1,215 research outputs found

    Discrete and Continuous Optimization for Motion Estimation

    Get PDF
    The study of motion estimation reaches back decades and has become one of the central topics of research in computer vision. Even so, there are situations where current approaches fail, such as when there are extreme lighting variations, significant occlusions, or very large motions. In this thesis, we propose several approaches to address these issues. First, we propose a novel continuous optimization framework for estimating optical flow based on a decomposition of the image domain into triangular facets. We show how this allows for occlusions to be easily and naturally handled within our optimization framework without any post-processing. We also show that a triangular decomposition enables us to use a direct Cholesky decomposition to solve the resulting linear systems by reducing its memory requirements. Second, we introduce a simple method for incorporating additional temporal information into optical flow using inertial estimates of the flow, which leads to a significant reduction in error. We evaluate our methods on several datasets and achieve state-of-the-art results on MPI-Sintel. Finally, we introduce a discrete optimization framework for optical flow computation. Discrete approaches have generally been avoided in optical flow because of the relatively large label space that makes them computationally expensive. In our approach, we use recent advances in image segmentation to build a tree-structured graphical model that conforms to the image content. We show how the optimal solution to these discrete optical flow problems can be computed efficiently by making use of optimization methods from the object recognition literature, even for large images with hundreds of thousands of labels

    Three dimensional moving pictures with a single imager and microfluidic lens

    Get PDF
    Three-dimensional movie acquisition and corresponding depth data is commonly generated from multiple cameras and multiple views. This technology has high cost and large size which are limitations for medical devices, military surveillance and current consumer products such as small camcorders and cell phone movie cameras. This research result shows that a single imager, equipped with a fast-focus microfluidic lens, produces a highly accurate depth map. On test material, the depth is found to be an average Root Mean Squared Error (RMSE) of 3.543 gray level steps (1.38\%) accuracy compared to ranging data. The depth is inferred using a new Extended Depth from Defocus (EDfD), and defocus is achieved at movie speeds with a microfluidic lens. Camera non-uniformities from both lens and sensor pipeline are analysed. The findings of some lens effects can be compensated for, but noise has the detrimental effect. In addition, early indications show that real-time HDTV 3D movie frame rates are feasible

    Algorithmen zur Korrespondenzschätzung und Bildinterpolation für die photorealistische Bildsynthese

    Get PDF
    Free-viewpoint video is a new form of visual medium that has received considerable attention in the last 10 years. Most systems reconstruct the geometry of the scene, thus restricting themselves to synchronized multi-view footage and Lambertian scenes. In this thesis we follow a different approach and describe contributions to a purely image-based end-to-end system operating on sparse, unsynchronized multi-view footage. In particular, we focus on dense correspondence estimation and synthesis of in-between views. In contrast to previous approaches, our correspondence estimation is specifically tailored to the needs of image interpolation; our multi-image interpolation technique advances the state-of-the-art by disposing the conventional blending step. Both algorithms are put to work in an image-based free-viewpoint video system and we demonstrate their applicability to space-time visual effects production as well as to stereoscopic content creation.3D-Video mit Blickpunktnavigation ist eine neues digitales Medium welchem die Forschung in den letzten 10 Jahren viel Aufmerksamkeit gewidmet hat. Die meisten Verfahren rekonstruieren dabei die Szenengeometrie und schränken sich somit auf Lambertsche Szenen und synchron aufgenommene Eingabedaten ein. In dieser Dissertation beschreiben wir Beiträge zu einem rein bild-basierten System welches auf unsynchronisierten Eingabevideos arbeitet. Unser Fokus liegt dabei auf der Schätzung dichter Korrespondenzkarten und auf der Synthese von Zwischenbildern. Im Gegensatz zu bisherigen Verfahren ist unser Ansatz der Korrespondenzschätzung auf die Bedürfnisse der Bilderinterpolation ausgerichtet; unsere Zwischenbildsynthese verzichtet auf das Überblenden der Eingabebilder zu Gunsten der Lösung eines Labelingproblems. Das resultierende System eignet sich sowohl zur Produktion räumlich-zeitlicher Spezialeffekte als auch zur Erzeugung stereoskopischer Videosequenzen

    Dense Vision in Image-guided Surgery

    Get PDF
    Image-guided surgery needs an efficient and effective camera tracking system in order to perform augmented reality for overlaying preoperative models or label cancerous tissues on the 2D video images of the surgical scene. Tracking in endoscopic/laparoscopic scenes however is an extremely difficult task primarily due to tissue deformation, instrument invasion into the surgical scene and the presence of specular highlights. State of the art feature-based SLAM systems such as PTAM fail in tracking such scenes since the number of good features to track is very limited. When the scene is smoky and when there are instrument motions, it will cause feature-based tracking to fail immediately. The work of this thesis provides a systematic approach to this problem using dense vision. We initially attempted to register a 3D preoperative model with multiple 2D endoscopic/laparoscopic images using a dense method but this approach did not perform well. We subsequently proposed stereo reconstruction to directly obtain the 3D structure of the scene. By using the dense reconstructed model together with robust estimation, we demonstrate that dense stereo tracking can be incredibly robust even within extremely challenging endoscopic/laparoscopic scenes. Several validation experiments have been conducted in this thesis. The proposed stereo reconstruction algorithm has turned out to be the state of the art method for several publicly available ground truth datasets. Furthermore, the proposed robust dense stereo tracking algorithm has been proved highly accurate in synthetic environment (< 0.1 mm RMSE) and qualitatively extremely robust when being applied to real scenes in RALP prostatectomy surgery. This is an important step toward achieving accurate image-guided laparoscopic surgery.Open Acces

    3D Motion Analysis via Energy Minimization

    Get PDF
    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to computing the apparent image motion vector field. Furthermore this results currently in the most accurate motion estimation techniques in literature. Much as this is an engineering approach of fine-tuning precision to the last detail, it helps to get a better insight into the problem of motion estimation. This profoundly contributes to state-of-the-art research in motion analysis, in particular facilitating the use of motion estimation in a wide range of applications. In Chapter 5, scene flow is rethought. Scene flow stands for the three-dimensional motion vector field for every image pixel, computed from a stereo image sequence. Again, decoupling of the commonly coupled approach of estimating three-dimensional position and three dimensional motion yields an approach to scene ow estimation with more accurate results and a considerably lower computational load. It results in a dense scene flow field and enables additional applications based on the dense three-dimensional motion vector field, which are to be investigated in the future. One such application is the segmentation of moving objects in an image sequence. Detecting moving objects within the scene is one of the most important features to extract in image sequences from a dynamic environment. This is presented in Chapter 6. Scene flow and the segmentation of independently moving objects are only first steps towards machine visual kinesthesia. Throughout this work, I present possible future work to improve the estimation of optical flow and scene flow. Chapter 7 additionally presents an outlook on future research for driver assistance applications. But there is much more to the full understanding of the three-dimensional dynamic scene. This work is meant to inspire the reader to think outside the box and contribute to the vision of building perceiving machines.</em

    Iterative multi-path tracking for video and volume segmentation with sparse point supervision

    Get PDF
    Recent machine learning strategies for segmentation tasks have shown great ability when trained on large pixel-wise annotated image datasets. It remains a major challenge however to aggregate such datasets, as the time and monetary cost associated with collecting extensive annotations is extremely high. This is particularly the case for generating precise pixel-wise annotations in video and volumetric image data. To this end, this work presents a novel framework to produce pixel-wise segmentations using minimal supervision. Our method relies on 2D point supervision, whereby a single 2D location within an object of interest is provided on each image of the data. Our method then estimates the object appearance in a semi-supervised fashion by learning object-image-specific features and by using these in a semi-supervised learning framework. Our object model is then used in a graph-based optimization problem that takes into account all provided locations and the image data in order to infer the complete pixel-wise segmentation. In practice, we solve this optimally as a tracking problem using a K-shortest path approach. Both the object model and segmentation are then refined iteratively to further improve the final segmentation. We show that by collecting 2D locations using a gaze tracker, our approach can provide state-of-the-art segmentations on a range of objects and image modalities (video and 3D volumes), and that these can then be used to train supervised machine learning classifiers

    Die Virtuelle Videokamera: ein System zur Blickpunktsynthese in beliebigen, dynamischen Szenen

    Get PDF
    The Virtual Video Camera project strives to create free viewpoint video from casually captured multi-view data. Multiple video streams of a dynamic scene are captured with off-the-shelf camcorders, and the user can re-render the scene from novel perspectives. In this thesis the algorithmic core of the Virtual Video Camera is presented. This includes the algorithm for image correspondence estimation as well as the image-based renderer. Furthermore, its application in the context of an actual video production is showcased, and the rendering and image processing pipeline is extended to incorporate depth information.Das Virtual Video Camera Projekt dient der Erzeugung von Free Viewpoint Video Ansichten von Multi-View Aufnahmen: Material mehrerer Videoströme wird hierzu mit handelsüblichen Camcordern aufgezeichnet. Im Anschluss kann die Szene aus beliebigen, von den ursprünglichen Kameras nicht abgedeckten Blickwinkeln betrachtet werden. In dieser Dissertation wird der algorithmische Kern der Virtual Video Camera vorgestellt. Dies beinhaltet das Verfahren zur Bildkorrespondenzschätzung sowie den bildbasierten Renderer. Darüber hinaus wird die Anwendung im Kontext einer Videoproduktion beleuchtet. Dazu wird die bildbasierte Erzeugung neuer Blickpunkte um die Erzeugung und Einbindung von Tiefeninformationen erweitert

    On Motion Parameterizations in Image Sequences from Fixed Viewpoints

    Get PDF
    This dissertation addresses the problem of parameterizing object motion within a set of images taken with a stationary camera. We develop data-driven methods across all image scales: characterizing motion observed at the scale of individual pixels, along extended structures such as roads, and whole image deformations such as lungs deforming over time. The primary contributions include: a) fundamental studies of the relationship between spatio-temporal image derivatives accumulated at a pixel, and the object motions at that pixel,: b) data driven approaches to parameterize breath motion and reconstruct lung CT data volumes, and: c) defining and offering initial results for a new class of Partially Unsupervised Manifold Learning: PUML) problems, which often arise in medical imagery. Specifically, we create energy functions for measuring how consistent a given velocity vector is with observed spatio-temporal image derivatives. These energy functions are used to fit parametric snake models to roads using velocity constraints. We create an automatic data-driven technique for finding the breath phase of lung CT scans which is able to replace external belt measurements currently in use clinically. This approach is extended to automatically create a full deformation model of a CT lung volume during breathing or heart MRI during breathing and heartbeat. Additionally, motivated by real use cases, we address a scenario in which a dataset is collected along with meta-data which describes some, but not all, aspects of the dataset. We create an embedding which displays the remaining variability in a dataset after accounting for variability related to the meta-data
    • …
    corecore