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Abstract

The aim of this paper is to elaborate on
the important issue of label dependence in
multi-label classification (MLC). Looking at
the problem from a statistical perspective, we
claim that two different types of label depen-
dence should be distinguished, namely con-
ditional and unconditional. We formally ex-
plain the differences and connections between
both types of dependence and illustrate them
by means of simple examples. Moreover, we
given an overview of state-of-the-art algo-
rithms for MLC and categorize them accord-
ing to the type of label dependence they seek
to capture.

1. Introduction

In current research on multi-label classification
(MLC), it seems to be an opinio communis that op-
timal predictive performance can only be achieved by
methods that explicitly account for possible depen-
dencies between class labels. Indeed, there is an in-
creasing number of papers providing evidence for this
conjecture, mostly by virtue of empirical studies. Of-
ten, a new approach to exploiting label dependence is
proposed, and the corresponding method is shown to
outperform others in terms of different loss functions.
Without questioning the potential benefit of exploit-
ing label dependencies in general, we argue that stud-
ies of this kind do often fall short at deepening the
understanding of the MLC problem. There are several
reasons for this, notably the following.
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First, the notion of label dependence or “label correla-
tion” is often used in a purely intuitive manner, refer-
ring to a kind of non-independence, but without giving
a precise formal definition. Likewise, MLC methods
are often ad-hoc extensions of existing methods for
multi-class classification. Second, many studies report
improvements on average, but without carefully inves-
tigating the conditions under which label correlations
are useful. Third, the reasons for improvements are
often not carefully distinguished. As the performance
of a method depends on many factors, which are hard
to isolate, it is not always clear that the improvements
can be fully credited to the consideration of label cor-
relations.

The aim of this paper is to elaborate on the issue of
label dependence in more detail, thereby helping to
gain a better understanding of MLC in general. In
particular, we make the point that two different types
of dependence should be distinguished when talking
about label dependence in MLC. These two types will
be referred to as conditional and unconditional label
dependence, respectively. While the latter captures
dependencies between labels conditional to a specific
instance, the former is a global type of dependence
independent of any concrete observation.

We formally explain the differences and connections
between both types of dependence and illustrate them
by means of simple examples. As a conclusion, we
will claim that both types of dependence can be useful
to improve the performance of multi-label classifiers.
However, it will also become clear that substantially
different algorithms are needed to exploit conditional
and unconditional dependence, respectively. In this
regard, we also give an overview of state-of-the-art al-
gorithms for MLC and categorize them according to
the type of label dependence they seek to capture.
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2. Multi-Label Classification

In this section, we describe the MLC problem in
more detail and formalize it within a probabilistic set-
ting. Along the way, we introduce the notation used
throughout the paper.

Let X denote an instance space, and let L =
{λ1, λ2, . . . , λm} be a finite set of class labels. We as-
sume that an instance x ∈ X is (non-deterministically)
associated with a subset of labels L ∈ 2L; this subset is
often called the set of relevant labels, while the com-
plement L \ L is considered as irrelevant for x. We
identify a set L of relevant labels with a binary vector
y = (y1, y2, . . . , ym), in which yi = 1 ⇔ λi ∈ L. By
Y = {0, 1}m we denote the set of possible labelings.

We assume observations to be generated indepen-
dently and randomly according to a probability dis-
tribution p(X,Y) on X × Y, i.e., an observation
y = (y1, . . . , ym) is the realization of a correspond-
ing random vector Y = (Y1, Y2, . . . , Ym). We denote
by px(Y) = p(Y |x) the conditional distribution of

Y given X = x, and by p
(i)
x (Yi) = p(i)(Yi |x) the

corresponding marginal distribution of Yi:

p(i)
x

(b) =
∑

y∈Y:yi=b

px(y)

A multi-label classifier h is an X → Y mapping that
assigns a (predicted) label subset to each instance x ∈
X . Thus, the output of a classifier h is a vector

h(x) = (h1(x), h2(x), . . . , hm(x)). (1)

Often, MLC is treated as a ranking problem, in which
the labels are sorted according to the degree of rele-
vance. Then, the prediction takes the form of a ranking
or scoring function:

f(x) = (f1(x), f2(x), . . . , fm(x)) (2)

such that the labels λi are simply sorted in decreasing
order according to their scores fi(x).

The problem of MLC can be stated as follows: given
training data in the form of a finite set of observations
(x,y) ∈ X × Y, drawn independently from p(X,Y),
the goal is to learn a classifier h : X → Y that gen-
eralizes well beyond these observations in the sense of
minimizing the risk with respect to a specific loss func-
tion. Commonly used loss function, also to be consid-
ered later on in this paper, include the subset 0/1 loss,
the Hamming loss, and the rank loss.

The subset 0/1 loss generalizes the well-known 0/1 loss

from the single-label to the multi-label setting:1

Ls(y,h(x)) = Jy 6= h(x)K . (3)

The Hamming loss can be seen as another generaliza-
tion that averages over the standard 0/1 losses of the
different labels:

LH(y,h(x)) =
1

m

m
∑

i=1

Jyi 6= hi(x)K. (4)

Instead of comparing two label subsets, the rank loss
compares the true label subset with a predicted rank-
ing (total order) of labels, as represented by the rank-
ing function (2). More specifically, it counts the num-
ber of cases in which an irrelevant label precedes a
relevant label:

Lr(y, f(x))=
∑

(i,j):yi>yj

(

Jfi <fjK+
1

2
Jfi =fjK

)

. (5)

3. Label Dependence

As mentioned previously, we distinguish two types of
label dependence in MLC, namely conditional and un-
conditional dependence. We start with a formal defi-
nition of the latter.

Definition 3.1. A vector of labels

Y = (Y1, Y2, . . . , Ym) (6)

is called unconditionally m-independent if

p(Y) =

m
∏

i=1

p(i)(Yi) . (7)

Remark that m refers to the number of random vari-
ables, i.e., labels in our context, and that we do not,
unlike stochastic (mutual) independence, require (7)
to hold for all subsets of variables, too. In the fol-
lowing, we shall simply speak of independence, always
referring to m-independence unless otherwise stated.

Conditional dependence captures the dependence of
the labels given a specific instance x ∈ X .

Definition 3.2. A vector of labels (6) is called condi-
tionally m-independent given x if

px(Y) =

m
∏

i=1

p(i)
x

(Yi)

1For a predicate P , the expression JP K evaluates to 1 if
P is true and to 0 is P is false.
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Recall that the joint distribution of a random vector
Y = (Y1, . . . , Ym) can be expressed by the product
rule of probability:

p(Y ) = p(Y1)
m
∏

i=2

p(Yi|Y1, . . . , Yi−1). (8)

If Y1, . . . , Ym are m-independent, then (8) simplifies to
(7). The same remark applies to the joint conditional
probability.

The above two types of dependence may look very sim-
ilar, since they only differ in the use of unconditional
and conditional probability measures. Moreover, we
have a strong connection between unconditional and
conditional dependence, since

p(Y) =

∫

X

px(Y) dP(x) . (9)

Roughly speaking, unconditional dependence is a kind
of “expected dependence”, averaged over all instances.
Despite this close connection, one can easily construct
examples showing that conditional dependence does
not imply unconditional dependence nor the other way
around.

Example 3.1. Consider a problem with two labels y1

and y2, both being independently generated through the

same logistic model p
(i)
x (1) = (1 + exp(−φf(x)))−1,

where φ corresponds to the Bayes rate. Thus, by def-
inition, the two labels are conditionally independent,
having joint distribution px(Y) = px(Y1) × px(Y2)
given x. However, depending on the value of φ, we will
have a stronger or weaker unconditional dependence.
For φ → ∞ (Bayes rate tends to 0), the unconditional
dependence increases toward an almost deterministic
one (y1 = y2).

The next example shows that conditional dependence
does not imply unconditional dependence.

Example 3.2. Consider a problem in which two labels
y1 and y2 are to be predicted by using a single binary
feature x1. Let us assume that the joint distribution
p(X1, Y1, Y2) on X × Y is given as in the following
table:

x1 y1 y2 p x1 y1 y2 p

0 0 0 0.25 1 0 0 0
0 0 1 0 1 0 1 0.25
0 1 0 0 1 1 0 0.25
0 1 1 0.25 1 1 1 0

For this example, we observe a strong conditional
dependence. One easily verifies, for example, that

p
(1)
x1=1(0)p

(1)
x1=1(0) = 0.5 × 0.5 = 0.25, while the joint

probability is px1=1(0, 0) = 0.5. One can even speak of
a kind of deterministic dependence, since y1 = y2 for
x1 =0 and y2 = 1− y1 for x1 = 1. However, the labels
are unconditionally independent. In fact, noting that
the marginals are given by p(1)(1) = p(2)(1) = 0.5, the
joint probability is indeed the product of marginals.

The next two sections discuss unconditional and con-
ditional dependence more in detail. We will claim that
exploiting both types of dependence can improve the
generalization performance of a multi-label classifier.

4. Unconditional Label Dependence

Researchers speaking about dependencies or correla-
tions between labels are typically referring to uncon-
ditional dependence. Empirically, this type of depen-
dence can be measured in terms of correlation coeffi-
cients, such as Pearson correlation, or any other type of
statistical measure of (in)dependence on the observed
labels in the training data.

4.1. Modeling Unconditional Dependence

For a better understanding of unconditional depen-
dence between labels, it is convenient to connect multi-
label classification with multivariate regression (often
called multi-output regression), i.e., the simultaneous
prediction of several real-valued variables. Histori-
cally, multi-label classification has indeed been treated
as a specific case of multivariate regression in statis-
tics, for example within the context of vector general-
ized linear models (VGLMs), as summarized in (Song,
2007, chapter 6) and (Izenman, 2008, chapter 6).

In a regression context, unconditional dependence be-
tween two continuous labels Yi and Yj means that
E[Yi | Yj ] 6= E[Yi]. Let us adopt the standard statis-
tical notation for describing a multivariate regression
model, namely

Yi = hi(X) + εi(X) (10)

for all i = 1, ...,m, where the functions hi : X → R

represent a set of m parameterized models and the
random variables εi(x) a set of m error terms satisfying

E[εi(x)] = 0 (11)

for all x ∈ X and i = 1, ...,m. Remark that MLC
can be considered as a specific case of the multivariate
regression model (10), where the labels Yi are binary
instead of continuous random variables; then, however,
the assumption (11) is typically violated.

In general, the distribution of the noise terms can de-
pend on x. Moreover, two noise terms εi and εj can
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also depend on each other. However, unconditional
dependence between labels more often originates from
dependencies between the underlying models hi(·), i.e.,
the deterministic parts of the model (10). Roughly
speaking, if there is a function f(·) such that hi ≈ f◦hj

in the sense that

hi(x) = f(hj(x)) + g(x) , (12)

with g(·) being “negligible” in the sense that g(x) ≈ 0
with high probability (or, say, for most x), then this
“f -dependence” between hi and hj is likely to domi-
nate the averaging process in (9), whereas g(·) and the
error terms εi will play a less important role (or simply
cancel out). In other words, the dependence between
hi and hj , despite being only probable and approxi-
mate, will induce a dependence between the labels Yi

and Yj .

This global dependence is a constraint that can be
used by a learning algorithm for the purpose of reg-
ularization. This way, it may indeed help to improve
predictive accuracy.

4.2. Example

Consider a simple problem with a two-dimensional in-
put x = (x1, x2) uniformly distributed in [−1,+1] ×
[−1,+1], and two labels Y1, Y2 distributed as follows:
Y1 = Jx1 > 0K, i.e., the first label is just the sign of
the first input attribute. The second label is defined
in the same way, but the decision boundary (x1 = 0)
is rotated by an angle α ∈ [0, π]. The two decision
boundaries partition the input space into four regions
Cij identified by i = Y1 and j = Y2. Moreover, the
two error terms shall be independent and both flip the
label with a probability 0.1 (i.e., ε1 = 0 with probabil-
ity 0.9 and ε1 = 1 − 2Jx1 > 0K with probability 0.1);
see Fig. 1 for a typical data set.

For α close to 0, the two labels are almost identical,
whereas for α = π, they are orthogonal to each other.
More specifically, (12) holds with f(·) the identity and
g(x) given by ±1 in the “overlap regions” C01 and C10

(shaded in gray) and 0 otherwise.

We compare two learning methods on this problem.
The first one is the simple nearest neighbor (1NN)
classifier. The second one is a kind of stacking variant
(cf. Section 4.3 below), in which unconditional depen-
dence is exploited by training another classifier on top
of 1NN estimation. The idea is to look for “correction
rules” of the following form: If the original predic-
tion is (y1, y2), then the true labeling is (yadj

1 , y
adj
2 ).

In our case, given the small number of labels, a clas-
sifier of this kind can simply be expressed in tabu-
lar form. More specifically, we train two classifiers

Figure 1. Exemplary data set: The two labels are encoded
as neighbored squares, colored in black for positive and
white for negative.

h
adj
1 , h

adj
2 : {0, 1}2 → {0, 1}, where h1 (h2) outputs the

most probable value of the first (second) label, given a
labeling (y1, y2) as an original prediction; probability
is estimated by relative frequency.

Fig. 2 shows the performance curves of the two meth-
ods as a function of α, where performance corresponds
to the expected error rate given a random training set
of size 50; two types of error are considered, the sub-
set 0/1 loss (3) and the Hamming loss (4). As can
be seen from these curves, unconditional dependence
can indeed help to improve performance, at least as
long as Y1 ≈ Y2, i.e., for small α. If the (functional)
dependence between h1(·) and h2(·) becomes weaker,
however, this advantages disappears.

One should of course realize that unconditional depen-
dence is global information that holds on average but
not necessarily in a single point x ∈ X . Thus, despite
being beneficial on average, imposing corresponding
properties on single instances or biasing the prediction
toward the average may prevent from inferring locally
(Bayes) optimal solutions.

4.3. Learning Algorithms

There are many learning algorithms that are able
to exploit unconditional label dependence, especially
when treating multi-label classification as a specific
case of multivariate regression. In the section, we give
a brief overview of such algorithms, though without
claiming completeness. Roughly speaking, most algo-
rithms seek to reduce the variance of the predictions
obtained by models that ignore unconditional label de-
pendence and instead train one model for each label
independently of all other labels, such as binary rele-
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Figure 2. Learning curves for 1NN estimation (dashed line)
and stacking (solid): error rate as a function of the angle
α defining the decision boundary of the second label.

vance in MLC or separate least-squares estimators in
multivariate regression.

Stacking. Methods like stacking
(Cheng and Hüllermeier, 2009) or the C&W pro-
cedure (Breiman and Friedman, 1997) replace the
original predictions, obtained by learning every label
separately, by correcting them in light of information
about the predictions of the other labels. For example,
if the initial prediction for the first label of an instance
x is given by hini

1 (x), then the adjusted prediction

h
adj
1 (x) may take the following form:

h
adj
1 (x) = a1h

ini
1 (x) +

m
∑

k=2

akhini
k (x)

This transformation of the initial prediction should
be interpreted as a regularization procedure: a bias
is introduced, in an attempt to decrease the vari-
ance. Similar effects can of course also be achieved
by other means, for example by using prior informa-
tion in Bayesian inference (Zhang and Zhou, 2007).

Reduced-rank regression. Instead of adjusting
the predictions in a post-processing step, one can of
course think of including a label-based regularization
in the algorithm itself. This is the motivation behind
reduced-rank regression (RRR) and related methods
(Izenman, 1975). RRR has been introduced in statis-
tics more than thirty years ago for multivariate re-
gression tasks where outputs are unconditionally de-
pendent. Under the assumption that every label can
be represented as a linear model of the inputs, i.e.,

hk(x) = wk · x ,

with wk a vector of parameters that is specific for ev-
ery label, the RRR method introduces a regularization

term in the least-squares objective function, penalizing
for the rank of the matrix W = (w1, ...,wm). Given
the restriction that the rank of W is r < m, the predic-
tive model is forced toward predictions of label vectors
having similar or even identical components, resulting
in a similar effect as stacking.

Multi-task learning. Explicit modeling of label de-
pendence has also played a key role in the development
of related areas like multi-task learning and transfer
learning, where task i with model hi and task j with
model hj are assumed to be related (Caruana, 1997).
Similar types of label-based regularization characterize
recent developments in these domains. Amongst oth-
ers, the regularized multi-task learning algorithm of
(Evgeniou and Pontil, 2004) considers parameter vec-
tors of the type

wk = w0 + vk ,

with the assumption that, for related tasks, the norms
of the label-specific vectors vk are small compared to
the norm of the base parameter vector w0.

Label dimensionality reduction. Methods like
kernel dependency estimation (Weston et al., 2002)
and its variants (Yu et al., 2006; Hsu et al., 2009) orig-
inate from a different point of view, but still perform a
very similar job for predicting multivariate responses.
Kernel dependency estimation consists of a three-step
procedure. The first step conducts a principal com-
ponent analysis of the label space to make the labels
uncorrelated. As an alternative, one can also opt to
use kernel PCA instead of regular PCA in this step,
for deriving non-linear combinations of the labels or
for predicting structured outputs. Subsequently, the
transformed labels (i.e. the principal components) are
used in a simple multivariate regression method that
does not have to care about label dependencies, know-
ing that the transformed labels are uncorrelated. In
the last step, the predicted labels of test data are trans-
formed again to the original label space. Label-based
regularization can be included in this approach as well,
simply by using only the first r < m principal compo-
nents in steps two and three, similar to regularization
based on feature selection in methods like principal
component regression (Hastie et al., 2009).

5. Conditional Label Dependence

As mentioned previously, unconditional dependence is
a kind of expected dependence, averaging over the
marginal distribution of the input X. As opposed to
this, conditional dependence refers to the dependence
of the labels given a fixed instance x in the feature
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space. Roughly speaking, while unconditional depen-
dence mostly concerns the deterministic part in (10),
i.e., the functions hi(·), conditional dependence con-
cerns the stochastic part, i.e., the error terms εi. In-
deed, once an instance x has been observed, the hi(x)
are simply constants and thus become irrelevant for
any kind of dependency analysis.

5.1. Modeling Conditional Dependence

The posterior probability distribution px(Y) provides
a convenient point of departure for analyzing condi-
tional label dependence, since it informs about the
probability of each label combination as well as the
marginal probabilities. In a stochastic sense, there is
a dependency between the labels if the joint condi-
tional distribution is not the product of the marginals
(like in the above example).

For instance, in our example from Section 4.2, condi-
tional independence between Y1 and Y2 follows from
the assumption of independent error terms ε1 and ε2.
This independence is lost, however, when assuming
a close dependency between the error terms, namely
ε1 = ε2. In fact, even though the marginals will re-
main the same, the joint distribution will change in
that case. The following table compares the two dis-
tributions for an instance x form the region C11:

px(Y) 0 1 p
(1)
x (Y1)

0 0.01 | 0.10 0.09 | 0.00 0.10
1 0.09 | 0.00 0.81 | 0.90 0.90

p
(1)
x (Y2) 0.10 0.90 1

A connection with multivariate regression can be made
by defining error terms in (10) in a proper way. In
terms of their expectation, we have

E[εi(x)] =

{

p
(i)
x (1) if hi(x) = 0 ,

−p
(i)
x (0) if hi(x) = 1 ,

for i = 1, ...,m and

E[εi(x)εj(x)]=



















p
(i,j)
x (1, 1) if hi(x)=0, hj(x)=0,

−p
(i,j)
x (1, 0) if hi(x)=0, hj(x)=1,

−p
(i,j)
x (0, 1) if hi(x)=1, hj(x)=0,

p
(i,j)
x (0, 0) if hi(x)=1, hj(x)=1,

for i, j = 1, ...,m. This observation implies the follow-
ing proposition that directly links multi-label classifi-
cation and multivariate regression: Two labels Yi and
Yj are conditionally dependent given x if and only if
the error terms εi(x) and εj(x) in (10) are condition-
ally dependent, i.e., E[εi(x)εj(x)] 6= E[εi(x)]E[εj(x)].

5.2. Loss Functions and Risk Minimization

Can conditional label dependence help to improve the
generalization performance in MLC? Unlike the case
of unconditional label dependence, the answer is more
nuanced in this case and has not been widely studied
so far. The results presented in (Dembczyński et al.,
2010) suggest that, despite being affirmative in gen-
eral, the answer strongly depends on the loss function
to be minimized.

Recall that the risk-minimizing model h∗ is given by

h∗(x) = arg min
y

EY|XL(Y,y), (13)

where L(Y,y) is a loss function defined on multi-label
predictions. Now, let us take a look at three commonly
used loss functions in multi-label problems, namely the
Hamming loss, rank loss, and the subset 0/1 loss as
defined in Section 2.

• For the subset 0/1 loss (3), it is easy to see
that the risk-minimizing prediction is given by the
mode of the distribution:

h∗(x) = arg max
y∈Y

px(y) . (14)

• For the Hamming loss (4), it is easy to see that
(13) is obtained by

h∗
i (x) = arg max

b∈{0,1}
p(i)

x
(b). (15)

• As shown by (Dembczyński et al., 2010), the ex-
pected rank loss (5) can be minimized by sorting
the labels according to their probability of rele-
vance. In other words, following ranking function
is a risk minimizer for (5):

fi(x) = p(i)
x

(1) (16)

As an important consequences of the above results
we note that, according to (15) and (16), a risk-
minimizing prediction for the Hamming and the rank
loss can be obtained from the marginal distributions

p
(i)
x (Yi) (i = 1, . . . ,m) alone. In other words, it is not

necessary to know the joint label distribution px(Y)
on Y. Or, stated differently, risk-minimizing predic-
tions can in principle be made without any knowledge
about the dependency between labels.

As opposed to this, (14) shows that the mode of the
entire distribution of Y given X is needed to minimize
the subset zero-one loss. In other words, the derivation
of a risk-minimizing prediction requires the modeling
of the joint distribution, and hence the modeling of
dependencies between labels.2

2Let us remark, however, that the joint mode coincides
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5.3. Learning Algorithms

The previous findings suggest that modeling condi-
tional dependence is reasonable when the joint con-
ditional distribution is needed, or any property of this
distribution that cannot be easily derived from its
marginals. In this section, we discuss some algorithms
that are able to deal with this problem. Since inferring
the entire joint distribution or any function thereof
(like the mode or an optimal response with respect to
a given loss function) can become costly, we shall also
comment on complexity issues.

Label powerset classifier. The label powerset
classifier (LPC) reduces MLC to multi-class classifi-
cation. To this end, it considers each label subset L ∈
L as a distinct meta-class (Tsoumakas and Katakis,
2007; Tsoumakas and Vlahavas, 2007). The number
of these meta-classes may become as large as |L| = 2m,
which is an obvious disadvantage of this approach.

Since prediction of the most probable meta-class is
equivalent to prediction of the mode of the joint label
distribution, LPC is tailored for the subset 0/1 loss.
Theoretically, it can even deliver an estimate of the
joint distribution provided the underlying multi-class
classifier is in fact a probability estimator. Practically,
however, the large number of meta-classes makes prob-
ability estimation an extremely difficult problem. In
this regard, we also mention that most implementa-
tions of LPC essentially ignore label combinations that
are not presented in the training set or, stated differ-
ently, tend to underestimate (set to 0) their probabil-
ities.

Probabilistic classifier chains. In order to avoid
the high complexity of LPC, one can exploit the prod-
uct rule of probability (8). More specifically, to esti-
mate the joint distribution of labels, one possibility is
to learn m functions gi(·) on augmented input spaces
X × {0, 1}i−1, respectively, taking y1, . . . , yi−1 as ad-
ditional attributes:

gi : X × {0, 1}i−1 → [0, 1]

(x, y1, . . . , yi−1) 7→ p(yi = 1 |x, y1, . . . , yi−1)

Here, we assume that the function gi(·) can be inter-
preted as a probabilistic classifier whose prediction is
the probability that yi = 1, or at least a reasonable
approximation thereof. This approach is referred to
as probabilistic classifier chains (Dembczyński et al.,
2010). As it essentially comes down to training m

with the marginal modes under specific conditions, for ex-
ample in the case of label m-independence or if the prob-
ability of the joint mode is greater or equal 0.5.

classifiers (in augmented feature spaces), its computa-
tional complexity is acceptable.

Much more problematic, however, is inference from the
given joint distribution. In fact, since exact inference
can become infeasible, approximate methods may have
to be used. For example, a simple greedy approxima-
tion of the mode is obtained by successively choosing
the most probable label according to each of the classi-
fiers’ predictions. This approach has been introduced
in (Read et al., 2009), albeit without a probabilistic
interpretation.

Conditional random fields. Conditional depen-
dence can be represented in terms of graphical mod-
els. For example, the conditionally trained undirected
graphical models, or conditional random fields (CRF)
for short, have been used for dealing with multi-label
problems in (Ghamrawi and McCallum, 2005). Such
models provide a rich framework for representing re-
lationships between labels and features of a given do-
main.

If the nature of the conditional dependence is known in
advance, the use of graphical structures for modeling
and learning seems to be the most adequate solution.
The output of such a model is an estimate of the en-
tire joint distribution of labels. The learning can be
performed in terms of gradient descent methods. Of
course, the cost of learning depends on the complex-
ity of the modeled structure. Usually, the interactions
of a low degree (like pairwise) are enough to obtain a
good solution.

In methods such as PCC and CRF, we meet the prob-
lem of inference from the estimated joint distribution.
This limits the applicability of these methods to data
sets with a small to moderate number of labels, say,
not more than about 15. There are, however, possi-
bilities to develop approximate inference schemes that
trade off accuracy against efficiency in a reasonable
way (Ghamrawi and McCallum, 2005). This can be
done in different ways, for example by limiting the in-
ference only to the label combinations that appear in
the training set (as usually done by LPC), pruning sin-
gle labels (with provably low probability of relevance),
or by ignoring label combinations with low probability
(to minimize the subset zero-one loss, only the most
probable label combination is needed).

AdaBoost.LC. Instead of estimating the joint
probability distribution, one can also try to mini-
mizes a given loss function in a more direct way.
In (Amit et al., 2007), so-called label covering loss
functions are introduced, including Hamming and the
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subset 0/1 losses as special cases. The authors also
propose a learning algorithm suitable for minimizing
covering losses, called AdaBoost.LC. This algorithm is
based on boosting and yields a single vector h(x) as a
prediction.

Kernelized loss functions. The last concept we
mention is kernelized loss functions. As remarked
in (Weston et al., 2002), a loss function can be seen
as a measure of similarity in the output space. Since
a kernel function is also a similarity function, one
can easily generalize loss functions to the concept
of kernels. Consequently, kernel dependence esti-
mation (Weston et al., 2002) as well as structural
SVM (Tsochantaridis et al., 2005) are also able to deal
with conditional dependence.

6. Conclusions

The goal of this paper is to clarify some issues related
to label dependence in multi-label classification. Even
though most of the results are quite obvious, they pro-
vide some important insights into the nature of MLC.
In particular, they show that the main concern of re-
cent contributions to MLC, namely the exploitation of
label correlations, should be considered with diligence.
First, different types of dependence can be considered;
in this paper, we focused on the distinction between
conditional and unconditional dependence. Second,
the question whether or not label dependencies can be
harnessed to improve predictive accuracy cannot be
answered in a blanket way. Instead, it depends on the
concrete goal of the learning problem (as expressed, for
example, in terms of a loss function to be minimized),
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