2) ) in Eqn. 2 exploits the similarities between the
models from the multi-modality images. Similarity functions proposed in the
current literature, such as mutual information or cross correlation, could be
used but as mentioned in [14] learning the similarity for a specific problem yields
better performance.

We employ a boosting framework in order to train a cascade of strong clas-
sifiers. Each strong classifier Fstrong consists of k weak classifiers Fweak which
learn the similarity between pairs of image patches IS1 ∈ I1 and IS2 ∈ I2,
Fweak(IS1, IS2). The weak learners are constructed based on Haar-like features
extracted locally from rectangular patches IS1 and IS2 from image slices sam-
pled perpendicular to the tubular aortic root surfaces M1 and M2. The patch
size is fixed for both modalities.

The weak learner is modeled as a 2D piecewise constant function defined on a
2D feature space by the feature responses of h(IS1) and h(IS1). The 2D feature
space is separated in equal rectangular non-overlapping regions. Therefore we
quantize the feature responses from both modalities in 64×64 bins whereby the
values are scaled between the minimum and maximum feature responses h(IS1)
and h(IS1).

Fweak(IS1, IS2) =
B�

b=1

C�

c=1

βb,c Rb,c [h(IS1)× h(IS2)] (3)

where B and C are the bin numbers for the feature responses in each modality
and βb,c symbolizes the constant associated with the region Rb,c representing



a bin in the 2D feature space. As in [15] the optimal weights βb,c would be
determined by fitting a least-squares regression function. During detection a
probability for each weak classifier is evaluated by extracting Haar-features from
pairs of image patches. The features are assigned to a bin Rb,c based on the
feature response and multiplied with the corresponding weight βb,c.

A cascade of l strong classifiers Fstrong is trained in order to determine the
posterior probability P (M |I1,φ(I2) ) = S(IS1, IS2) of the similarity function.

3.2 Model-Based Fusion Approach

The first stage in our hierarchical model estimation algorithm consists of pre-
aligning the multi-modal images using the anatomical landmarks. The affine
transformation A is estimated by obtaining a least-squares solution based on
the independently detected landmarks m1 from the image I1 and m2 from the
image I2. The landmark detectors are trained using the probabilistic boosting
tree classifier and Haar-like features. The surface M is initialized by learning
a correlation model between measurements extracted from the landmarks m1

and the point distribution model M , as described in [16]. The nonlinear warping
transformation D is set to identity. Based on A the model M can be projected
to the image I2.

Fig. 2. Diagram showing the model based fusion approach for the estimation of the
model M and the transformation φ.

In the optimization phase we apply an iterative approach. We sample can-
didates N1 and N2 along the surfaces normals of M1 and M2, and evaluate the
probability P (M |I1 ) for each candidate n1 ∈ N1 and P (M |φ(I2) ) for each point
n2 ∈ N2 using the learned detectors. The joint probability P (M |I1,φ(I2) ) is de-
termined by training a boosting classifier, as mentioned in chapter 3.1, to evalu-
ate pairs of candidates. A cross product of the candidates N1×N2 is constructed
and the highest probable candidate pair (ni, nj) is selected by multiplying the
single modality probabilities with the joint term.

(ni, nj) = arg max
ni,nj

log (P (ni |I1 ) · P (nj |φ(I2) ) · P (ni, nj |I1,φ(I2) )) (4)

The estimated candidate pairs are used to update the models M1 and M2.
The second step of the iteration involves calculating the posterior probability



P (M,φ |µ,Σ ) of M and φ based on the learned statistical shape models. This
could be perceived as a regularization to the shape M . Thereby M1 is projected
to the PCA shape space using the largest 40 eigenvectors. φ is updated by com-
puting the rigid transformation R based on the posterior probability of the pairs
(ni, nj). D is updated by obtaining a least-squares solution to the warping trans-

formation D̂ = argmin
��T M2 −D−1M1

��2 using radial basis functions. Thereby
the number of control points is much smaller than the number of shape pointsM .
The algorithm converges in a small number of iterations. Figure 2 demonstrates
the complete estimation approach.

Fig. 3. Example of the joint aortic valve model estimation from pre- and intra-op
volumetric data. The left 2 images show fused CT-TEE data sets and the right 2
images show fused CT-3D C-arm CT data. The mapping of the intra-op image I2 to
the pre-op image I1 is done by the estimated non-linear transform φ.

4 Experimental Results

The most relevant intra-operative modalities with 3D capabilities (3D C-arm
CT and TEE) in the OR environment were incorporated for evaluation. In total
56 volumes, 13 pairs of CT-TEE data sets and 15 pairs of CT-3D C-arm CT
data pairs were selected to demonstrate the effectiveness of our method. This
dataset was solely used for evaluation and not included in training. The ground-
truth annotations were obtained from clinical experts by manually placing the
anatomical landmarks in the pre- (m1) and intra-op (m2) images and finally
delineating the aortic valve surfaces M1 and M2.

As our algorithm depends on the automatic detection of the anatomical land-
marks m1 and m2 during the initialization step in order to estimate the affine
transform A we evaluate their detection performance on the test dataset. For
training 160 separate landmarks annotations in CT, 320 in TEE and 192 in 3D
C-arm CT were used to train the landmark detectors. The error is computed as
the Euclidian distance between the automatic estimation and the expert annota-
tion. For the hinges we obtain an error of 2.40±0.81mm in CT, 2.56±0.71mm in
TEE and 2.30±1.56mm in 3D C-arm CT and for the commissures 2.74±1.01mm
in CT, 3.31± 1.55mm in TEE and 2.98± 1.44mm in 3D C-arm CT.

The mesh-to-mesh error was computed between the ground-truth annotations
and the detected models in order to obtain quantitative results for the automatic



surface estimation. Results shown in table 1 confirm that our model-based fusion
estimation approach yields the best results.

Table 1. System precision for aortic valve surface model estimation in CT, TEE and
3D C-arm CT. Comparison between our novel model-based fusion approach and single
modality estimations.

single modality estimation fusion approach
Mean STD Median Mean STD Median

CT-TEE [mm] 1.22 0.23 1.13 1.09 0.22 1.10
CT-3D C-arm CT [mm] 1.96 0.54 1.99 1.73 0.49 1.79

In transcatheter aortic valve procedures both the selection of the appropriate
stent size but also the positioning of it in the intra-op data has clinical signifi-
cance. However in 3D C-arm CT the aortic valve annulus is not visible as the
contrast is injected at the cusp area. Fusing the 3D C-arm image with pre-op CT
data would allow the physician to properly examine the annulus area and enable
accurate positioning of the stent during the procedure. We evaluate the error
for the aortic valve annulus ring circumference, extracted from the estimated
aortic valve model M , by comparing the result of the independent detection in
3D C-arm CT image and our model-based fusion approach. Quantitative and
qualitative results are shown in figure 4.

Fig. 4. Bland-Altman plots for the aortic valve annulus circumference measurement
extracted from the model M with (a) independent detection in 3D C-arm CT and (b)
fusion of pre-op CT and 3D C-arm CT. (c) and (d) are showing short and long axis
views of the model M and the fused pre- and intra-op images I1 + φ(I2).

5 Conclusion

In this paper, we propose a novel approach to estimate comprehensive patient
specific models of the aortic valve by model-sensitive fusing of multimodal pre-
and intra-operative data. Fast and robust machine learning techniques are em-
ployed during the estimation exploiting redundant and complementary informa-



tion from the multimodal images. Thereby high-quality patient-specific models
are integrated into the imaging environment of operating rooms to guide car-
diac interventions. Comprehensive quantitative and qualitative experiments on
the aortic valve modeling demonstrate the effectiveness of our approach with an
accuracy of 1.09mm in CT-TEE and 1.73mm in CT-3D C-arm CT.
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