5 research outputs found

    Supporting Service Differentiation in Multi-domain Multilayer Optical Networks

    Get PDF
    Providing differentiated quality of service became more and more important. This is not only because some service requests a high quality and real time transportation, but also because other services such as the capacity greedy applications request a higher bandwidth. In the meantime, has been the hybrid architecture consists of IP/MPLS domain and ASON/GMPLS optical domain projected as the infrastructure of the future internet. This architecture supports the transportation of the in near future expected data traffic on the ASON/GMPLS over DWDM optical domain, whereas it supports all the IP based service applications using the IP/MPLS domain. However, supporting service differentiation in multi-domain multilayer optical networks require the invention on routing scheme that supports both routing policies, the Physical Topology First (PTF) and Virtual Topology First (VTP), which are used to accommodate traffic in multilayer networks. In this work we use a hierarchical routing algorithm to evaluate the service differentiation schemes that are known in the literature in an IP/MPLS over ASON/GMPLS multi-domain network scenario, these service differentiation schemes are the Routing Policy Differentiation (RPD), Virtual Topology Differentiation (VTD) and Virtual Topology Sharing (VTS).&nbsp

    End-to-end quality of service provisioning in multilayer and multidomain environments

    Full text link
    Tesis doctoral in茅dita. Universidad Aut贸noma de Madrid, Escuela Polit茅cnica Superior, marzo de 200

    Resilience mechanisms for carrier-grade networks

    Get PDF
    In recent years, the advent of new Future Internet (FI) applications is creating ever-demanding requirements. These requirements are pushing network carriers for high transport capacity, energy efficiency, as well as high-availability services with low latency. A widespread practice to provide FI services is the adoption of a multi-layer network model consisting in the use of IP/MPLS and optical technologies such as Wavelength Division Multiplexing (WDM). Indeed, optical transport technologies are the foundation supporting the current telecommunication network backbones, because of the high transmission bandwidth achieved in fiber optical networks. Traditional optical networks consist of a fixed 50 GHz grid, resulting in a low Optical Spectrum (OS) utilization, specifically with transmission rates above 100 Gbps. Recently, optical networks have been undergoing significant changes with the purpose of providing a flexible grid that can fully exploit the potential of optical networks. This has led to a new network paradigm termed as Elastic Optical Network (EON). In recent years, the advent of new Future Internet (FI) applications is creating ever-demanding requirements. A widespread practice to provide FI services is the adoption of a multi-layer network model consisting in the use of IP/MPLS and optical technologies such as Wavelength Division Multiplexing (WDM). Traditional optical networks consist of a fixed 50 GHz grid, resulting in a low Optical Spectrum (OS) utilization. Recently, optical networks have been undergoing significant changes with the purpose of providing a flexible grid that can fully exploit the potential of optical networks. This has led to a new network paradigm termed as Elastic Optical Network (EON). Recently, a new protection scheme referred to as Network Coding Protection (NCP) has emerged as an innovative solution to proactively enable protection in an agile and efficient manner by means of throughput improvement techniques such as Network Coding. It is an intuitive reasoning that the throughput advantages of NCP might be magnified by means of the flexible-grid provided by EONs. The goal of this thesis is three-fold. The first, is to study the advantages of NCP schemes in planning scenarios. For this purpose, this thesis focuses on the performance of NCP assuming both a fixed as well as a flexible spectrum grid. However, conversely to planning scenarios, in dynamic scenarios the accuracy of Network State Information (NSI) is crucial since inaccurate NSI might substantially affect the performance of an NCP scheme. The second contribution of this thesis is to study the performance of protection schemes in dynamic scenarios considering inaccurate NSI. For this purpose, this thesis explores prediction techniques in order to mitigate the negative effects of inaccurate NSI. On the other hand, Internet users are continuously demanding new requirements that cannot be supported by the current host-oriented communication model.This communication model is not suitable for future Internet architectures such as the so-called Internet of Things (IoT). Fortunately, there is a new trend in network research referred to as ID/Locator Split Architectures (ILSAs) which is a non-disruptive technique to mitigate the issues related to host-oriented communications. Moreover, a new routing architecture referred to as Path Computation Element (PCE) has emerged with the aim of overcoming the well-known issues of the current routing schemes. Undoubtedly, routing and protection schemes need to be enhanced to fully exploit the advantages provided by new network architectures.In light of this, the third goal of this thesis introduces a novel PCE-like architecture termed as Context-Aware PCE. In a context-aware PCE scenario, the driver of a path computation is not a host/location, as in conventional PCE architectures, rather it is an interest for a service defined within a context.En los 煤ltimos a帽os la llegada de nuevas aplicaciones del llamado Internet del Futuro (FI) est谩 creando requerimientos sumamente exigentes. Estos requerimientos est谩n empujando a los proveedores de redes a incrementar sus capacidades de transporte, eficiencia energ茅tica, y sus prestaciones de servicios de alta disponibilidad con baja latencia. Es una pr谩ctica sumamente extendida para proveer servicios (FI) la adopci贸n de un modelo multi-capa el cual consiste en el uso de tecnolog铆as IP/MPLS as铆 como tambi茅n 贸pticas como por ejemplo Wavelength Division Multiplexing (WDM). De hecho, las tecnolog铆as de transporte son el sustento del backbone de las redes de telecomunicaciones actuales debido al gran ancho de banda que proveen las redes de fibra 贸ptica. Las redes 贸pticas tradicionales consisten en el uso de un espectro fijo de 50 GHz. Esto resulta en una baja utilizaci贸n del espectro 脫ptico, espec铆ficamente con tasas de transmisiones superiores a 100 Gbps. Recientemente, las redes 贸pticas est谩n experimentado cambios significativos con el prop贸sito de proveer un espectro flexible que pueda explotar el potencial de las redes 贸pticas. Esto ha llevado a un nuevo paradigma denominado Redes 脫pticas El谩sticas (EON). Por otro lado, un nuevo esquema de protecci贸n llamado Network Coding Protection (NCP) ha emergido como una soluci贸n innovadora para habilitar de manera proactiva protecci贸n eficiente y 谩gil usando t茅cnicas de mejora de throughput como es Network Coding (NC). Es un razonamiento l贸gico pensar que las ventajas relacionadas con throughput de NCP pueden ser magnificadas mediante el espectro flexible prove铆do por las redes EONs. El objetivo de esta tesis es triple. El primero es estudiar las ventajas de esquemas NCP en un escenario de planificaci贸n. Para este prop贸sito, esta tesis se enfoca en el rendimiento de NCP asumiendo un espectro fijo y un espectro flexible. Sin embargo, contrario a escenarios de planificaci贸n, en escenarios din谩micos la precisi贸n relacionada de la Informaci贸n de Estado de Red (NSI) es crucial, ya que la imprecisi贸n de NSI puede afectar sustancialmente el rendimiento de un esquema NCP. La segunda contribuci贸n de esta tesis es el estudio del rendimiento de esquemas de protecci贸n en escenarios din谩micos considerando NSI no precisa. Para este prop贸sito, esta tesis explora t茅cnicas predictivas con el prop贸sito de mitigar los efectos negativos de NSI impreciso. Por otro lado, los usuarios de Internet est谩n demandando continuamente nuevos requerimientos los cuales no pueden ser soportados por el modelo de comunicaci贸n orientado a hosts. Este modelo de comunicaciones no es factible para arquitecturas FI como es el Internet de las cosas (IoT). Afortunadamente, existe un nueva l铆nea investigativa llamada ID/Locator Split Architectures (ILSAs) la cual es una t茅cnica no disruptiva para mitigar los problemas relacionadas con el modelo de comunicaci贸n orientado a hosts. Adem谩s, un nuevo esquema de enrutamiento llamado as Path Computation Element (PCE) ha emergido con el prop贸sito de superar los problemas bien conocidos de los esquemas de enrutamiento tradicionales. Indudablemente, los esquemas de enrutamiento y protecci贸n deben ser mejorados para que estos puedan explotar las ventajas introducidas por las nuevas arquitecturas de redes. A luz de esto, el tercer objetivo de esta tesis es introducir una nueva arquitectura PCE denominada Context-Aware PCE. En un escenario context-aware PCE, el objetivo de una acci贸n de computaci贸n de camino no es un host o localidad, como es el caso en lo esquemas PCE tradicionales. M谩s bien, es un inter茅s por un servicio definido dentro de una informaci贸n de contexto

    Traffic engineering in dynamic optical networks

    Get PDF
    Traffic Engineering (TE) refers to all the techniques a Service Provider employs to improve the efficiency and reliability of network operations. In IP over Optical (IPO) networks, traffic coming from upper layers is carried over the logical topology defined by the set of established lightpaths. Within this framework then, TE techniques allow to optimize the configuration of optical resources with respect to an highly dynamic traffic demand. TE can be performed with two main methods: if the demand is known only in terms of an aggregated traffic matrix, the problem of automatically updating the configuration of an optical network to accommodate traffic changes is called Virtual Topology Reconfiguration (VTR). If instead the traffic demand is known in terms of data-level connection requests with sub-wavelength granularity, arriving dynamically from some source node to any destination node, the problem is called Dynamic Traffic Grooming (DTG). In this dissertation new VTR algorithms for load balancing in optical networks based on Local Search (LS) techniques are presented. The main advantage of using LS is the minimization of network disruption, since the reconfiguration involves only a small part of the network. A comparison between the proposed schemes and the optimal solutions found via an ILP solver shows calculation time savings for comparable results of network congestion. A similar load balancing technique has been applied to alleviate congestion in an MPLS network, based on the efficient rerouting of Label-Switched Paths (LSP) from the most congested links to allow a better usage of network resources. Many algorithms have been developed to deal with DTG in IPO networks, where most of the attention is focused on optimizing the physical resources utilization by considering specific constraints on the optical node architecture, while very few attention has been put so far on the Quality of Service (QoS) guarantees for the carried traffic. In this thesis a novel Traffic Engineering scheme is proposed to guarantee QoS from both the viewpoint of service differentiation and transmission quality. Another contribution in this thesis is a formal framework for the definition of dynamic grooming policies in IPO networks. The framework is then specialized for an overlay architecture, where the control plane of the IP and optical level are separated, and no information is shared between the two. A family of grooming policies based on constraints on the number of hops and on the bandwidth sharing degree at the IP level is defined, and its performance analyzed in both regular and irregular topologies. While most of the literature on DTG problem implicitly considers the grooming of low-speed connections onto optical channels using a TDM approach, the proposed grooming policies are evaluated here by considering a realistic traffic model which consider a Dynamic Statistical Multiplexing (DSM) approach, i.e. a single wavelength channel is shared between multiple IP elastic traffic flows

    Multi-layer traffic engineering in optical networks under physical layer impairments

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2010.Thesis (Ph. D.) -- Bilkent University, 2010.Includes bibliographical references leaves 153-165.We study Traffic Engineering (TE) in Multiprotocol Label Switching (MPLS)/Wavelength Division Multiplexing (WDM) networks and propose a multi-layer TE method. MPLS provides powerful TE features for IP networks and is widely deployed in backbone networks. WDM can increase the transmission capacity of optical fibers to tremendous amounts, therefore it has been the dominant multiplexing technology used in the optical layer. The proposed multi-layer TE solution facilitates efficient use of network resources where the TE mechanisms in the MPLS and WDM layers coordinate. We consider a static WDM layer and available traffic expectation information. The TE problem arising in the considered scenario is the Virtual Topology Design (VTD) problem, which involves the decision of WDM lightpaths to be established, calculation of MPLS Label Switched Paths (LSPs) on the resulting virtual topology, and calculation of the routes and wavelengths in the physical topology that correspond to the lightpaths in the virtual topology. We assume a daily traffic pattern changing with the time of day and aim to design a static virtual topology that satisfies as much of the offered traffic as possible, over the whole day. In our proposed solution, the multi-layer VTD problem is solved by decomposing it into two sub-problems, each involving in a single layer. The decomposition approach is used in the thesis due to the huge computational burden of the combined solution for real-life networks. The sub-problem in the MPLS layer is the design of the lightpath topology and calculation of the LSP routes on this virtual topology. This problem is known to be NP-complete and finding its optimum solution is possible only for small networks. We propose a Tabu Search based heuristic method to solve two versions of this problem, resource oriented and performance oriented. Integer Linear Programming (ILP) relaxations are also developed for obtaining upper and lower bounds. We show that the gap between the produced solutions and the lower and upper bounds are around 10% and 7% for the resource and performance oriented problems, respectively. Since the actual traffic can show deviations from the expected values, we also developed an MPLS layer online TE method to compensate the instantaneous fluctuations of the traffic flows. In the proposed method, the LSPs are rerouted dynamically using a specially designed cost function. Our numerical studies show that using the designed cost function results in much lower blockings than using commonly used Widest Shortest Path First and Available Shortest Path First approaches in the literature. The corresponding sub-problem of the multi-layer VTD problem in the WDM layer is the Static Lightpath Establishment (SLE) problem. Along with the capacity and wavelength continuity constraints, we also consider the Bit Error Rate (BER) constraints due to physical layer impairments such as attenuation, polarization mode dispersion and switch crosstalk. This problem is NP-complete even without the BER constraints. We propose a heuristic solution method and develop an exact ILP formulation to evaluate the performance of the proposed method for small problem sizes. Our proposed method produces solutions close to the optimum solutions for the cases in which the ILP formulation could be solved to optimality. Then, these solution methods for the single layer sub-problems are combined in a multi-layer TE scheme to solve the VTD problem in both layers jointly. The proposed TE scheme considers the physical layer limitations and optical impairments. This TE scheme can be applied by keeping each layer鈥檚 information hidden from the other layer, but our simulations show that it can produce more effective and efficient solutions when the physical layer topology information is shared with the MPLS layer. We also investigate the effect of non-uniform optical components in terms of impairment characteristics. The numerical results show that more traffic can be routed when all the components in the network have moderate impairment characteristics, compared to the case in which some components have better and some have worse impairment characteristics.艦engezer, Nam谋kPh.D
    corecore