31,759 research outputs found

    Learning label dependency for multi-label classification

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Multi-label classification is an important topic in the field of machine learning. In many real applications, there exist potential dependencies or correlations between labels, and exploiting the underlying knowledge could effectively improve the learning performance. Therefore, how to learn and utilize the dependencies between labels has become one of the key issues of multi-label classification. This thesis firstly summarizes existing works and analyses their advantages and disadvantages. Several effective methods for multi-label classification are then proposed, focusing on ways of exploiting various types of label dependencies. The contributions of this thesis mainly include: (1) A method that uses a tree-structured restricted Bayesian network to represent the dependency structure of labels is proposed. This work is inspired by the ClassifierChain method. Compared with ClassifierChain, our method's advantage is that the dependencies between labels are represented using a Bayesian network rather than a randomly selected chain, so more appropriate label dependencies could be determined. Furthermore, ensemble learning technique is used to construct and combine multiple tree-structured Bayesian networks, thus the mutual dependencies between labels could be fully exploited and the final model could be more robust. The experimental results verify the effectiveness of these methods. Compared with other baselines, the show better performance due to more appropriate label dependencies are captured. (2) A common strategy of exploiting label dependencies is, for every label, to the labels it depends on and use these labels as auxiliary features in the training phase. The issues of this strategy are that the influence of label dependencies could be depressed by existing features and indirect label dependencies could not be taken into consideration. Therefore, a new learning paradigm that separates the influence of existing features and labels is introduced, and the impact of label dependencies could be well intensified in this way. Moreover, a method that models the propagation of label dependencies as a RWR process (Random Walk with Restart) is proposed. In this method, label dependencies are encoded as a graph, and the dynamic and indirect dependencies between labels are utilized through the RWR process over the label graph. The experimental results validate this method, showing that it outperforms other baselines in terms of learning a label ranking. (3) Based on above method, a method that takes multiple factors into consideration when learning label dependencies is proposed. In this method, dependency between two labels is characterized from different perspectives, and is determined by learning a linear combination of multiple measures. A particular loss function is designed, and thus the optimal label dependencies, i.e., the dependency matrix in RWR process, can be obtained by minimizing the loss function. The advantage of this method include: a) label dependencies are measures and combined from different perspectives, and b) label dependences that are optimal to a particular loss function now are obtained. The experimental results indicate that this method could further learn a better label ranking compared with the previous one, given an explicit loss function. (4) A novel method that learns label ranking by exploiting preferences between true labels and other labels is proposed. In this method, the original instance space and label space are mapped into a low-dimensional space using matrix factorization technique. Therefore, one advantage of the method is that the number of label is reduced greatly, and problem with massive labels now can be handle efficiently. Moreover, a loss function is formulated based on the assumption that an instance's true labels which have been given explicitly should be ranked before other labels which are not provided explicitly. It is then used to guide the process of matrix factorization and label ranking learning. The advantage of this novel assumption is that it alleviate issue in traditional assumption that if a label is not given explicitly, it should not be a true label. Therefore, this method is also applicable to data that are partially labelled. Its effectiveness is validated by the experimental result which shows that it could rank explicitly given label well before other labels for a given instance. In summary, this thesis has proposed several effective methods that exploit label dependencies from different perspectives, and their effectiveness have been validated by experiments. These achievements lay a good foundation for further research and applications

    HOT-VAE: Learning High-Order Label Correlation for Multi-Label Classification via Attention-Based Variational Autoencoders

    Full text link
    Understanding how environmental characteristics affect bio-diversity patterns, from individual species to communities of species, is critical for mitigating effects of global change. A central goal for conservation planning and monitoring is the ability to accurately predict the occurrence of species communities and how these communities change over space and time. This in turn leads to a challenging and long-standing problem in the field of computer science - how to perform ac-curate multi-label classification with hundreds of labels? The key challenge of this problem is its exponential-sized output space with regards to the number of labels to be predicted.Therefore, it is essential to facilitate the learning process by exploiting correlations (or dependency) among labels. Previous methods mostly focus on modelling the correlation on label pairs; however, complex relations between real-world objects often go beyond second order. In this paper, we pro-pose a novel framework for multi-label classification, High-order Tie-in Variational Autoencoder (HOT-VAE), which per-forms adaptive high-order label correlation learning. We experimentally verify that our model outperforms the existing state-of-the-art approaches on a bird distribution dataset on both conventional F1 scores and a variety of ecological metrics. To show our method is general, we also perform empirical analysis on seven other public real-world datasets in several application domains, and Hot-VAE exhibits superior performance to previous methods.Comment: accepted at AAAI'21 AIS

    Learning Deep Latent Spaces for Multi-Label Classification

    Full text link
    Multi-label classification is a practical yet challenging task in machine learning related fields, since it requires the prediction of more than one label category for each input instance. We propose a novel deep neural networks (DNN) based model, Canonical Correlated AutoEncoder (C2AE), for solving this task. Aiming at better relating feature and label domain data for improved classification, we uniquely perform joint feature and label embedding by deriving a deep latent space, followed by the introduction of label-correlation sensitive loss function for recovering the predicted label outputs. Our C2AE is achieved by integrating the DNN architectures of canonical correlation analysis and autoencoder, which allows end-to-end learning and prediction with the ability to exploit label dependency. Moreover, our C2AE can be easily extended to address the learning problem with missing labels. Our experiments on multiple datasets with different scales confirm the effectiveness and robustness of our proposed method, which is shown to perform favorably against state-of-the-art methods for multi-label classification.Comment: published in AAAI-201

    Automation of motor dexterity assessment

    Get PDF
    Motor dexterity assessment is regularly performed in rehabilitation wards to establish patient status and automatization for such routinary task is sought. A system for automatizing the assessment of motor dexterity based on the Fugl-Meyer scale and with loose restrictions on sensing technologies is presented. The system consists of two main elements: 1) A data representation that abstracts the low level information obtained from a variety of sensors, into a highly separable low dimensionality encoding employing t-distributed Stochastic Neighbourhood Embedding, and, 2) central to this communication, a multi-label classifier that boosts classification rates by exploiting the fact that the classes corresponding to the individual exercises are naturally organized as a network. Depending on the targeted therapeutic movement class labels i.e. exercises scores, are highly correlated-patients who perform well in one, tends to perform well in related exercises-; and critically no node can be used as proxy of others - an exercise does not encode the information of other exercises. Over data from a cohort of 20 patients, the novel classifier outperforms classical Naive Bayes, random forest and variants of support vector machines (ANOVA: p <; 0.001). The novel multi-label classification strategy fulfills an automatic system for motor dexterity assessment, with implications for lessening therapist's workloads, reducing healthcare costs and providing support for home-based virtual rehabilitation and telerehabilitation alternatives

    Multilabel Consensus Classification

    Full text link
    In the era of big data, a large amount of noisy and incomplete data can be collected from multiple sources for prediction tasks. Combining multiple models or data sources helps to counteract the effects of low data quality and the bias of any single model or data source, and thus can improve the robustness and the performance of predictive models. Out of privacy, storage and bandwidth considerations, in certain circumstances one has to combine the predictions from multiple models or data sources to obtain the final predictions without accessing the raw data. Consensus-based prediction combination algorithms are effective for such situations. However, current research on prediction combination focuses on the single label setting, where an instance can have one and only one label. Nonetheless, data nowadays are usually multilabeled, such that more than one label have to be predicted at the same time. Direct applications of existing prediction combination methods to multilabel settings can lead to degenerated performance. In this paper, we address the challenges of combining predictions from multiple multilabel classifiers and propose two novel algorithms, MLCM-r (MultiLabel Consensus Maximization for ranking) and MLCM-a (MLCM for microAUC). These algorithms can capture label correlations that are common in multilabel classifications, and optimize corresponding performance metrics. Experimental results on popular multilabel classification tasks verify the theoretical analysis and effectiveness of the proposed methods

    On label dependence in multilabel classification

    Get PDF

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio
    corecore