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Discrete and Continuous Optimization for Motion Estimation

Abstract
The study of motion estimation reaches back decades and has become one of the central topics of research in
computer vision. Even so, there are situations where current approaches fail, such as when there are extreme
lighting variations, significant occlusions, or very large motions. In this thesis, we propose several approaches
to address these issues. First, we propose a novel continuous optimization framework for estimating optical
flow based on a decomposition of the image domain into triangular facets. We show how this allows for
occlusions to be easily and naturally handled within our optimization framework without any post-processing.
We also show that a triangular decomposition enables us to use a direct Cholesky decomposition to solve the
resulting linear systems by reducing its memory requirements. Second, we introduce a simple method for
incorporating additional temporal information into optical flow using "inertial estimates" of the flow, which
leads to a significant reduction in error. We evaluate our methods on several datasets and achieve state-of-the-
art results on MPI-Sintel. Finally, we introduce a discrete optimization framework for optical flow
computation. Discrete approaches have generally been avoided in optical flow because of the relatively large
label space that makes them computationally expensive. In our approach, we use recent advances in image
segmentation to build a tree-structured graphical model that conforms to the image content. We show how
the optimal solution to these discrete optical flow problems can be computed efficiently by making use of
optimization methods from the object recognition literature, even for large images with hundreds of
thousands of labels.
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ABSTRACT

DISCRETE AND CONTINUOUS OPTIMIZATION FOR MOTION

ESTIMATION

Ryan Kennedy

Camillo J. Taylor

The study of motion estimation reaches back decades and has become one of

the central topics of research in computer vision. Even so, there are situations

where current approaches fail, such as when there are extreme lighting variations,

significant occlusions, or very large motions. In this thesis, we propose several

approaches to address these issues. First, we propose a novel continuous opti-

mization framework for estimating optical flow based on a decomposition of the

image domain into triangular facets. We show how this allows for occlusions to

be easily and naturally handled within our optimization framework without any

post-processing. We also show that a triangular decomposition enables us to use

a direct Cholesky decomposition to solve the resulting linear systems by reducing

its memory requirements. Second, we introduce a simple method for incorporating

additional temporal information into optical flow using “inertial estimates” of the

flow, which leads to a significant reduction in error. We evaluate our methods on

several datasets and achieve state-of-the-art results on MPI-Sintel. Finally, we in-

troduce a discrete optimization framework for optical flow computation. Discrete

approaches have generally been avoided in optical flow because of the relatively

large label space that makes them computationally expensive. In our approach,

we use recent advances in image segmentation to build a tree-structured graphical

model that conforms to the image content. We show how the optimal solution to

these discrete optical flow problems can be computed efficiently by making use of
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optimization methods from the object recognition literature, even for large images

with hundreds of thousands of labels.
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1
Introduction

In one of the more iconic scenes from the film Jurassic Park, two children Lex and

Tim Murphy are trapped in their jeep during a rainstorm while a Tyrannosaurus

rex attacks them. Coming to their rescue, Dr. Grant runs to the jeep and tells

them to stay still: “Don’t move. He can’t see us if we don’t move.” To the viewers’

relief, the plan works, and the fearsome dinosaur is unable to locate them despite

being just a few feet away.

Of course, the idea that T. Rex was unable to separate people form the back-

ground without the aid of motion is simply untrue. In fact, the T. Rex likely had

exceptional vision (Stevens, 2006), although this would have resulted in a much

shorter movie with a less happy ending. Even so, it is certainly true that motion

can provide essential information for our understanding of the visual world. A

similar situation to that of Jurassic Park can be seen through the camouflage that

animals use in nature. Consider, for example, Figure 1.1a, which depicts a lion

hidden in tall grass as it stalks its prey. From static visual information alone, it

may be extremely difficult to tell that the lion is there. In this case, motion can

indeed prove to be an extremely valuable cue for detecting predators. Another

scene where motion is important is shown in Figure 1.1b. In this street scene,



Chapter 1. Introduction 2

(a) A lion hiding in the grass. (Dupont,
2014)

(b) A street scene involving
pedestrians. (Wang et al., 2007)

Figure 1.1: Scenes where motion is an important cue. In (A), the tall grass
obscures a lion. Without motion, the lion may be difficult to see. In (B), the
motions of the pedestrians are necessary for determining where to walk down
the street.

pedestrians are walking down the street. In order for us to walk down the street

ourselves, it is necessary to determine the motion of each person and plan a path

to avoid them. Situations such as this that involve path planning around moving

objects show up in robotics and autonomous driving applications.

Motion can play an essential role for scene understanding even in extremely simple

situations, as was convincingly demonstrated in an experiment by Ullman (Ullman,

1979). In his experiment, Ullman constructed constructed two cylinders that were

invisible aside from a set of random dots on their surfaces. One cylinder was placed

within the other and they were rotated in opposite directions. This setup is shown

in Figure 1.2. Only the orthographic projection of the cylinders from the side was

made visible, and so at any point in time the image on the screen appeared to be

just a random collection of dots. However, when the cylinders were rotated, the

motion resulted in the visual interpretation of two rotating cylinders. As Ullman
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Figure 1.2: The setup of the cylinder used in Ullman’s experiment (Ullman,
1979). Two concentric transparent cylinders rotate in opposite directions. The
cylinders are depicted in gray, although they are were not visible in the exper-
iment. The random dots on the cylinder appear as just a collection of random
dots at a single frame, but as the cylinders rotate the correct object segmen-
tation and 3D structure is perceived. Figure adapted by author from (Ullman,
1979).

put it,

[W]hen the changing projection was viewed, the elements in the motion

across the screen were perceived as two rotating cylinders whose shapes

and angles of rotation were easily determined. Both the segmentation of

the scene into objects and the 3-D interpretation were based in this case

on the motion alone, since each single view contained no information

concerning the segmentation or the structure.

This demonstration shows that, indeed, motion is a very important cue for vi-

sual perception. Motion aids in our understanding of the structure and semantic

meaning of scenes.

Unfortunately, motion cues can also fool us. Consider the classic barber’s pole

illusion, as shown in Figure 1.3. As the pole spins, our perception is that the

pole has a vertical component to its motion even though the pole is only spinning
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Figure 1.3: The barber’s pole illusion. As the pole spins around its vertical
axis, it appears that the motion of the pole has a vertical component when there
is none. The is due to the aperture problem.

around its vertical axis. An illusion of this type demonstrates that, even with

motion, a visual interpretation of a scene can be ambiguous. In this case, the

illusion is caused by the fact that is only possible to estimate local motion that is

perpendicular to an edge, which is known as the aperture problem. In reality, the

barber pole could be moving one of many different directions based on our limited

view of it, and our minds choose just one of these interpretations. Thus, the

underlying algorithms that we use to estimate motion – and their associated biases,

both implicit and explicit – play a significant role in our resulting interpretation

of the world.

The barber’s pole illusion also illustrates the difference between the true motion

field and the apparent motion or optical flow of a scene. While the true motion of

the pole is a rotation around its vertical axis, the apparent motion is ambiguous

and has a vertical component. Similarly, a homogeneous textureless sphere that
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(a) Image 1 of the Grove2 se-
quence.

(b) Image2 of the Grove2 se-
quence.

(c) Groundtruth optical flow. (d) Color key for groundtruth
optical flow values. Direction
is indicated by hue while mag-
nitude is indicated by satura-
tion of the colors.

Figure 1.4: An example of the optical flow problem, taken from the Middle-
bury dataset (Baker et al., 2011)

is spinning may have a very large motion but impart zero optical flow. Computa-

tionally, images are all that we have access to and so the optical flow of a scene is

all that we can estimate. Its estimation is the topic of this thesis.

An example of optical flow estimation on a real image is shown in Figure 1.4.

Given a sequence of images, the goal of optical flow estimation is to determine the

offset that each pixel in the image at time t moves to at time t + 1. We display

the estimated flow field using a color image, where the hue at each pixel indicates

the direction of the motion and the saturation indicates the magnitude.
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1.1 Applications of Optical Flow

We begin by outlining several concrete applications of optical flow to further mo-

tivate the issues studied in this thesis.

1.1.1 Video interpolation

While a video may be pre-recorded and fixed, in many cases it is desirable to look

at the scene from a viewpoint – in either time or space – that is not captured at any

of the frames of the video. In (Zitnick et al., 2004), a method was proposed that

used motion estimation between a set of cameras to interpolate to novel viewpoints

in the scene. In (Mahajan et al., 2009), a method closely related to optical flow

was used to obtain high-quality interpolation between frames in a single video.

1.1.2 Tracking

Optical flow has an clear application to tracking: if an accurate motion field can

be obtained, then tracking an object can be done just by tracking each associated

point using the estimated flow. Local methods for optical flow have also been used

to directly track individual points (Shi and Tomasi, 1994). Features derived from

flow fields can also be used indirectly as features within a more complex tracking

system, such as for tracking a human pose (Sapp et al., 2011; Fragkiadaki et al.,

2013).



Chapter 1. Introduction 7

1.1.3 Action recognition

When attempting to estimate the actions that occur in a video, motion can be

an important cue. For example, in (Wang et al., 2011; Bhattacharya, 2013; Fathi

and Rehg, 2013), dense motion estimates were used to generate features for action

recognition.

1.1.4 Relationship to stereo correspondence

Optical flow is also closely related to the stereo correspondence problem. In con-

trast to optical flow where two frames are typically of the same scene but separated

in time, stereo uses two images of a scene from the same point in time but different

spatial locations. This results in a slightly different problem, since the scene is

completely rigid with respect to the stereo images and all motion is due to the

camera. For every pixel, the set of possible correspondences in the other image are

no longer the set of all pixels in the other image since the correspondence must lie

on an epipolar line (Szeliski, 2010; Hartley and Zisserman, 2003). If the images

are rectified first (Hartley and Zisserman, 2003), then this is equivalent to finding

only the horizontal offset for each pixel, rather than both horizontal and vertical

as is the case for optical flow. In this way, optical flow methods can be applied

directly to the stereo problem as well. However, because the problem is somewhat

different, a different set of algorithms that include the use of discrete optimization

(Boykov et al., 2001; Kolmogorov and Zabih, 2001) or segmentation (Yang et al.,

2009; Zitnick et al., 2004) also perform well.
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1.1.5 Relationship to general image correspondence

Optical flow is also related to the general image correspondence problem. In this

setup, a correspondence is estimated between two semantically similar images

which may not be from the same scene. Because the images may be from different

scenes, color or image intensity are not useful features, and more complex descrip-

tors such as SIFT (Lowe, 2004; Liu et al., 2011) need to be used. The models

for image correspondence may also need to account for difficulties such as scale

changes (Hassner et al., 2012; Kim et al., 2013a), but in general the approach is

similar to that of optical flow (Liu et al., 2011). One particularly useful application

of image correspondence is for label transfer, where labels from one image can be

transfered to another by aligning an image to a pre-labeled database (Liu et al.,

2009). This approach can also be used in medical imaging (Kybic and Unser,

2003) to align a given medical image to a model image in order to analyze it or

detect irregularities.

1.2 Modeling Optical Flow

The basic problem of optical flow can be stated simply: for each pixel in an image,

determine its corresponding location in a subsequent image. To gain tractability

on solving this problem, a set of simplifying assumptions are used to mathemati-

cally formalize the idea of what constitutes a “good” solution. Optical flow models

generally rely on two assumptions about objects within our physical world. First,

it is assumed a physical object maintains a similar appearance through time – at

least over a short time span. Second, it is assumed that physical objects tend to

have a finite, compact extent, which implies that the motion of nearby points are
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correlated; points that are very close to each other in the image are likely to be

part of the same object and have a similar motion due to the motion of that object.

These two assumptions – that objects maintain a similar appearance through time

and that nearby points have correlated motions – will be referred to as the bright-

ness constancy assumption and the smoothness assumption. Although the term

“brightness constancy” originally comes from models where the images have only

a single, grayscale “brightness” channel, we may refer to this assumption as the

idea that objects have a similar apperance through time, even if that appearance

is measured using color or more complex features.

1.2.1 Brightness Constancy Assumption

The simplest form of brightness constancy states that for grayscale images, two

corresponding pixels have a similar intensity value. This is easily written as a

mathematical constraint, and forms the basis of all optical flow algorithms. In

an ideal situation, this is the only constraint that is needed: each pixel can be

corresponded with its closest match in the next image. However, simple pixel

intensities are often insufficiently discriminative and the optical flow problem is

underconstrained. Instead, more information can be used, such as color or even

more complex features. Additionally, a smoothness assumption can be used as a

regularization in order to impose more structure on the resulting motion fields.

1.2.2 Smoothness Assumption

Due to the coherence of objects in our world, two points near each other in an

image will often have a correlated motion. This can be encoded mathematically
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in different ways, and boradly splits algorithms into two categories: local and

global methods. In local algorithms, the smoothness assumption assumes that a

separate local parametric model exists to describe the motion of each pixel indi-

vidually. This allows for information to be aggregated over local neighborhoods

in the image. The motion of each pixel is then solved for independently. In con-

trast, global algorithms define a single, global cost function which encodes both

the brightness constancy assumption as well as a penalty for when nearby pixels

have significantly different motion estimates. A global cost function is generally

more difficult to solve since it is often non-convex and cannot be as easily paral-

lelized as local cost functions. However, incorporating information globally, over

the entire image domain, can result in much more accurate solutions. Modern

optimization methods have improved the speed and reliability of global methods,

and the most accurate optical flow algorithms today typically use some form of

global optimization.

1.3 Challenges

The basic brightness constancy and smoothness assumptions are not hard to model

mathematically, and in many cases simple approaches are able to produce high-

quality motion estimates relatively efficiently. However, these basic assumptions

can break down.

1.3.1 Lighting Variation

Lighting variations lead to violations of the brightness constancy assumption. For

example, a pixel in one image might be covered by a shadow in the subsequent
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(a) A pair of images from the KITTI dataset (Geiger et al., 2012).
Shadows cause violations of the brighness constancy constraint and
low contrast grayscale images make feature matching difficult.

(b) A pair of images from the MPI-Sintel dataset (Butler et al., 2012).
Large motions result in motion blur, making matching difficult.

(c) A pair of images from the MPI-Sintel dataset (Butler et al., 2012).
Large occluded regions have no match in the second frame.

Figure 1.5: An example of the optical flow problem.

image. This is a major problem in, for example, the KITTI dataset as shown in

Figure 1.5a, where a combination of low-contrast grayscale features and outdoor

scenes results in gross violations of brightness constancy. Even when color images

are used, however, differences in lighting can cause significant changes in color.

1.3.2 Imaging and Atmospheric Effects

The imaging process itself is imperfect, and this can lead to violations in brightness

constancy as well. Again, in the KITTI dataset as shown in Figure 1.5a, the

cameras produce only low-contrast grayscale images. In the MPI-Sintel dataset

(Butler et al., 2012), other imaging effects such as motion blur can be problematic,
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as shown in Figure 1.5b. A related problem is caused by atmospheric effects, where

fog or glare can prevent the camera from capturing the true color of the object

represented at each pixel.

1.3.3 Occlusions

The brightness constancy assumption has an underlying assumption that each

point in an image has a correct correspondence in the other image. When objects

are occluded, this is no longer the case. Instead, points may go out of frame or

be blocked by an occluding object, and brightness constancy can not possibly be

used in these regions to find an accurate solution. Occlusions also cause problems

for the smoothness assumption. If multiple objects are moving in the same image,

then pairs of pixels on the border between objects or an object and the background

may refer to two completely different positions in 3D space, even though they are

adjacent in the image. The motions of these pixels are no longer correlated, and

assuming that the motion field is smooth across these occlusion boundaries will

give the wrong solution. Figure 1.5c shows a pair of frames exhibiting a large

occluded regions for which no matches are present in the second frame.

1.3.4 Complex Motions

The simplest form of the smoothness assumption simply penalizes adjacent pixels

that have different motions. More complex motions, however, will violate this. For

example, articulated or non-rigid objects – such as a waving flag or a deforming

piece of paper – are penalized by this smoothness constraint. Additionally, even

if objects are rigid, a simple smoothness constraint assumes that objects move
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parallel to the image plane. This assumption is heavily violated in the KITTI

dataset (Geiger et al., 2012), where the camera is mounted to a forward-moving

car and so pixels move significantly more as they are closer to the camera. This

is also seen as a change in scale for objects that move towards or away from the

camera. Large motions can also cause issues for local optimization methods (Brox

and Malik, 2011).

1.3.5 The Aperture Problem

The aperture problem pervades all optical flow datasets, regardless of the type of

image or model used. This problem is demonstrated in Figure 1.6. The problem

is that any region of an image has only a limited view. Consider an image re-

gion that views the center of a textureless, white piece of paper. If the paper is

shifted slightly, the image does not change! In this case, there is no possible way

to determine the motion from that region alone. Similarly, for an image region

centered on a line, only motions perpendicular to the line can be determined. The

aperture problem is commonly seen in barbershop poles (Figure 1.3). The appar-

ent motion of a barber pole is exactly the same if the pole is moving vertically or

spinning. Our mind chooses a single interpretation, but the motion is ambiguous.

The aperture problem is especially difficult for local methods, where information

in the image is aggregated over only a small area. Global methods, in contrast, are

able to propogate the motion from areas that are highly-discriminative to those

that are more ambiguous.
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Figure 1.6: A depiction of the aperture problem. For a local corner region,
the motion of the associated pixel can be reliably matched the second image.
However, for non-corner regions, such as those within the rectangle, the motion
is ambiguous.

1.3.6 Optimization

A slightly different problem is how a model should be optimized. For example,

the set of possible motions that can be assigned to a pixel can be thought of

as either a continuous or a discrete space, and different methods with different

advantages and disadvantages can be applied depending on the choice. Within

both discrete and continuous approaches, there are a large number of possible

optimization methods: gradient descent, Newton’s method, mean-field methods,

message passing, etc. The choice of optimization methods has expanded and

improved significantly in the last few years, and it depends largely on the choice

of model. There is a tradeoff here as well: more complex models may be more

realistic and more closely relate to the data, but they are often more difficult to

optimize. Any optical flow method must decide where in this tradeoff to position

themselves and how to optimize their model, depending on the application.
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1.4 Contributions of this thesis

This thesis provides three main contributions. First, we present a novel optical

flow model which is based on a triangulation of the image domain. The basis of

our model is similar to past approaches in that it involves estimating the motion

of an image by imposing both data and smoothness terms over a discretization

of the image. However, in our model we view the triangles as discrete geometric

pieces over which motion is estimated. We show how this triangulation allows for

occlusions to be directly and naturally incorporated into the optimization problem.

This approach is continuous in nature, and we use Newton’s method to find a local

optimum, which is typically avoided due to computational reasons. In fact, we

show how a triangulated image allows for an exact Cholesky factorization to be

used within Newton’s method by reducing the memory requirements of Cholesky

factorization.

Second, we introduce the idea of inertial estimates of optical flow. Inertial esti-

mates are estimates of image motion that are taken from adjacent frames. These

inertial estimates can be fused using a classifier, resulting in significant improve-

ments in accuracy. This method is a simple, effective approach to using temporal

information from a video sequence. When used together with our triangulated

model, this results in state-of-the-art optical flow estimates on the difficult MPI-

Sintel dataset.

Finally, we present a discrete approach to motion estimation. Discrete optimiza-

tion is frequently used in related domains such as stereo correspondence, and

has the advantage that a near-optimal solution can be found in many situations.

However, discrete methods are rarely used in optical flow due to the much larger
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label space that makes many discrete approaches impractical. We propose a novel

method that combines a hierarchical Markov random field with optimization tech-

niques from the literature on object detection. We show that this problem can

be solved optimally even for label spaces with hundreds of thousands of labels.

We also show how this discrete approach allows for inertial estimates to be easily

added, which reduces the runtime requirements for their use.

The outline of this thesis proposal is as follows. In Chapter 2, we review current

methods for optical flow and how they relate to our approach. Our triangulation-

based model is then presented in 3. In Chapter 4, inertial estimates are proposed

and we show how they can be fused using a classifier into a single motion estimate.

We also evaluate our triangulation-based model with the inertial estimates, which

results in a state-of-the-art optical flow algorithm. Our discrete approach to optical

flow is then proposed and evaluated in Chapter 5. Finally, we conclude in Chapter

6.
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2
Preliminaries and Related Work

In this chapter, we review related work in motion estimation to provide context for

the contributions of this thesis. We begin by presenting a brief outline of a very

common approach to optical flow estimation. We then review modern techniques

and how they differ from this model with a focus on approaches that are related

to the algorithms proposed in subsequent chapters.

2.1 Basic Approach to Optical Flow Estimation

A fundamental assumption made in optical flow is the brightness constancy as-

sumption, which says that a pixel’s appearance remains relatively constant be-

tween frames. Formally, let I(x, y, t) be a time-dependent image sequence, such

that our goal is to estimate the motion from I(x, y, t) to I(x, y, t+ 1). The bright-

ness constancy assumption then says that

I(x, y, t) ≈ I(x+ u, y + v, t+ 1); , (2.1)
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where u and v are the estimated horizontal and vertical displacements at each

pixel. Mathematically, we can write this as a constraint

I(x+ u, y + v, t+ 1)− I(x, y, t) = 0 (2.2)

or as an `2 penalty [I(x+ u, y + v, t)− I(x, y, t)]2.

If we linearize this constraint by taking its first order Taylor expansion around the

current estimate, we have

Ixu+ Iyv + It = 0 , (2.3)

where Ix, Iy and It are the partial derivatives of I with respect to x, y and t,

respectively. To aid in its interpretation, we rewrite this constraint as

[
Ix Iy

]
√
I2
x + I2

y

u
v

 = −It√
I2
x + I2

y

. (2.4)

This constraint is a line, and it says that the displacement vector
[
u v

]
is per-

pendicular to the image gradient
[
Ix Iy

]
with a projected magnitude of −It√

I2
x+I2

y

in

that direction. This is depicted in Figure 2.1. From the figure, it is clear that the

linearized brightness constancy equation is insufficient to determine the displace-

ment at that pixel uniquely. Indeed, only the component of the flow orthogonal

to the image gradient can be determined. This is a mathematical depiction of the

aperture problem.

Because a single constraint at each pixel leads to an under-constrained system

of equations, it is necessary to impose regularization in order to obtain a unique

solution. This regularization is done by incorporating a smoothness assumption

into the model. This assumption is based on the idea that the physical world is



Chapter 2. Preliminaries and Related Work 19

v

u

(Ix, Iy)−It√
I2

x+I2
y

Figure 2.1: Graphical depiction of the aperture problem due to the linearized
brightness constancy constraint. The standard linearized brightness assumption
constraints the displacement vector [u, v] to be on a line perpendicular the image
gradient at that point. Thus, the displacement is undefined from only one such
equation.

divided into distinct, compact, solid objects and thus pixels that are nearby in the

image likely belong to the same object and have a similar motion. This constraint

was used by Lucas and Kanade (Lucas et al., 1981), who impose the constraint that

the motion field is constant in a small region around each pixel. Then, for each

pixel, there are now multiple equation rather than just one. For example, using

a 5 × 5 neighborhood around each pixel results in 25 equations, still with only 2

unknowns. The linear system is now over-determined, and a least-squares solution

can be found using standard linear solvers. However, this solution is only valid for

small displacements since the brightness constancy equation was linearized, and

so the equations are re-linearized around the new solution estimate. This process

is repeated until convergence.

The Lucas Kanade method works well in many cases, and the local approach

has computational benefits: solving small linear systems can be done extremely

efficiently and the optimization problem at each pixel can be parallelized. The
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local nature of this approach makes it useful in other contexts as well, such as

object tracking (Shi and Tomasi, 1994), where a dense motion field is not required

and tracking discriminative points on an object can be done independently from

each other. There are, however, drawbacks of this approach. First, the aperture

problem (see Section 1.3.5) forces us to use neighborhoods that are sufficiently large

so that they include local texture information. However, larger neighborhoods

also have a greater chance of including irrelevant points that are not part of the

object. This tradeoff on neighborhood size is known as the generalized aperture

problem (Jepson and Black, 1993). One hybrid solution is to have a contextual

neighborhood that varies from pixel to pixel (Baker and Matthews, 2004; Mei

et al., 2011). Still, the neighborhoods may be inaccurate, and the Lucas-Kanade

approach often has errors in regions without sufficient texture. An error analysis

for this and similar problems can be found in (Kearney et al., 1987).

Another drawback of this approach is the sum-of-squares cost function. This

`2 cost function disproportionately penalizes outliers, which can be a problem

when the brightness constancy constraint is violated or a pixel is occluded. One

approach to combat this is to use a robust cost function which is less susceptible to

outliers, as proposed in (Cohen, 1993; Black and Anandan, 1996). This approach

is commonly used in modern methods and can produce high-quality results.

Many extensions of this local method have been proposed to improve its perfor-

mance (Baker and Matthews, 2004; Simoncelli et al., 1991). However, the local

nature of the computation limits the accuracy of local models. Instead, it would

be useful to define a single global cost function across the entire image using vari-

ational methods. This was the approach taken by Horn and Schunck (Horn and

Schunck, 1981). Rather than assume a constant flow within a small neighborhood

of each pixel, Horn and Schunck assumed that the gradient of the flow estimate is
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smooth. The cost function is then

E(u, v) =
∫∫

(Ixu+ Iyv + It)2 + λ
(
‖Ou‖2 + ‖Ov‖2

)
dx dy . (2.5)

The penalty here on the gradient of the motion estimates ensures that the flow

field is locally smooth across the entire image domain. Because the brightness

constancy constraint has been linearized, the Horn-Schunck functional is purely

quadratic for each linearization and can be optimized efficiently using an iterative

update found by solving the Euler-Lagrange equations. The advantage of this

approach over the local method of Lucas-Kanade can be seen by considering what

happens in image locations where the gradients are not diverse enough to overcome

the aperture problem. In such locations, the smoothness constraint of Horn-Schuck

will propagate motion estimates from neighboring regions with more texture and

more certain flow estimates.

The Horn-Schunck method here relies on sequential linearizations of the cost func-

tion. This iteration will work well only when the image changes smoothly and

the global solution can be reached using gradient descent optimization. In many

cases, the image is noisy and motions are large, which introduces many local op-

tima into the cost surface and prevent convergence to a good flow estimate. A

common way to deal with this is to use a coarse-to-fine optimization. First, an

image pyramid is generated (Burt and Adelson, 1983), which results in a series

of images at decreasing resolutions. As the image resolution decreases, the high-

frequency components of the image are removed and only larger structures remain.

In addition, because the images are lower resolution, the motions become smaller

between images. The optimization then proceeds by beginning at the coarsest end

of the pyramid, propagating the estimated flow values as an initialization to the
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next level of the pyramid, and continuing until all levels have been processed. In

this way, the algorithm begins by finding large flow values and iteratively refining

the estimate to incorporate more high-frequency information (Anandan, 1989).

At each level of this coarse-to-find optimization procedure, convergence is obtained

by iteratively linearizing the cost function around the current solution and solving

the resulting linear system. This inner linear system can be solved by standard

linear techniques, such as successive over-relaxation (SOR), which is itself an iter-

ative method. Direct methods such as Cholesky factorization have not been often

used in global optical flow problems due to memory issues.

This general framework – a global cost function incorporating a brightness and

smoothness constraint within a coarse-to-fine optimization – forms the basis of

most modern approaches to optical flow. Recent examples of this framework are

given in (Brox and Malik, 2011) and (Sun et al., 2010a). In the remainder of

this chapter, we review modern techniques and how they deviate from this model,

focusing on methods related to the contributions of this thesis.

2.2 Robustifying brightness constancy to light-

ing variations

The brightness constancy assumption is violated when there are lighting variations

between the two images. This has been addressed in the literature by altering

the brightness constancy assumption. In (Negahdaripour, 1998; Seitz and Baker,

2009), a multiplicative and additive term were added to the brightness constancy
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equation, changing it from

I(x, y, t) = I(x+ u, y + v, t+ 1) (2.6)

to

I(x, y, t)m(x, y) + a(x, y) = I(x+ u, y + v, t+ 1) . (2.7)

In order to make the problem well-defined, it was further assumed that m(x, y)

and a(x, y) vary smoothly over the image domain by penalizing the gradient of

these terms. Thus, this allows for locally-smooth variations in image brightness.

Another approach is to use a different feature than brightness. In (Brox et al.,

2004), it was assumed that brightness gradients remain constant, rather than just

intensities. This was extended to other derivative features including Laplacian and

Hessian constancy in (Papenberg et al., 2006). These various constancy constraints

were simply combined using a weighted sum. However, it is better – although

more complicated – to adjust the weighting based on the location in the image.

For example, in well-lit image regions a standard brightness constancy might be

preferable since it is less affected by noise than higher-order derivatives, while in

regions that have brightness changes a gradient-based term may be best. In (Xu

et al., 2012), the brightness and gradient constancy terms were weighted differently

at each image location, where the weights evolved as a function of the relative data

costs, allowing the algorithm to select the best-performing features at each point.

A similar approach was taken in (Kim et al., 2013b), where features were combined

based on the “discriminitability” of the features at a given point.

Another approach to dealing with lighting variations is to use a normalized cross-

correlation (NCC) cost function. The NCC is a patch-based cost function, where

the brightness at a pixel is normalized by the local mean and standard deviation of
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brightness. NCC was shown to give good results in datasets where lighting varia-

tions are prevalent (Steinbrücker et al., 2009; Vogel et al., 2013) . Images can also

be made more robust to lighting variations by altering how they are represented.

In (Werlberger et al., 2009; Wedel et al., 2009b), the image is first decomposed into

a “structure” and a “texture” component using denoising algorithms, and more

weight is given to the texture component which is less affected by shadows and

imaging irregularities. A color image can also converted into HSV or Lab color

space (Zimmer et al., 2009, 2011), which allows for the lightness channel to be

separately penalized from the color channels.

Violations in brightness constancy can also be overcome by changing the features

that are used. For example, census transforms (Zabih and Woodfill, 1994) en-

code local difference information and have been successfully applied to optical

flow problems, especially those involving low-contrast images (Vogel et al., 2013;

Yamaguchi et al., 2013; Vogel et al., 2014; Yamaguchi et al., 2014). More complex

features such as SIFT (Lowe, 2004) and HOG (Dalal and Triggs, 2005) have also

been used to provide robustness while remaining discriminative. These features

have mainly been used as a supplementary feature-matching term rather than

a replacement of the data cost (Brox and Malik, 2011; Xu et al., 2012; Wein-

zaepfel et al., 2013), although in (Leordeanu et al., 2013; Revaud et al., 2014)

a more extreme matching-based approach is used where sparse matches are in-

terpolated into a dense motion field and subsequently refined using continuous

optimization. One difficulty of these approaches is that they suffer from a similar

generalized aperture problem as was seen in the Lucas-Kanade algorithm since

they are neigborhood-based features: if the neighborhood is too small then the

features are not discriminative enough, while if it is too large then the features may

cover irrelevant background objects or multiple motions. Several recent methods
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have attempted to overcome this issue using modified descriptors. In (Weinzaepfel

et al., 2013), a SIFT-like descriptor was proposed where the distance function al-

lows for a deformation of the descriptor itself to allow for variation in the motion

in the descriptor’s neighborhood. Another approach was taken by (Byrne and Shi,

2013), where the basis of the descriptor are nested circles that are all centered on

the same image pixel, along with robust non-metric matching cost that allow for

explicit removal of outliers.

One approach – which can be applied to any method regardless of the descriptor

used – is to make the cost function robust to outliers, as was proposed in (Cohen,

1993; Black and Anandan, 1996). The Horn-Schunck method uses a standard

least-squares `2 data cost function, which implicitly models all noise as Gaussian.

Outliers can be handled by using a more robust cost function. The `1 cost function,

for example, remains convex but allows to discontinuous flow estimates. Even more

robust, non-convex functions can also be used. These robust methods have been

shown to work very well on a variety of problems (Sun et al., 2010a; Werlberger

et al., 2009; Zach et al., 2007), and this is a standard approach in modern methods.

2.3 Robustifying the smoothness constraint

An obvious drawback of the Horn-Schunck method is that the quadratic penalty

on the image gradient results in a very smooth motion field, even across boundaries

in the image where sharp discontinuities exist. In (Nagel and Enkelmann, 1986),

Nagel and Enkelmann proposed an oriented smoothness constraint that reduces

the smoothness constraint in directions perpendicular to the image gradient, al-

lowing for sharper discontinuities at image edges. This approach has been used in

modern algorithms such as (Alvarez et al., 2002). A variation on this is given in
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(Zimmer et al., 2009, 2011; Alvarez et al., 2002), where rather than adjusting the

smoothness constraint to not cross image edges, the constraint was made to not

cross flow edges. This change results in a data and smoothness term that work

well together and produce quite accurate results. Another approach to modify-

ing the smoothness constraint is to use more parametric models, such as splines

(Szeliski and Coughlan, 1994; Szeliski and Shum, 1996).

A related approach is to modify the weight of each smoothness term in the dis-

cretized cost function to avoid smoothing across image boundaries (Wedel et al.,

2009a; Alvarez Leon et al., 1999; Xu et al., 2012). This approach was extended to

non-local smoothness terms in (Werlberger et al., 2010; Bao et al., 2014; Krähen-

bühl and Koltun, 2012). In this case, each pixel is connected to a set of neighboring

pixels where the neighborhood is defined by the similarity and distance to the cen-

ter pixel. This both reduces the amount of smoothing along image edges as well as

increases the smoothness between non-adjacent pixels that are nonetheless likely

to have the same motion. We take a similar approach in our own algorithm in

Chapter 3, where we use a triangulation that allows us to naturally have non-local

smoothness constraints with no additional computation.

A very common approach in modern methods is to use a robust cost function

rather than the sum of squared differences (Black and Anandan, 1996; Sun et al.,

2010a). This is the same approach that was taken to make the data cost robust

to lighting variations, and can be seen as a general method for making any cost

function robust to outliers.



Chapter 2. Preliminaries and Related Work 27

2.4 Large displacements

If displacements are not too large in optical flow problems, a standard coarse-to-

fine image pyramid can be used. However, if the motion of an object between

frames is significantly larger than the size of the object itself, then a coarse-to-fine

approach will not work. The reason for this is that as the image is downsized

in the image pyramid, large displacements will become smaller. For very large

displacements with small objects, by the time the displacement is small enough the

object has been completely blurred out and local optimization will fail. This was

pointed out in (Brox and Malik, 2011). To overcome this issue, (Brox and Malik,

2011) proposed incorporating global feature matching into the variational optical

flow problem. In their framework, (Brox and Malik, 2011) had a discrete matching

term that encouraged features to be globally matched to similar matches, as well

as a term that encouraged the flow estimate to be similar to the global feature

matches. In this way, the global feature matching pushes the solution towards the

true global optimum. The addition of feature matching as an additional unary

data term has been used often in modern methods (Xu et al., 2012; Weinzaepfel

et al., 2013; Chen et al., 2013). Another method to avoid oversmoothing small

objects is to “explode” an intensity feature vector into a histogram of values so that

only location information is smoothed and not feature values, as was presented in

(Sevilla-Lara et al., 2014). We incorporate a feature matching term into our own

algorithm using SIFT features in Chapter 3.

A different method, which uses no image pyramid, was proposed in (Steinbrucker

et al., 2009). They proposed splitting the flow into two separate estimate, u, v and
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u′, v′, using the cost function

E(u, v, u′, v′) =
∫∫

Edata(u, v)+λ0Esmooth(u′, v′)+λ1
[
(u− u′)2 + (v − v′)2

]
dx dy,

(2.8)

where the last term encourages the flow estimate u, v to be similar to u′, v′. Now,

if Edata(·) is convex ((Steinbrucker et al., 2009) use an `1 cost), then E(·) can

be optimized globally with respect to u′, v′ using standard gradient descent al-

gorithms. If u′, v′ are held constant, then u, v can be solved for using a global

matching procedure which can be parallelized on GPUs efficiently. The method

then proceeds by alternately estimating u, v and u′, v′ until convergence. The pa-

rameter λ1 begins as a small value and is gradually increased, encouraging the

two flow estimates to eventually come to a compromise between the data and

smoothness terms. Although this method is computationally interesting due to its

unique optimization that does not involve an image pyramid, it has not seen much

use since its publication. One of the algorithms presented in this thesis (Chapter

5) is related in that it also computes optical flow without the need for an image

pyramid. In addition, our method can compute the global optimum of the full

model.

Another approach to dealing with large displacements was proposed in (Barnes

et al., 2009) and is known as PatchMatch. The PatchMatch algorithm is a stochas-

tic method that involves three steps. First, patches are randomly assigned to cor-

responding matches in the second image. Next, good matches are propagated to

their neighboring pixels. Finally, each pixel performs a local search for a better

match. This process is repeated until convergence. While PatchMatch has no

guarantees of optimality, it is useful in that it is extremely efficient and produces

good results. This method was generalized in (Barnes et al., 2010) to deal with
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changes in scale, rotations, and more general data costs. PatchMatch was shown

to work well for optical flow algorithms in (Bao et al., 2014), which used Patch-

Match along with non-local smoothness constraints and resulted in an algorithm

with very good performance on difficult optical flow problems while taking only a

fraction of a second to compute.

2.5 Occlusions

Occlusions often cause difficulties in optical flow algorithms. Most easily, they

can be handled using a robust cost function and simply treated as a violation

of the brightness constancy assumptions (Black and Anandan, 1996). However,

for image sequences with large occluded regions, the occlusions are no longer just

sparse outliers and are better handled by explicitly detecting and handling them.

This is demonstrated in Figure 2.2, which shows how occlusions can be a very

significant issue for some datasets.

A simple way to locate these occluded regions is using a forward-backward consis-

tency check, as in (Proesmans et al., 1994). This check is based on the idea that if

a pixel is occluded in the second image, the first image will not have a match while

if the flow were estimated in the reverse direction a match might exist. These lo-

cations that are only matched in one direction are considered occluded. This was

extended by (Alvarez et al., 2002) where a symmetrical cost function was defined

within which a forward-backward check is used.

A disadvantage of the forward-backward approach is that the computation is im-

mediately doubled since flow estimates must be computed in two directions. An-

other approach is to note that pixels are occluded if multiple pixels map to the
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(a) First image (b) Second image

(c) Groundtruth flow (d) Groundtruth occlusions

Figure 2.2: Example of the difficulties that occlusion causes. For difficult
image sequences, occlusions may involve a large section of the image and cannot
be dismissed simply as outliers.

same location. This was used in (Xu et al., 2012; Kim et al., 2013b). Once oc-

cluded regions are detected, they are filled in using bilateral filtering, as was also

done in (Sand and Teller, 2008).

A simpler approach simply marks pixels as occluded that have a high data cost,

indicating that they are poor matches. In (Xiao et al., 2006), these regions were

then filled in using bilateral filtering. In (Strecha et al., 2004), a visibility map

was added to a probabilistic framework to estimate occluded regions in a more

principled manner. A joint model for estimating both flow and occlusion is also

proposed in (Ayvaci et al., 2012). Because occluded pixels do not participate in

the data cost function, an additional term penalizes the number of occluded pixels.

Occlusions can also be estimated separately from optical flow. In (Stein and

Hebert, 2009), motion and appearance features were used to identify occlusion

boundaries, separate from motion estimation itself. In (Humayun et al., 2011), this

was posed as a classification problem and a random forest classifier was learned
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to detect occluded pixels. Improved results were obtained by (Sundberg et al.,

2011), who also classify occlusion boundaries. They take the estimated motion

boundaries and the optical flow map, and look at the difference of flow on both

sides of the boundary to determine occlusions and figure-ground relationships.

Another approach that naturally deals with occlusion is to use layered models.

Layered models were successfully used for modern optical flow methods in (Sun

et al., 2010b). If an image can be successfully divided into separate layers, each

representing primarily one motion estimate, then the flow for each layer can be es-

timated separately and occlusion reasoning naturally comes from reasoning about

which layers occlude which others. In (Sun et al., 2010b), the layers were initialized

by computing standard optical flow without considering occlusions and then clus-

tering the motion vectors using K-means. In (Sun et al., 2012), this was extended

to operate over multiple frames to improve the layer estimation. Their method

also use a discrete, move-making algorithm rather than continuous optimization.

The MRF used for estimating layer membership was made fully-connected in (Sun

et al., 2013), and mean-field optimization within an EM framework allowed for effi-

cient optimization, although only two layers were used. In (Sun et al., 2014), layers

were used to improve the estimation of optical flow generated without considering

occlusions. In particular, after estimating a flow field, the image is segmented and

each segment is used as its own layer, which allows for occlusion estimation to

refine the solution. In Chapter 3, we present a method for estimating occluded

regions by discretizing the image into distinct triangular regions. Our approach

can be considered a layered model where each triangle in our model is a separate

layer.
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(a) Image at t− 1 (b) Image at t (c) Image at t+ 1

Figure 2.3: A situation where multi-frame optical flow is essential. The
dragon’s wing in the frame at time t goes out of frame at time t + 1, mak-
ing it nearly impossible to recover its motion of using two-frame optical flow.
The wing, however, is visible in frame t− 1, which provides information about
its motion.

2.6 Multi-frame optical flow

Optical flow is often posed as a two-frame problem: estimate the apparent motion

from the frame at time t to time t+1. While this works for simple situations, there

is sometimes insufficient information in only two frames for a good correspondence

to be found. An example of this situation is shown in Figure 2.3. In this figure,

the dragon’s wing at time t is no longer visible at time t+1, and thus no amount of

smoothness constraint could propagate flow to this occluded region since the entire

region is occluded. However, in the previous frame at time t−1 the dragon’s wing

is still visible and this provides information about the motion of the wing. The

use of more than two frames in optical flow can thereby provide useful information

and improve results.

Despite the relative lack of modern multi-frame optical flow algorithms, attempts

have been made to model temporal consistency back to the work of (Murray and

Buxton, 1987). The most common idea is to impose a sort of temporal regularity

similar to the spatial regularity term. In particular, it is assumed that the flow

estimates are smooth over time. In (Nagel, 1990), Nagel extended the idea of ori-

enting spatial smoothness constraints along image edges into the temporal domain.
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A related flow-driven temporal smoothness constraint was proposed subsequently

in (Weickert and Schnörr, 2001).

However, in contrast to the spatial term where pixels can be connected with a

static set of neighbors in a grid, a temporal continuity constraint works better if

it is paired with the pixel that it matches to in the subsequent image. A primary

reason why simply enforcing smoothness across the same pixel location over time

does not work well is that many image sequences have a low frame-rate relative

to their motions and thus temporal derivatives are meaningless. Of course, this

pixel correspondence is not known beforehand, leading to a difficult optimization

problem. In (Black and Anandan, 1990), the motion of a pixel was compared

with an average of the same track point’s previous velocities. In (Salgado and

Sánchez, 2007), a model is used that penalizes deviations between velocity vectors

in subsequent frames for matched pixels. A novel parameterization of temporal

smoothness was presented in (Volz et al., 2011), where a constraint was imposed

by parameterizing all flow values with respect to a center frame. In this model,

five frames are used for motion estimation. Rather than having a separate flow

estimate between all successive pairs of frames and needing to track points over

time, the flow values are estimated as an offset such that flow from the center

frame to any other frame can be obtained by summing the flow estimates at the

same pixel location. This allows for temporal constraints to be naturally placed

along the temporal dimension.

Temporal consistency has also been enforced in layered models. In (Sun et al.,

2010b, 2012), a term of the cost function encourages pixels connected based on

the current flow estimate to have similar layer assignments.

Another related method to our own multi-frame approach is that of multi-view
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stereo. In multi-view stereo, more than two images are used for reconstruction and

the result is a 3D surface of the imaged scene. In this case, a single point on the

object is seen from multiple images. In (Newcombe et al., 2011), the data costs

from multiple images are averaged, while in our method we take the minimum

of several data costs to allow for occlusions. A similar approach was also taken

in (Szeliski and Coughlan, 1997) and (Okutomi and Kanade, 1993). In (Szeliski

and Coughlan, 1997; Sun et al., 2000) in particular, linear flow was assumed for

multi-frame flow estimation. In (Kang et al., 2001), multiple frames were handled

within a stereo correspondence problem by selecting a subset of frames for each

pixel that were likely to be unoccluded.

In Chapter 4, we present a novel method of incorporating temporal information

into any optical flow algorithm with minimal complexity, leading to very high-

quality flow estimates on difficult image sequences.

2.7 Fusion methods

Fusion methods are an interesting optical flow technique, where multiple estimates

of optical flow are combined in order to improve results. Most often, this is done

by using multiple algorithms or parameter values to estimate the same two-frame

motion. In (Lempitsky et al., 2008), flow estimates were generated using the

Horn-Schunck and Lucas-Kanade algorithms with various parameter settings. The

objective of the fusion step in (Lempitsky et al., 2008) was to directly minimize the

energy of a global MRF model. This was done by considering two flow estimates

at a time and performing optimization using a discrete move-making algorithm

(Boykov et al., 2001). In (Jung et al., 2008), multiple local minima of an MRF

model are combined by randomly partitioning and combining the estimates. A
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(a) 4-
connected
neighborhood

(b) 8-
connected
neighborhood

Figure 2.4: 4- and 8-connected MRF neighborhoods. A 4-grid is more com-
monly used due to its simplicity.

related method in (Chen et al., 2013) produced a set of proposal motion models and

then assigned each pixel to the models using an energy minimization framework.

Fusion can also be cast within a classification framework. In (Mac Aodha et al.,

2013), a random forest classifier was trained to estimate how accurate the optical

flow estimate is at each pixel. This confidence could potentially be used to combine

several algorithms based on which is more confident. A similar approach was

taken in (Mac Aodha et al., 2010), where a classifier was used to determine which

algorithm from a set of them would likely give the most accurate solution at each

pixel. In Chapter 4, we show how a related fusion method can be used to not only

fuse multiple algorithms, but also to fuse temporal information that we call the

inertial estimates of optical flow.

2.8 Discrete optimization

In the methods discussed so far, optical flow has been treated as a continuous

optimization problem, where the offset assigned to each pixel location is potentially

any real number. Locating the global optimum for such a function is extremely
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difficult, especially since the data terms in optical flow problems are dependent on

the image content and are likely very non-convex. Local optimization methods –

especially when combined with sparse global feature matching – have been shown

to achieve quite good results on a range of applications, but there is still no

guarantee that the resulting solutions are not sub-optimal.

Another approach can be taken by assuming that the offset assigned to each pixel

is taken from a discrete set of possible offsets. For example, we may allow each

pixel in the first image to match to each other pixel in the second image. This

approach has been used frequently in stereo correspondence problems (Boykov

et al., 2001), and is often followed by an additional optimization step to achieve

sub-pixel accuracy.

At first glance, this might seem like the wrong approach: why limit ourselves to

discrete offsets when optical flow is naturally a continuous-valued problem? The

advantage of the discrete approach is that many discrete optimization algorithms

have a sense of optimality. For some problems, the optimal solution can be found

in polynomial time, and even efficiently in practice. For other problems, it may be

possible to find a bound on how far from the optimum the solution is, or even to

label a subset of the pixels with their optimal offsets. This near-optimal aspect of

discrete optimization may be helpful in difficult optical flow problems that involve

many local minima. It also eases the requirement that all functions be continuous

and differentiable so that gradients can be calculated.

The field of optimization of discrete graphical models is quite extensive and in-

volves many situations that are not applicable here (Koller et al., 2007; Koller and

Friedman, 2009). Here we only aim to provide a brief overview of the optimization

of discrete Markov random fields (MRFs) as may be of interest in optical flow.
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In many pixel-labeling problems – including optical flow – a graphical model can

be constructed that involve a variable at each pixel in the image. The label space

L is the finite set of possible labels that each pixel may be associated with. A

cost function is associated with the graph that defines a unary data cost term that

measures the quality of the label assignment at each pixel, and a pairwise cost that

generally enforces some for of smoothness on the resulting solutions. The pairwise

connections are typically placed between neighboring pixels in a 4-grid, but may

be extended to more neighbors such as an 8-grid, as shown in Figure 2.4. This

setup should be familiar, as it is the same setup that most continuous optical flow

methods also employ. In particular, the unary cost term enforces the brightness

constancy assumption and the pairwise term enforces the smoothness assumption.

MRFs are generally formulated from a probabilistic perspective where a suitable

distribution is defined over the network and the maximum a posteriori (MAP)

solution is desired, but this is easily changed into an energy minimization problem

by attempting to minimize the negative log-likelihood of the distribution. For

more details, see (Koller and Friedman, 2009).

Optimization of discrete MRFs is quite difficult in general, and is an NP-hard

problem for a large number of useful problems (Boykov et al., 2001). Because

discrete MRFs are useful in many areas of vision, however, there has been a sig-

nificant amount of research into optimizing them efficiently. This research has

generally taken two different directions. The first line of research has tried to

identify problems for which an optimal solution can be found in polynomial time.

Alternatively, many approaches have focused on finding high-quality approximate

solutions, with possible partial optimality or bounds on the solution quality.
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2.8.1 Exact minimization of discrete MRFs

There are a number of situations for which the minimum-energy solution can be

found efficiently. One such set of problems are when the graphs underlying the

problem have low treewidth. Intuitively, one way to find the optimal solution to a

discrete model is to start with one node and determine the cost of all labels for that

node, then choose a neighboring node and determine the cost of labels for that node

conditioned on the choices of labels for the first node, and so on, until the entire

graph has been evaluated and the optimal solution can be found. This process is

known as the junction tree algorithm. The complexity of this process depends on

the order that the nodes are chosen in, and the resulting conditional probability

tables can become quite large. For graphs with low treewidth, however, the size of

the tables will not be too large and the optimum can be found efficiently (Pearl,

1988; Koller et al., 2007). Unfortunately, grid-graphs have tree widths dependent

on the size of the grid and can be quite large. We note, however, that tree-

structured graphs do have a bounded tree width and can be optimized efficiently,

which we take advantage of in an algorithm presented in Chapter 5.

In (Greig et al., 1989), it was shown that binary labeling problems with submodular

pairwise terms could be solved exactly and efficiently using a graph cuts algorithm.

This was extended in (Ishikawa, 2003) to multi-label problems that have convex

pairwise terms, under the condition that the labels have a linear ordering. For

problems with submodular pairwise cost functions, it was shown in (Schlesinger

and Flach, 2006) that the problems can be transformed into a binary submodular

MRF, for which an exact solution can be found. Specific labeling problems, such

as those involving a tiered structure (Felzenszwalb and Veksler, 2010) or where
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the nodes and labels form a tree-structure metric (Felzenszwalb et al., 2010b), can

also be solved exactly.

2.8.2 Approximate minimization of discrete MRFs

For many cases of interest, the optimal solution of a discrete MRF is NP-hard

to compute. For these problems, a number of approximate optimization meth-

ods have been proposed that give high-quality solutions. Approximate methods

generally fall into two groups: graph-cut based approaches and message-passing

methods. Graph-cut based approaches are based on the idea that for certain prob-

lems, the optimal solution of a binary MRF can be computed exactly using graph

cuts. In (Boykov et al., 2001), the alpha expansion and alpha-beta swap algorithms

were proposed, both of which transform a multi-label problem into a series of bi-

nary problems. In alpha expansion, a single label α is chosen at time t and each

pixel is allowed to choose between its current label and the label α. In alpha-beta

swap, two labels are chosen and any pixel with one of the two labels is allowed

to swap. While no optimality guarantee is known for these methods, they will

at least converge to a local minimum. A related approach, known as Quadratic

Pseudo-Boolean Optimization (QPBO), results in partially-optimal solutions.

In message-passing algorithms, “messages” are passed between nodes in the graph

in order to update their solutions until convergence. While this process finds the

exact solution in tree-structured graphs (Pearl, 1988), there are no convergence

guarantees for graphs that contain loops. Even so, this “loopy” belief propagation

algorithm can result in relatively high-quality solutions (Szeliski et al., 2006). A

recent approach, known as tree-reweighted message passing (TRW-S) (Wainwright

et al., 2002; Kolmogorov, 2006), performs message passing using a weighting based
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on decomposing the graphical model into a set of spanning trees. Interestingly,

this algorithm provides a lower bound on the optimal energy, and thus it is possible

to have an idea of how good the resulting solution is. A related message-passing

algorithm known as dual decomposition was proposed in (Komodakis et al., 2007).

In this approach, the problem is divided into subproblems and the dual of these

subproblems is optimized in an attempt to get them to agree. Like TRW-S, a

lower bound on the energy of the model can give an indication of the quality of

the solution. Another related approach is that of (Sapp et al., 2011), where an

intractable graphical model is decomposed into multiple trees and a weaker form

of agreement was enforced as compared to dual decomposition.

2.8.3 Application to optical flow

Discrete MRF optimization has been used extensively for stereo estimation prob-

lems and can achieve very accurate results (Szeliski et al., 2006). However, the

application of such methods to optical flow has been very limited. A primary

reason for this is that the label space is too large. In standard stereo problems,

a pixel may be restricted to move only 10 or 15 pixels from its initial location.

Even for optical flow problems in a similar range, the number of possible pixel

matches is immediately squared because both a horizontal and a vertical offset

need to be computed. Additionally, the displacement magnitude in optical flow

is not limited by the baseline and resolution of the cameras as it is in stereo. In-

deed, for fast-moving objects, a pixel in one image may travel completely across

the entire image in the next frame. Thus, for difficult optical flow problems, the

number of labels may be in the hundreds of thousands. Because most discrete
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optimization methods are dependent on the size of the label space, they cannot

usually be directly applied to optical flow problems.

Still, some attempts have been made to extend discrete optimization methods

into the domain of optical flow. In (Glocker et al., 2008), discrete optimization

techniques were used for optical flow, although the setup was somewhat different

in that they used a grid of control points with interpolation using splines. In

(Goldluecke and Cremers, 2010), a convex relaxation for multi-label problems was

proposed that reduced the computational dependence on the size of the label space,

allowing for optimization of MRFs for optical flow problems. However, the label

spaces were still restricted to around 50 × 50. This framework was extended in

(Strekalovskiy et al., 2011) to give a tighter relaxation. A similar approach in

(Goldstein et al., 2012; Pock et al., 2008; Cremers et al., 2011) extended previous

results that required a linear ordering of variables (Ishikawa, 2003) to vector-valued

labels, allowing for its application to optical flow. Another approach taken by (Wu

et al., 2010) involves the use of discrete optimization within a hierarchy, but their

model contains loops and the results are therefore still approximate.

In all these cases, the application to optical flow requires a high computational

complexity that would not allow it to be applied to problems with very large dis-

placements. The method we present in Chapter 5 takes a different approach: we

take advantage of recent advances in segmentation algorithms in computer vision

to change the structure of the MRF such that it is a tree and thus is solvable in

polynomial time. Related approaches have been applied to scene labeling prob-

lems (Feng et al., 2002; Reynolds and Murphy, 2007; Zhu et al., 2012), but these

problems generally involve many fewer labels. Our method is able to find an opti-

mal solution to a global optical flow problem involving hundreds of thousands of

labels.
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2.9 Datasets and evaluation

The methods that we present in this thesis are primarily evaluated on three

datasets: Middlebury (Baker et al., 2011), MPI-Sintel (Butler et al., 2012), and

KITTI (Geiger et al., 2012). Examples of optical flow estimates on the training

set for each of these datasets are shown in Figure 2.5.

The Middlebury dataset (Figure 2.5a) has become a standard benchmark in optical

flow. The dataset is relatively small with only 8 images containing groundtruth

data in both the training and testing sets. The motions of Middlebury are also very

small – on the order of a few pixels – and all motion is due to camera motion rather

than from the objects themselves. Because of its simplicity, modern methods have

achieved nearly error-free results and over 100 methods have been submitted for

evaluation.

The MPI-Sintel dataset (Figure 2.5b) is more recent and has significantly more

complexity. The MPI-Sintel dataset was generated from an open-source, computer-

generated short film. The images include difficulties such as lighting variation,

large motions, significant occlusions, motion blur, and fog. The dataset is also

quite large, with over 1000 training and testing images.

The KITTI dataset (Figure 2.5c) is based on the goal of developing autonomous

driving systems. The images were captured from a camera mounted to a driving

car. Thus, the motion between images often has very sigfnificant planar effects

and the motion is primarily generated from the motion of the car. The images are

also only grayscale and have very low constrast.
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(a) Middlebury dataset (Baker et al., 2011)

(b) MPI-Sintel dataset (Butler et al., 2012)

(c) KITTI dataset (Geiger et al., 2012)

Figure 2.5: Examples from optical flow datasets. From left to right, we show
the first image, second image, and groundtruth optical flow.

The evaluation of optical flow can take many forms. The most common error

measure is the endpoint error (EPE), which is defined as the Euclidean distance

between the estimated values u, v and actual flow values u∗, v∗:

EPE(u, v;u∗, v∗) =
√

(u− u∗)2 + (v − v∗)2 . (2.9)

This error measure is used in the evaluation for Middlebury and is also the primary

error measure for MPI-Sintel. This will also be the primary error measurement

used in this thesis.

Another error measure is the angular error, which is defined as the angle between

the vectors (u, v, 1) and (u∗, v∗, 1):

AE(u, v;u∗, v∗) = cos−1

 1 + u× u∗ + v × v∗
√

1 + u2 + v2
√

1 + (u∗)2 + (v∗)2

 . (2.10)
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The Middlebury dataset also uses this angular measure in its evaluation, although

they note that endpoint error is probably better for most applications (Baker et al.,

2011).

The KITTI dataset calculates the error by specifying a threshold and reporting

the number of pixels which have an endpoint error in excess of the threshold.
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3
Triangulation-Based Optical Flow

In this chapter, we present a framework for optical flow based on a triangulation

of the image domain, over which we compute optical flow. We employ a tectonic

model where the triangular facets are allowed to move relative to each other and a

numerical quadrature scheme is used to handle the resulting occlusion effects. This

allows for occlusions to be directly incorporated into the optimization procedure

without the need for arbitrary regularization terms. The triangulation also allows

us to easily impose a non-local smoothness term within our model.

The proposed triangular decomposition also has computational benefits. A com-

mon approach in many of the top algorithms that perform continuous optimization

(Brox et al., 2004; Brox and Malik, 2011; Weinzaepfel et al., 2013; Xu et al., 2012)

is to use a variational method by calculating the Euler-Lagrange equations for the

cost function, linearizing them, solving the linear system using an iterative solver,

and repeating this process within a coarse-to-fine image pyramid. Other possi-

bilities, however, exist. For example, gradient descent could be used to directly

minimize the cost function (Black and Anandan, 1996), but convergence may be

slow and it requires a choice of step size. Newton’s method could be used instead,

which would result in much faster convergence, but to the best of our knowledge
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Figure 3.1: A triangulated section of an image. Blue circles denote edge points
and red squares denote points generated on a uniform grid with a spacing of
5 pixels. The Delaunay triangulation given by the green lines tessellates the
image into regions which form the basis of our algorithm. In practice, the data
cost functions are evaluated at a set of quadrature points within each triangle,
shown here as black dots.

this has not been attempted for global optical flow methods for computational rea-

sons. In fact, some researchers have suggested that Newton-type methods could

not be applied to optical flow problems because of the computational difficulties

associated with solving for the Newton step (Baker et al., 2011). In this chapter we

show how Newton’s method can be implemented efficiently using a triangulation,

even for large images, using an exact Cholesky factorization.

In Section 3.1, we describe how our triangulation is set up. We subsequently

define the model used for optical flow in Section 3.2 and show how a non-local

smoothness term is easily included. In Section 3.4, we show how our triangulation

allows for the use of an efficient Cholesky factorization within Newton’s method.

Section 3.3 describes how the triangulation is used for direct occlusion estimation

within our model.
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3.1 Problem setup

Let I1, I2 : (Ω ⊆ R2) → Rd be two d-dimensional images. We consider both im-

ages to be color images in the CIELab color space such that d = 3. Channels are

denoted using a superscript, such as I(c)
1 . We attempt to estimate the motion of

each point from I1 to I2. The estimated motions in the horizontal and vertical

directions are denoted by the functions u, v : Ω → R which map a point in the

image domain Ω to its estimated motion. For simplicity, let x = (x, y) be a point

in Ω, and let f : Ω→ R2 be a function such that f(x) = (u(x), v(x)). In addition,

we estimate a function m : Ω→ R which is a multiplicative factor that measures

changes in lightness between frames, as we will define in Section 3.2. This “gen-

eralized brightness constancy” model has been previously used (Negahdaripour,

1998), and we found that it improved our results.

A key aspect of our approach is that we consider the image to be a continuous

2D function of the image domain, rather than a set of sampled pixel locations.

We do so by extending the sampled pixel values to intermediate locations in the

image plane using bicubic interpolation. More specifically, at any continuous-

valued location (x, y) ∈ Ω, the value of the image at channel c is computed using

a quadratic form

I
(c)
1 (x, y) =

[
x3 x2 x 1

]
Kc

[
y3 y2 y 1

]T
, (3.1)

where Kc is the matrix of coefficients based on the values of nearby pixels. Note

that spatial image derivatives at any point are easily computed using derivatives

of this quadratic form. Given this representation of the image as a continuous
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function, our goal is to compute a corresponding continuous function f(·) that

specifies the motion of each point in Ω.

We discretize the problem by tessellating the image I1 into discrete triangular

regions (Figure 3.1), and then seek to estimate a constant motion vector for each

triangle. We note that it is also possible to use more complex models for the

motion of each triangle. For example, each triangle could be assigned an affine flow

rather than a constant value, although the resulting model has more parameters

and we found that using a denser triangulation with constant flow per triangle

resulted in better solutions than using fewer triangles with an affine flow. Another

possibility is to allow for an affine flow parameterized by the three corners of each

triangle where corners that are shared between triangles are restricted to have the

same value. While this model then has fewer parameters, it would also require

estimating occlusion boundaries explicitly as latent variables, making the model

more complex. For these reasons, we use the triangles as a discretization of the

image and estimate a constant flow for each triangle.

Because we assume the motion to be constant within each triangle, the triangles

should be made to conform to the content of the image in order to find an accu-

rate solution. This approach is similar to that of (Glocker et al., 2010), where a

triangulation of the image domain was also used. We use the following procedure.

First, we extract edges from the image I1 by using the method of (Donoser and

Schmalstieg, 2014) and thresholding the given ultrametric contour map at 0.2.

Each edge pixel in the image is then used as a vertex in our triangulation. In

addition to these points, we also use a set of grid points that are evenly spaced

throughout the 2D image, which serve to limit the maximum dimension of the

resulting triangles. The grid points and edge pixels are combined and a Delaunay
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triangulation is constructed. An example of a tessellated image is shown in Figure

3.1.

The cost function that we optimize will be defined as an integral over the entire

continuous image domain. In order to numerically evaluate this integral, we use

a method based on quadrature points, wherein the integral is approximated as

a weighted sum of function values at specific points within each triangle. For

this, we use the scheme described in (Cowper, 1973) which provides the locations

of quadrature points and their associated weights for integrating functions over

triangular domains. The integral is thereby approximated by forming a weighted

sum of the cost function evaluated at these points. We used 3 quadrature points

per triangle, as shown in Figure 3.1.

3.2 Cost function

Our cost function consists of data terms and smoothness terms. The data terms

penalize incorrectly-matched pixels based on image data, while the smoothness

terms encourage solutions that are smooth over the image domain. Our cost

function takes the form

E(f,m) = D(f,m) + τ0F(f) + τ1S1(f) + τ2S2(f) + τ3S3(m) , (3.2)

where D(·) is a data cost term based on image data, F(·) is a feature matching

term, and S1(·),S2(·) and S3(·) are smoothness terms. The parameters τ0, τ1, τ2

and τ3 control the tradeoff between these terms.
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3.2.1 Data term

Our data term is given by the equation

D(f,m) =
∫

Ω
Φγ

I2(x + f(x))−


m(x) 0 0

0 1 0

0 0 1

 I1(x)

 dx , (3.3)

where Φγ(·) is a robust error function with parameter vector γ. Because of the

large amount of data made available in the MPI-Sintel dataset, we chose our

robust cost function through a fitting procedure. In particular, the difference

values, I(c)
2 (x + f(x))− I(c)

1 (x), are well-modeled by a Cauchy distribution, as has

been previously observed (Sun et al., 2008). In Figure 3.2 we show histograms of

these values and the corresponding Cauchy distributions for the lightness channel

L and the combined color channels a and b.

The robust function Φγ(·) is then the negative log-likelihood of the Cauchy density

function, summed over all channels:

Φγ(δ) =
d∑
c=1

log
[
π(δ2

c + γ2
c )/γc

]
. (3.4)

A separate distribution was fit to the lightness and to the combined color channels,

giving values of γ1 = 0.3044 for lightness and γ2 = γ3 = 0.2012 for the color

channels.
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Figure 3.2: Matching errors are well-fit by a Cauchy distribution. Here we
show the log-histograms of the difference values between the two images using
the groundtruth flow estimates in black and the fitted Cauchy distributions in
red. We fit a fit a separate Cauchy distribution (a) to the lightness channel and
(b) to the combined color channels of the CIELab images of the MPI-Sintel
dataset.

3.2.2 Feature matching term

Feature matching has been shown to be effective at improving optical flow results,

especially for large motions (Brox and Malik, 2011; Xu et al., 2012). We use

HOG features (Dalal and Triggs, 2005), computed densely at every pixel. These

descriptors are then matched to their nearest neighbor in the opposite image using

the approximate nearest neighbors library FLANN (Muja and Lowe, 2009). The

matches from I1 to I2 generate motion estimates for each of the pixels, which we

denote as fHOG : Ω→ R2.

If the HOG match is correct, then it’s desirable to have f(x) be close to fHOG(x).

Thus, our feature matching term is given by

F(f) =
∫

Ω
s(x)Ψα (‖f(x)− fHOG(x)‖2) dx , (3.5)
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where

Ψα(δ) = (δ2 + ε)α (3.6)

is a robust cost function with parameter α and small constant epsilon (i.e. ε =

0.001) (Sun et al., 2010a). For α = 1, this is a pseudo-`2 penalty. As α decreases,

it becomes less convex with it becoming a pseudo-`1 penalty for α = 0.5. For our

feature matching term, we set α = 0.5.

The function s : Ω→ R is a weighting function which measures the confidence in

each HOG match, and is defined as follows. First, we enforce forward-backward

consistency by setting s(x) = 0 if a match is not a mutual nearest-neighbor.

Otherwise, we let s(x) = ((d2 − d1)/d1)0.2 , where di is the `1 distance between

the HOG feature vector in I1 at location x and its ith-closest match in I2. This is

similar to the weight used in (Brox and Malik, 2011) and provides a measure of

confidence for each HOG match.

When evaluating this term on a triangulation, each triangle is assigned a HOG

flow estimate by taking the mean of all flow values within the triangle t weighted

by their confidence scores, ∑x∈t
s(x)∑

x∈t
s(x)fHOG(x). This flow value is then used for

all quadrature points within the triangle when evaluating the cost function.

While we used HOG features due to their speed and simplicity, more complex

feature matching could be used here as well, such as (Weinzaepfel et al., 2013) or

(Byrne and Shi, 2013).

3.2.3 Smoothness terms

We use two different smoothness terms in our cost function: a first-order term

that penalizes non-constant flow fields, and a second-order term that penalizes
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non-affine flow fields.

3.2.3.1 First-order smoothness

A first-order smoothness term penalizes non-constant motion estimates. In our

cost function, all pairs of neighboring triangles are considered. The cost is defined

as

S1(f) =
∑

ti,tj∈N
|ti||tj|Ψα

(
‖f(t̄i)− f(t̄j)‖2

‖t̄i − t̄j‖2

)
, (3.7)

where N ⊆ T × T is the set of all neighboring triangles T in the tessellation, t̄i is

the centroid of triangle ti ∈ T , and |ti| is its area. The function Ψα(·) is a robust

cost function, which was defined in Equation (3.6).

This cost function penalizes differences in the flows between neighboring triangles,

modulated by the distance between their centroids. Note that we also multiply by

the area of the two triangles (rather than by the edge length), which effectively

connects all points within one triangle to all points in the other triangle. Now,

recall that our triangulation is constructed using both edges points and a set of

uniform grid points (Figure 3.1). The triangles along edges will therefore tend to

have a smaller area, resulting in a weaker smoothness constraint. In this way, our

triangulation naturally allows for a non-local smoothness cost (Werlberger et al.,

2010).

We also apply this smoothness cost to the multiplicative term m to encourage only

locally-consistent changes in image brightness. For this, we use α = 0.5.
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3.2.3.2 Second-order smoothness

While a first-order smoothness term penalizes non-constant flows, a second-order

smoothness term penalizes non-planar flows. This allows for motion fields with a

constant gradient, which is important for datasets where such motions are com-

mon, such as KITTI (Section 4.3.3).

Intuitively, our second order smoothness term says that the flow of each triangle

is encouraged to be near the plane that is formed from the flow values of its three

neighbors. Formally, the cost function is written as a sum of costs over all triangles

t ∈ T :

S2(f) =
∑
t∈T
|ti||tj||tk|Ψα

‖f(t̄)−
[
λif(t̄i) + λjf(t̄j) + λkf(t̄k)

]
‖2

|∆ijk|

 . (3.8)

Here, ti, tj and tk are the three neighboring triangles to t. The values λi, λj and λk

are the barycentric coordinates of the centroid of t with respect to the centroids

of ti, tj and tk. In other words, the numerator is zero exactly when the value of

triangle t lies on the plane passing through the values of its neighboring triangles’

centroids. This is then normalized by |∆ijk|, the area of the triangle formed by

connecting the centroids of ti, tj and tk. Similar to the first-order smoothness

term, the function Ψα(·) is a robust cost function and each term is multiplied by

the areas of the three neighboring triangles, which imparts a non-local character

to the cost.
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Figure 3.3: Depiction of our occlusion term. (a) Two triangles and their
quadrature points in the tessellation of I1. (b) The triangles are moved to
their estimated locations in I2, where they now overlap. Each quadrature point
is processed separately and we have highlighted one quadrature point as an
example. (c) The data cost is compared for all overlapping triangles at the
quadrature point. The quadrature point here has a lower data cost at the same
location in the red triangle, and so we mark the quadrature point as occluded.

3.3 Occlusion reasoning

Because we model an image as a set of triangular pieces that can move indepen-

dently, we can directly reason about occlusions. A depiction of this process is

shown in Figure 3.3. At each iteration of our algorithm, for each quadrature point

in each triangle of I1, we compute where it appears in the other image I2. We then

determine whether any other triangles overlap it in I2. For each of these overlap-

ping triangles, we determine whether that triangle offers a better explanation for

that location as measured by the data cost (Equation (3.3)). If a better solution

exists, then the quadrature point in question is labeled as occluded. The occluded

quadrature points are not included in the evaluation of the data cost. In this way,

the cost function only includes points which are estimated to be unoccluded. Note

that these occlusion estimates are generated directly from the geometry and from

the data cost term; no additional regularization parameters are needed to avoid

the trivial solution of labeling all points occluded. An example of our occlusion

estimation is show in Figure 3.4.
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Figure 3.4: Examples of our occlusion estimation on MPI-Sintel. During
optimization, the occlusion status of each quadrature point in each triangle is
directly estimated. For visualization, we label each triangle a value in [0, 1] as
the proportion of its quadrature points that are labeled occluded, and then each
pixel is labeled based on the triangles that it overlaps. Top: Groundtruth flow.
Middle: Estimated occlusions. Bottom: Groundtruth occlusions.

Occlusions can be calculated efficiently by rasterizing all of the triangles to deter-

mine which pixels they overlap in I2. When evaluating the occlusion term for a

quadrature point, only triangles rasterized to the same pixel need to be considered

as potential occluders.

3.4 Optimization

As is standard, local optimization is carried out within a coarse-to-fine image

pyramid (Brox et al., 2004). We begin with a zero-valued flow and at each level

the flow estimate from the previous level (appropriately scaled) is used as an

initialization. At each level, a new triangulation is calculated as described in

Section 3.1.
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Rather than linearizing the Euler-Lagrange equations (Brox et al., 2004), we use

Newton’s method, which provides flexibility to our framework since any suitably-

differentiable function can be substituted for our cost function without changing

the optimization scheme. Newton’s method is a second-order optimization al-

gorithm that fits a quadratic approximation to a function, takes a step to the

minimum of the approximation, and iterates until convergence. More specifically,

let g(f) and H(f) be the gradient and Hessian of our cost function at the cur-

rent estimate f . The Newton update is computed by solving the linear system

Hf̂ = −g and updating f ← f + f̂ . Our cost function is differentiable, so the

gradient and Hessian can readily be computed.

In order to successfully implement Newton’s method, there are two issues that

must be addressed. First, the Hessian matrix H needs to be symmetric positive-

definite in order for the minimum of the quadratic approximation to be well-

defined. Second, a method for solving the linear system must be chosen. We

address these two issues in the following sections.

3.4.1 Ensuring that H is symmetric positive-definite

In practice, it is necessary to approximate the Hessian matrix, H, to ensure that it

is positive definite and that the quadratic approximation has a well-defined min-

imum. We do so using an iteratively-reweighted least-squares (IRLS) approach,

which exploits the structure of our objective function, following (Zhang, 1997). We

note that other options for optimization also exist, such as the methods based on

functional lifting which are shown in (Zach, 2014) to outperform IRLS in certain

settings, but we do not explore them here.
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Let r = Ay − b be the residuals to be minimized, which are an affine function

of the variables y. For example, for the unary term F(·), we have A being the

identity matrix, A = I, and b being the HOG flow values from HOG matching;

for pairwise terms we may have that A is the signed incidence matrix that takes

the difference yi − yj for each pair of neighboring triangles i and j, and b = 0.

The cost function is then some (possibly non-convex) function of r:

C(y) =
∑
i

ρ(ri) =
∑
i

ρ(Ai:y − bi) . (3.9)

Setting the derivative of this function to zero for yj yields

∑
i

∂ρ

∂ri

∂ri
∂yj

= 0 (3.10)

Define the weight function

w(x) = 1
x

∂ρ

∂x
, (3.11)

and we can equivalently write

∑
i

w(ri)ri
∂ri
∂yj

= 0 . (3.12)

This is the same set of equations that would occur if we had been solving

min
∑
i

w(ri)r2
i , (3.13)

and had considered w(ri) as a fixed variable at each iteration. Thus, we attempt

to minimize the cost function in Equation (3.9) by computing the weights w and

subsequently solving the weighted least-squares problem in Equation (3.13).
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Because Equation (3.13) is a weighted quadratic function, it can be written as the

quadratic form

min rTWr = yT
[
ATWA

]
y − 2yT

[
ATWb

]
+ bTWb , (3.14)

where W = diag (w) is a diagonal matrix of weights. The gradient and Hessian

matrices are straightforward to calculate:

g = 2
[
ATWA

]
y − 2

[
ATWb

]
(3.15)

H = 2
[
ATWA

]
.

Importantly, the Hessian in Equation (3.15) is positive definite if and only if the

weights w are all positive. Most cost functions ρ(x) have the properties of being

symmetric about the origin and monotonically increasing with |x|. For such func-

tions, ∂ρ
∂x

always has the same sign as x and therefore w(x) = 1
x
∂ρ
∂x

will never be

negative. This allows us to safely use Newton’s method even for non-convex cost

functions.

3.4.2 Cholesky-based optimization

To find the Newton step at each iteration, a sparse linear system Hf̂ = −g,

must be solved for f̂ . This is most commonly done with an iterative method

such as Successive Over-Relaxation (SOR). An alternative approach is to directly

decompose the Hessian matrix into its Cholesky factorization, after which the

linear system can be solved directly.

If H is symmetric and positive-definite, then it can be uniquely decomposed into

its Cholesky factorization, H = LLT , where L is a lower-triangular matrix. After
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this factorization, the solution to the linear system can be obtained easily in the

following way. First, the system can be rewritten as LLT f̂ = −g or Ly = −g,

where y = LT f̂ . Since L is lower-triangular, the solution for y can be found by

simple forward-substitution, after which the solution to LT f̂ = y can be found

using backward-substitution.

The computation of the Cholesky factorization itself can be done efficiently and

has been implemented in readily-available optimized software packages such as

CHOLMOD (Chen et al., 2008). For completeness, we briefly review one method

that can be used to compute a Cholesky decomposition. First, we write the

matrices as

H =

α vT

v B

 , L =

β 0

` M

 , (3.16)

where scalars are denoted using Greek letters, vectors are lowercase letters and

matrices are uppercase. Then, H = LLT can be written as

α vT

v B

 =

β 0

` M


β `T

0 MT

 =

β2 β`T

β` ``T +MMT

 . (3.17)

By equating values, we find that

β =
√
α (3.18)

and

` = v/β = v/
√
α . (3.19)

We also find that

MMT = B − ``T = B − vvT/α . (3.20)
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Notice that if M is a lower-triangular matrix, then LLT is indeed a Cholesky

decomposition of H. Thus, this process has reduced the dimension by 1 and it

can be applied recursively to find a Cholesky decomposition of the matrix C =

B − vvT/α.

In our framework, the matrix H is very sparse since it encodes only local interac-

tions in the image. However, directly computing a Cholesky factorization of even a

sparse matrix can use a significant amount of memory. The reason for this is that

even though H may be sparse, the L matrix may be much more dense. This can

be seen in the algorithm we have described by considering that after the first iter-

ation, the Cholesky algorithm is applied recursively to the matrix C = B−vvT/α.

While the matrix B is a direct submatrix of H and thus has the same sparsity

pattern, the matrix vvT may add additional “fill-in” elements. In particular, vvT

will be nonzero at all locations i, j for which i and j are nonzero in the vector

v. In words, this means that all neighbors of the node represented by vector v

are connected into a clique. Thus, this indicates that (1) the ordering of when

each node is processed in the Cholesky algorithm has an effect on the density of

the resulting matrix L, and (2) graphs that have fewer neighbors per node will

potentially lead to a lower fill-in rate.

In optical flow, the Cholesky factorization algorithm can be particularly problem-

atic since the matrix H may be extremely large: for an image with n pixels, H

will be of size 2n × 2n. If H is sparse, then storing H in memory is generally

feasible, but the Cholesky factorization can be difficult since the factor L may be

much more dense than H.

It is often the case in optical flow problems that H represents a planar or near-

planar graph, such as when the cost function has binary potentials between a pixel
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and each of its 4 or 8 pixel neighbors. For such graphs, it is known that an or-

dering exists such that there is only a O(log n) factor fill-in (George, 1973; Lipton

et al., 1979), indicating that the L will not be too dense. However, the constant in

front depends upon the number of connections that each node has. This is where

using a triangulation is advantageous: a triangulation of the image plane results

in a graph with only 3 neighbors – rather than 4 or 8 – and so it will have a

Cholesky factorization with less fill-in. When a second-order smoothness term is

used, neighbors-of-neighbors are included in the graphical model and the number

of connections are correspondingly larger but is still smaller for triangulations than

for grid graphs. In practice, we found that a triangulation resulted in about 25%

less memory used than for a 4-grid with the same number of variables. Further-

more, a triangulated image generally has fewer triangles than pixels, resulting in

a smaller linear system. Taken together, this allows us to use a Cholesky-based

linearly solver without encountering memory issues.

All of these results, however, consider fill-in when the optimal variable ordering

is used. Unfortunately, determining the optimal ordering is NP-hard for general

graphs. However, good approximation algorithms exist. We focus on three such

algorithms. The first is the Approximate Minimum Degree (AMD) algorithm

(Amestoy et al., 2004), which tries to minimize the number of off-diagonal values

in the pivot row or column at each iteration within the Cholesky algorithm. We

also consider Nested Dissection (NESDIS) (George, 1973; Lipton et al., 1979),

which finds a variable ordering by recursively partitioning the set of variables.

Finally, we also consider METIS (Karypis and Kumar, 1998), another reordering

algorithm.

We also note that the issues explored in this section are closely related to the
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problem of inference in graphical models (Koller and Friedman, 2009). In particu-

lar, exact inference can be computed in a graphical model if the associated graph

structure is chordal, meaning that every cycle of more than three nodes has a link

between two non-adjacent nodes in the cycle. If a graph is not chordal, then it can

be made chordal by adding “fill-in” edges. These fill-in edges are equivalent to the

fill-in edges produced during Cholesky factorization. Indeed, if a positive-definite

matrix is chordal, then there exists a Cholesky factorization for which there is

no fill-in. Thus, rather than computing a Cholesky factorization that generates

fill-in, we could equivalently make the graph chordal and then compute a zero-fill

Cholesky factorization. The number of fill-in edges required for both approaches

is correspondingly the same: in (Lipton et al., 1979) it was shown that planar

graphs have an ordering with a O(log n) factor fill-in, while (Chung and Mumford,

1994) showed that planar graphs can be made chordal using O(log n) edges, after

which a Cholesky factorization causes no additional fill in.

3.5 Experiments

We postpone quantitative results of our optical flow method until Section 4.3, so

that results can be presented with the multiframe methods presented in Chapter

4. Here, we evaluate the effect of Cholesky-based optimization.
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Time (s)

Number of variables
Reordering Graph 202 502 1002 2002 5002

AMD 8-grid 0.01 0.06 0.30 1.80 21.90
4-grid 0.00 0.03 0.17 0.99 11.32
triang. 0.00 0.03 0.14 0.79 7.17

METIS 8-grid 0.01 0.09 0.46 2.26 19.86
4-grid 0.01 0.06 0.33 1.62 14.05
triang. 0.01 0.05 0.26 1.23 9.51

NESDIS 8-grid 0.01 0.09 0.50 2.57 22.72
4-grid 0.01 0.07 0.37 1.91 16.56
triang. 0.01 0.06 0.31 1.51 11.74

Memory (MB)

AMD 8-grid 1.0 8.2 40.1 202.5 1659.2
4-grid 0.7 5.5 27.1 132.8 1090.2
triang. 0.6 4.3 18.9 84.9 622.3

METIS 8-grid 1.0 7.6 36.1 166.4 1256.6
4-grid 0.7 5.3 25.9 117.0 861.9
triang. 0.6 4.1 17.8 77.0 534.7

NESDIS 8-grid 0.9 7.4 35.1 164.2 1233.2
4-grid 0.7 5.6 25.9 118.1 860.6
triang. 0.6 4.1 18.0 77.8 537.7

Table 3.1: Effect of graph and re-ordering on Cholesky solver. Results are
averaged over 10 iterations.

3.5.1 Evaluation of Cholesky-based Newton’s method

3.5.1.1 Computational complexity on synthetic linear systems

We begin with synthetic linear systems of equations in order to assess the effect of

different graph structures and reordering methods on the computational complex-

ity. We use three different graph structures: a 4-connected grid, an 8-connected
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grid, and a graph generated from a random triangulation of the same image do-

main. For square images of different sizes, an adjacency matrix for each graph

structure was generated with the same number of variables (i.e., triangles were

not used as superpixels to reduce the number of variables). We also consider three

different ordering methods: approximate minimum degree (Amestoy et al., 2004)

(AMD; build into matlab), nested dissection (Lipton et al., 1979) (NESDIS; in

the CHOLMOD package (Chen et al., 2008)), and METIS (Karypis and Kumar,

1998). Results are shown in Table 3.1 and are averaged over 10 evaluations.

First, we find that using a triangulation is significantly more efficient than using a

pixel grid. When compared to a standard 4-grid on a 500× 500 image with AMD

reordering, a triangulation uses 622MB of memory versus 1090MB for the grid.

This improvement in memory is important: by using a triangulation, in addition

to using triangles as superpixels, allows for Cholesky factorization to be used even

for large images. Similarly, it takes less than 10 seconds, versus 14 for a pixel grid.

We also note that both METIS and NESDIS result in orderings which use less

memory, but because they are slower to compute, their overall runtime is higher

than that of AMD.

3.5.1.2 Computational complexity on optical flow problems

To assess the effect that different solvers have in real optical flow problems, we re-

placed the linear solver in our system with different algorithms. We use Cholesky

factorization with different re-ordering methods, in addition to several iterative

linear solvers, which are often used in other optical flow algorithms. The linear
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solvers we use are pre-conditioned conjugate gradients, symmetric LQ factoriza-

tion, and stabilized biconjugate gradients, all of which are native MATLAB func-

tions. To make these solvers as efficient as possible, each one is preconditioned

with an incomplete Cholesky factorization. The use of other preconditioners here

may also improve results (Krishnan et al., 2013), although the cost to compute

any preconditioner must be taken into account since it needs to be recomputed

at each level of the image pyramid. An incomplete Cholesky was used due to its

speed and similarity to Cholesky factorization for comparison. We also show two

different tolerances: one which is near-exact at 1e-8, and one which is less exact

at 1e-3. Note that Cholesky is always exact (to machine precision).

Results are shown in Figure 3.5. The sizes of the linear system varies between

images, and so we evaluated results on frame 15 of the cave_2 sequence from the

MPI-Sintel training dataset. Note that these timings include the time to compute

the ordering, in addition to the solver itself. Athough it is possible to compute the

ordering only once per level and reuse it for all iterations, we use a large number

of levels and found that the time to compute the ordering was an important

factor for the overall runtime of the algorithm, and so included the time in this

computation. We find that Cholesky factorization using AMD reordering is at least

as fast as other methods, including iterative methods with an in-exact tolerance.

When a near-exact tolerance is used, Cholesky factorization is significantly faster

than iterative solvers at a similar tolerance. Cholesky decomposition also has

the advantage of being invariant to the conditioning of the linear system. In

particular, we found that the convergence rate of iterative solvers is dependent

on the image and particular linear system involved. For ill-conditioned systems,

Cholesky factorization thus has even more of an advantage.



Chapter 3. Triangulation-Based Optical Flow 67

3.5.1.3 Effect of linear solvers of endpoint error

From the results presented thus far, we conclude that Cholesky factorization on

triangular grids is superior to iterative solvers on 4- or 8-grids when near-exact

results are required. However, when computing optical flow a more pertinent ques-

tion is: does this result in lower error? We explore this question by running our

optical flow method on 100 randomly-chosen images from the MPI-Sintel dataset.

In all cases, the parameters are the same (see Section 5.4.2 for more details on the

parameters that were used), with the only difference being that different linear

solvers are used. We compare Cholesky factorization using AMD reordering to

conjugate gradient that is preconditioned with an incomplete Cholesky factoriza-

tion (PCG). The tolerance for PCG is varied from a near-exact value of 1× 10−10

up to 1. The results are shown in Figure 3.6.

As before, we find the Cholesky is faster than a near-exact iterative method.

However, raising the tolerance does not necessarily correspond to higher error. In

fact, the tolerance can be raise up to around 5 × 10−2, at which point the error

remains nearly the same while only 20 seconds were used for solving linear systems

compared to 177 for the Cholesky solver. Thus, we conclude that Cholesky-based

factorization provides little benefit for computing optical flow, and PCG using a

high tolerance will achieve similar results in less time.

The reason that a more exact Cholesky solver does not result in lower error is

that the linear system is only very approximately related to endpoint error, the

quantity we wish to minimize. Note the number of approximations: first, the

MRF model itself is an approximation. The image pyramid then smooths this cost

function, so it is an approximation to the finest-level cost function. Within this, we

approximate the cost locally using a quadratic function, and further approximate
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Figure 3.5: Comparison of linear solvers at each iteration of optical flow,
evaluated on frame 15 of the cave_2 sequence from MPI-Sintel. The system
size increases in the coarse-to-fine optimization. Values are averaged over the
10 iterations performed at each level of the image pyramid. Iterative solvers
were pre-conditioned with an incomplete Cholesky factorization. Times include
computation of the incomplete Cholesky factorization or matrix reordering when
used. For iterative algorithms, tolerances of 1e-8 and 1e-3 are used. Cholesky
factorization is significantly faster than any of the iterative solvers at a similar
tolerance.
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Figure 3.6: Effect of linear solvers on mean endpoint error (EPE) for 100
random images from the MPI-Sintel Final training dataset. We compare an
exact Cholesky-based solver using AMD reordering to conjugate gradient pre-
conditioned with an incomplete Cholesky factorization. For each point, the
tolerance used for PCG is shown. For near-exact tolerance values, Cholesky is
faster (and more exact). However, this does not translate to lower EPE, which
remains low even for tolerances as high as 5 × 10−2. These linear solvers also
take significantly less time than an exact Cholesky factorization.

the Hessian to ensure that it is positive definite. With all these approximations,

it is not surprising that solving the internal linear systems more exactly may not

correspond to lower error. Even so, because Cholesky factorization is immune to

ill-conditioned systems, it may be useful in cases where this is an issue.

3.6 Summary

In this chapter we have presented a novel optimization framework for the estima-

tion of optical flow. Our method uses a triangulation of the image domain that

conforms to the image content. This triangular discretization allows for efficient

and straightforward occlusion estimation within the optimization scheme, in ad-

dition to allowing for a simple way to impose a non-local smoothness cost. The
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triangulation also allows us to use Cholesky decomposition as a method for solving

linear systems by both reducing the size of the linear systems and reducing the

computational requirements of the factorization itself. Although this approach did

not result in direct improvements in endpoint error over iterative linear solvers, it

may prove useful in situations where the linear systems are ill-conditioned.
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4
Multi-Frame Fusion of Inertial

Estimates

A significant challenge for modern optical flow algorithms is when objects move

large distances between frames. This is especially true when objects move either

into or out of frame, for which there are no matches. In this case, it is often

not possible to directly estimate the motion of these pixels from two-frame opti-

cal flow. Temporal approaches to optical flow have been presented many times

(Murray and Buxton, 1987; Nagel, 1990; Black and Anandan, 1990; Volz et al.,

2011), but have nonetheless been used infrequently in modern top-performing al-

gorithms. One explanation for this is that enforcing temporal smoothness is more

difficult than enforcing spatial smoothness: temporal derivatives are not always

meaningful and so points must be tracked (Black and Anandan, 1990) or more

complex parameterizations need to be used (Volz et al., 2011).

In this chapter, we address this problem by proposing a simple method of incor-

porating temporal information from adjacent frames. We introduce the idea of

“inertial estimates” of optical flow and show how this allows for temporal informa-

tion to be easily added to any optical flow algorithm. By combining this approach
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Figure 4.1: Inertial flow estimates used in multi-frame fusion. In addition
to using the two-frame estimate [t → t + 1] directly, we also estimate the flow
from [t→ t− 1] and from [t→ t+ 2]. These two estimates are then multiplied
by the factors −1 and 1

2 , respectively, to give an estimate of the desired flow
[t→ t+ 1]. All three flow estimates are then fused using a classifier.

with the continuous optimization framework presented in Chapter 3, we achieve

state-of-the-art results on the difficult MPI-Sintel dataset.

4.1 Inertial estimates

Let [t→ (t+1)] denote the estimated flow between frames t and t+1, and suppose

that we also have access to frames t − 1 and t + 2. If it is assumed that objects

move at a constant velocity (i.e., they are carried by inertia) and move parallel

to the image plane, then an estimate of the motion from [t→ (t+ 1)] is given by

−[t→ (t−1)], which is found by computing the flow from t to t−1 and negating it,

as shown in Figure 4.1. Similarly, another estimate can be found using frame t+ 2

as 1
2 [t→ (t+ 2)]. We call these “inertial estimates” since they provide an estimate

of the flow by assuming that inertia moves all objects at a constant velocity.

Of course, these estimates will, on average, be inferior to using [t → (t + 1)]

directly. However, if an object is visible in frame t and moves out of frame in t+1,

then it may still be visible in t− 1 and so −[t → (t− 1)] will likely give a better

estimate for that part of the image. Similarly, using the estimate 1
2 [t → (t + 2)]

will provide an additional source of information.
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4.2 Classifier-based fusion

These three optical flow estimates must then be fused together. We do so by

training a random forest classifier whose output tells us which estimate to use for

each pixel in order to minimize endpoint error. We use the following features:

• The tail probability for the Cauchy distribution used in the match cost D(·).

This value varies from 0 to 1 with larger values indicating a better match.

The index of the flow estimate with the best score, and its associated score,

are also used.

• Each pixel in frame t is projected forward via the flow estimate and then

projected back using the backward flow. The Euclidean norm of this dis-

crepancy vector is used as a feature for each flow estimate. The index of the

flow estimate with the smallest discrepancy and its corresponding value are

also included as features.

• The flow estimates u and v, and the magnitudes
√
u2 + v2.

• The multiplicative offset m(x) at each pixel.

• For every pixel, an indicator of whether the pixel is estimated to be occluded.

• The (x, y) location of each pixel.

This results in a total of 27 features. We sampled a number of points uniformly

at random from each training image such that the resulting dataset had ∼ 106

observations.

In this classification problem, not all data points should be counted equally. In

particular, a misclassification is more costly when the three inertial estimates
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EPE: 8.34 EPE: 2.35 EPE: 7.68 EPE: 19.94

EPE: 11.09 EPE: 4.78 EPE: 10.74 EPE: 28.40

EPE: 16.82 EPE: 4.32 EPE: 16.41 EPE: 18.59

EPE: 7.91 EPE: 1.85 EPE: 7.33 EPE: 13.94

Figure 4.2: Examples of our multi-frame fusion on the MPI-Sintel Final train-
ing set. Top row: Frame at time t. Rows 2-4: Inertial estimates of the flow
[t→ t+1], −[t→ t−1], and 1

2 [t→ t+2]. Row 5: Fusion classification for each
pixel. Color indicates the estimate used at each pixel. Colors correspond to the
border colors of the inertial estimates. Row 6: Fused flow estimate. Bottom
row: Groundtruth flow. For all flow estimates, the endpoint error is printed in
the image.

have very different errors. To take this into account, each data point was weighted

by the difference between the lowest endpoint error of all three flow estimates

and the mean of the other two. This weighting indicates how important each

datapoint is. We then trained a random forest classifier with 500 trees using

Matlab’s TreeBagger class. An example of our fusion is shown in Figure 4.2 on

the MPI-Sintel dataset (Butler et al., 2012).
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EPE: 1.72 EPE: 0.59 EPE: 3.52 EPE: 8.99

EPE: 4.02 EPE: 1.60 EPE: 5.29 EPE: 11.48

EPE: 6.38 EPE: 1.40 EPE: 6.81 EPE: 19.25

EPE: 1.45 EPE: 0.59 EPE: 2.55 EPE: 7.21

Figure 4.3: Examples of our multi-frame fusion on the KITTI training dataset.
Top row: Frame at time t. Rows 2-4: Inertial estimates of the flow [t→ t+1],
−[t → t − 1], and 1

2 [t → t + 2]. Row 5: Fusion classification for each pixel.
Color indicates the estimate used at each pixel. Colors correspond to the border
colors of the inertial estimates. Row 6: Fused flow estimate. Bottom row:
Groundtruth flow, interpolated using linear interpolation. For all flow estimates,
the endpoint error is printed in the image.

As a final step in our procedure, a median filter was applied to the fused flow

estimates.

4.3 Experiments

We evaluate our algorithm quantitatively on three datasets. The free parameters

of our method are τ0, τ1, τ2, τ3, the value of α used in the smoothness terms S1(·)

and S2(·), and the spacing of the uniform grid used in the triangulation. For S3(·),
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α was set to 0.5. Parameters were chosen for each dataset using a small-scale grid

search on the training data.

Our basic method is denoted as TF (TriFlow), and when occlusion estimation,

multi-frame fusion and median filtering are used, they are denoted as “O” (oc-

clusion), “F” (fusion) and “M” (median filtering), respectively. Our final method

with all components is thereby denoted as TF+OFM.

4.3.1 Middlebury

We begin with the Middlebury dataset (Baker et al., 2011) since it is a standard

benchmark for optical flow, although it has only small and simple motions. For

this dataset, the parameters were set to τ0 = 0, τ1 = 3.5, τ2 = 0, τ3 = 25, α = 0.36,

and a small grid spacing of 2 pixels was used in order to capture the small details

in this dataset.

Results on the test dataset are given in Table 4.1. Note that we did not evaluate

our multi-frame fusion since the dataset was too small for a reliable classifier to be

trained. Our results are comparable to other similar coarse-to-fine methods such

as DeepFlow (Weinzaepfel et al., 2013). Our occlusion estimation provides little

benefit in this case, since the dataset has very small occlusion regions.

4.3.2 MPI-Sintel

The MPI-Sintel dataset (Butler et al., 2012) is a large, difficult dataset that in-

cludes difficulties such as large displacements, significant occlusions and atmo-

spheric effects. Parameters were set to τ0 = 0.5, τ1 = 2.0, τ2 = 0, τ3 = 100, α = 0.6,

and the grid spacing was set to 5 pixels.
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Army Meq. Sch. Wood. Grove Urban Yos. Teddy mean
TF+OM 0.10 0.22 0.36 0.20 0.98 0.56 0.16 0.76 0.42
Layers++ 0.08 0.19 0.20 0.13 0.48 0.47 0.15 0.46 0.27
(Sun et al., 2010b)
MDP-Flow2 0.09 0.19 0.24 0.16 0.74 0.46 0.12 0.78 0.35
(Xu et al., 2012)
DeepFlow 0.12 0.28 0.44 0.26 0.81 0.38 0.11 0.93 0.42
(Weinzaepfel et al., 2013)
LDOF 0.12 0.32 0.43 0.45 1.01 0.10 0.12 0.94 0.56
(Brox and Malik, 2011)

Table 4.1: Endpoint error on the Middlebury test dataset. Our results are
comparable with similar coarse-to-fine methods.

Results on the MPI-Sintel test dataset are given in Table 4.2. Our method is

currently rank second on this dataset, behind only EpicFlow (Revaud et al., 2014)

in terms of endpoint error. Our results are especially good for unmatched pixels

which are helped by our occlusion term and multi-frame fusion. In particular, on

the Final dataset the occlusion term improves the error on unmatched pixels by

6.4% and the fusion improves it by an additional 7.2%.

Several examples of results from our multi-frame fusion for the Final version of the

training dataset are shown in Figure 4.2, with additional examples in Appendix A.

As we would expect, the inertial estimates that the classifier selects are spatially

localized around the edges of objects where occlusions occur. In all cases, the

multi-frame fusion significantly reduces the endpoint error.

Figure 3.4 shows several examples of the occlusion estimates on images from MPI-

Sintel. During optimization, the occlusion status of each quadrature point in each

triangle is estimated. For visualization, we label each triangle a value in [0, 1] as

the proportion of its quadrature points that are labeled as occluded, and then each
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Final Clean
EPE matched unmatched EPE matched unmatched

TF+OFM 6.727 3.388 33.929 4.917 1.874 29.735
TF+OF 6.780 3.436 34.029 4.986 1.937 29.857
TF+O 7.164 3.547 36.657 5.357 2.033 32.474
TF 7.493 3.609 39.170 5.723 2.077 35.471
EpicFlow 6.285 3.060 32.564 4.115 1.360 26.595
(Revaud et al., 2014)
DeepFlow 7.212 3.336 38.781 5.377 1.771 34.751
(Weinzaepfel et al., 2013)
FC-2Layers-FF 8.137 4.261 39.723 6.781 3.053 37.144
(Sun et al., 2013)
MDP-Flow2 8.445 4.150 43.430 5.837 1.869 38.158
(Xu et al., 2012)
LDOF 9.116 5.037 42.344 7.563 3.432 41.170
(Brox and Malik, 2011)

Table 4.2: Results on the MPI-Sintel test set. Our algorithm is currently
ranked second on this dataset. The largest improvement over other methods is
on unmatched pixels due to our occlusion estimation and multi-frame fusion.

pixel is labeled based on the triangles that it overlaps. The occlusion term is able

to estimate the occlusions accurately, which results in reduced error.

4.3.2.1 Violation of inertial estimate assumptions

The inertial estimates of optical flow are based on the assumption that the motion

of objects is constant and parallel to the image plane, which results in a constant

displacement between subsequent pairs of frames. We can estimate how much this

assumption is violated by measuring the Euclidean distance between the offsets

in subsequent pairs of frames for unoccluded pixels. This is shown in Figure 4.4.

We find that 70% of all pixels on the MPI-Sintel training set have a deviation

between their displacements in subsequent pairs of frames of less than a pixel,

and the displacement changes by less than 10 pixels for 90% of unoccluded pixels.
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Figure 4.4: Violation of the assumption of inertial estimates on MPI-Sintel.
For each unoccluded pixel, we plot the Euclidean distance between two succes-
sive motion estimates. Seventy percent of pixels have a deviation of less than
one pixel and 90% deviate less than 10 pixels.

This indicates that the assumptions made by the inertial estimates hold for a large

number of points in the dataset, which is also corroborated by the improved results

on the optical flow evaluation.

4.3.3 KITTI

The KITTI dataset (Geiger et al., 2012) consists of grayscale images taken from a

moving vehicle. We used the parameter settings τ0 = 0.05, τ1 = 0.02, τ2 = 7, τ3 =

125, α = 0.6, and the grid spacing was set to 5 pixels.

On the KITTI test dataset, error is measured as the percentage of pixels with an

endpoint error greater than 3, in addition to the standard endpoint error. Our

results on this dataset are given in Table 4.3. This dataset is quite different

than MPI-Sintel: the images are grayscale and have low contrast and the mo-

tions are often dominated by that of the camera. Top-performing methods on this
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EPE EPE % > 3 % > 3
(all) (not occ.) (all) (not occ.)

TF+OFM 5.0 2.0 18.46% 10.22%
PCBP-Flow 2.2 0.9 8.28% 3.64%
(Yamaguchi et al., 2013)
DeepFlow 5.8 1.5 17.79% 7.22%
(Weinzaepfel et al., 2013)
LDOF 12.4 5.6 31.39% 21.93%
(Brox and Malik, 2011)
DB-TV-L1 14.6 7.9 39.25% 30.87 %
(Zach et al., 2007)

Table 4.3: Results on the KITTI test set. We show both the endpoint error
(EPE) and ther percentage of pixels with an EPE more than 3, for all pixels as
well as non-occluded pixels.

dataset take advantage of these properties by using better features such as census

transforms and more information such as stereo and epipolar information (Yam-

aguchi et al., 2013). However, our results are comparable to similar coarse-to-fine

approaches such as DeepFlow (Weinzaepfel et al., 2013), especially for endpoint

error (which the fusion classifier was trained to minimize). Examples of our fusion

are shown in Figure 4.3, with additional examples in Appendix A.

We also evaluate the effect of our occlusion and fusion terms on a validation set

from the training images. For this, 100 training images were used to train a fusion

classifier and evaluation was done on remaining 94 images. These results are

shown in Table 4.4. Both the occlusion and multi-frame fusion terms significantly

improve results, as measured by either endpoint error or the percentage of pixels

with and endpoint error more than 3.
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EPE % > 3
TF+OFM 4.23 16.43%
TF+OF 4.32 16.62%
TF+O 5.29 16.91%
TF 6.89 19.96%

Table 4.4: Results on a validation set from the KITTI training dataset. The
occlusion estimation term and multi-frame fusion significantly improve results.

4.3.4 Timing

Timing was evaluated on a laptop with a 1.80 GHz Intel Core i5 processor and 4

GB of RAM. The typical time taken for two-frame flow estimation on a 1024×436

image from MPI-Sintel, (excluding multi-frame fusion), was 500 seconds. About

half of this time is spent evaluating the cost function, and another 20% is spent

solving linear systems in the Newton-based optimization. Much of our approach

can be sped up through parallelization. For example, the cost function evaluation,

running the algorithm on all three inertial estimates, and the random forest fusion

are all trivially-parallelizable.

4.3.5 Tears of Steel

We also qualitatively assess our algorithm on Tears of Steel (Roosendaal, 2012),

a short film, for which ground truth is not available. Tears of Steel was produced

by the Blender Foundation and is freely available online. In contrast to Sintel, it

is not fully synthetic but rather has visual effects added to live action. We chose

three sequences of 10 frames from the film and ran our algorithm using the same

settings as for MPI-Sintel. The results for several frames are show in Fig. 4.5.
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Figure 4.5: Qualitative results on Tears of Steel. Parameters are the same as
for MPI-Sintel.

The flow estimates are all quite plausible, indicating that our method is able to

generalize well to other similar sequences.

4.4 Summary

In this chapter we have presented a method for incorporating temporal informa-

tion into optical flow estimation through the use of inertial estimates. While the

assumptions made by inertial estimates are often violated, we have found that

they are valid on a large enough subset of pixels that fusing them using a classifier

can yield a substantial reduction in error. This approach is quite simple and does

not involve complex temporal MRFs or point tracking over multiple frames.
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5
Hierarchically-Constrained

Optical Flow

The space of possible offsets in optical flow problems can be modeled as either

continuous or discrete. Discrete labeling approaches have been applied successfully

to many image correspondence problems (Kolmogorov, 2006), but they can be

computationally demanding which limits their use to problems with small label

spaces. For optical flow, the set of possible labels is extremely large and so these

problems are often solved using a continuous label space (Brox et al., 2004), which

allows for both efficient local optimization methods and sub-pixel offsets. However,

these methods are prone to finding suboptimal local minima. In order to better

avoid such minima, coarse-to-fine optimization is often employed (Brox et al.,

2004) along with a global matching of sparse, discriminative features (Brox and

Malik, 2011). Even so, these methods have no guarantee of being near a global

optimum.

In this chapter, we propose the use of a tree-based graphical model that leverages

a hierarchical segmentation of the image. We show how the global optimum of this

discrete optimization problem can be found using efficient optimization methods,



Chapter 5. Hierarchically-Constrained Optical Flow 84

borrowing ideas from the literature on deformable-parts models for object recog-

nition (Felzenszwalb et al., 2010a). This allows us to optimally solve large image

correspondence problems with a global smoothness model.

Additionally, we describe a simple method of incorporating information from mul-

tiple frames in optical flow. We use the idea of inertial estimates from Chapter

4, where several estimates of the optical flow are computed using nearby frames

and subsequently fused using a classifier. We show how the inertial estimates can

instead be directly taken into account in our cost function.

In Section 5.4.4, we show that state-of-the-art motion estimation schemes based on

local optimization can have difficulties even on relatively simple motion analysis

problems that contain large displacements. We illustrate this issue with both

synthetic datasets and real images and show how our proposed global method

can significantly improve performance in these situations. We also evaluate the

proposed method on the challenging MPI-Sintel dataset (Butler et al., 2012) as

well as the Middlebury dataset (Baker et al., 2011) and compare its performance

to other recent methods.

5.1 Problem setup

Let I1, I2 : (Ω ⊆ R2) → Rd be two d-dimensional images, where d is typically 3

for color images and 1 for grayscale images. The image domain is denoted by Ω,

which we consider to be a discrete set of pixel locations.

Our algorithm proceeds by constructing a tree-structured Markov Random Field

(MRF) model based on a hierarchical segmentation of the image I1 as depicted in

Figure 5.1. The goal of the motion estimation procedure is to assign an integral
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Superpixel layer

Hierarchy derived from UCM

Image

Figure 5.1: Depiction of our segmentation-based hierarchical model, shown
as 1D for simplicity. The image is segmented into a hierarchical segmentation,
represented using an ultrametric contour map (UCM). At the base of the hier-
archy, the image is divided into superpixels, denoted by dashed black lines. A
node in the graph is associated with each superpixel, which are connected to
their associated pixel variables. Each segment in the segmentation hierarchy
has an associated variable and is connected to its children in the hierarchy, with
the root of the tree representing the entire image. The weights of our graphical
model’s edges are a function of the weights in the UCM, denoted here by the
thickness of black edges. Variables in the graphical model are denoted by red
circles. After optimization, the final motion estimate consists of the labels that
are applied to the pixel variables at the base of the hierarchy.

offset to each vertex that maps it onto its correspondent in I2. This is done by

defining a cost function that is small when pixels have a good correspondence and

when each node has a similar offset to its parent. The goal of the optimization

procedure is to find a solution which minimizes this cost function. The steps in

this process are described in more detail in the following subsections.

5.1.1 Hierarchical segmentation

We base our hierarchical segmentation of I1 on the framework of (Donoser and

Schmalstieg, 2014), which is in turn based on the ultrametric contour map (UCM)

hierarchy of (Arbelaez, 2006; Arbelaez et al., 2011). Rather than using a watershed

segmentation as the the base of the hierarchy, we begin with a segmentation using

SLIC superpixels (Achanta et al., 2012). By using SLIC, we are able to explicitly

control the size and complexity of the base superpixel layer. In our experiments,
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(e) First image (f) Segmentation (g) Groundtruth (h) HCOF

Figure 5.2: Estimated optical flow using our method HCOF on two images
from the Middlebury (Baker et al., 2011) dataset. The values of the segmenta-
tion are the weights used in the pairwise terms of the MRF, using the trained
logistic curve given in Equation (5.1).

we set the region size and regularization parameters to 50, which we found resulted

in superpixels that are small enough to contain primarily a single motion but are

large enough for an efficient algorithm.

Examples of segmentations obtained with this procedure are shown in Figure 5.2.

The segmentation divides the image into a set of small superpixels that are then

successively merged with their most similar neighbors until the entire image is

a single segment, forming a tree structure. Distances in the hierarchy encode

the similarity of pixels and the likelihood that they belong to the same object

(Arbelaez et al., 2011).

5.1.2 Graphical model

We construct a MRF model which mirrors the structure of the tree produced by the

hierarchical segmentation (Figure 5.1). Let the graph be denoted by G = (V , E),

for vertex set V and edge set E ⊆ V × V . The vertex set V corresponds to the
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nodes in the segmentation tree; the leaf nodes correspond to the individual pixels

and the interior nodes correspond to merged regions produced by the hierarchical

segmentation. Each vertex has an associated location, area and similarity weight.

The location of a vertex in I1 is denoted by the function x : V → Ω. For ver-

tices corresponding to pixels, this is defined simply as the location of the pixel.

For internal nodes, we arbitrarily define it as the location nearest to the region’s

centroid. The area of each vertex is denoted by a : V → R+. This area is 1 for

the vertices corresponding to individual pixels, and for internal nodes the area is

the sum of the areas of its children. The similarity weight of each interior vertex

is denoted by s : V → R+, and is defined as the similarity of v’s two children.

Specifically, our chosen segmentation algorithm (Donoser and Schmalstieg, 2014)

specifies an ultrametric distance d(v), which is the level at which the regions cor-

responding to v’s children are merged in the segmentation process. The similarity

weight is then set using a logistic function:

s(v) = 1/
(
1 + eη1(d(v)+η0)

)
. (5.1)

Edges in the graph are placed between all nodes sharing a parent-child relationship

in the image segmentation hierarchy:

E = {(vp ∈ V , vc ∈ V) | vp is the parent of vc}. (5.2)

Each edge (vp, vc) ∈ E is assigned a weight that determines how similar the offsets

of a node vp and its child vc should be, which will be used in the smoothness term

of our cost function. This weight is denoted by w : V × V → R, and is defined as

w(vp, vc) = a(vc)
[
s(vp) + (1− s(vp)) e−τa(vc)

]
. (5.3)



Chapter 5. Hierarchically-Constrained Optical Flow 88

This weight does the following: (1) it weights the edge by the area of the child

node so that the smoothness term operates on all regions equally, (2) it weights

the edge using the region similarity s(vp) and (3) it up-weights the edge for small

regions to encourage them to be better connected to their parents, modulated by

the parameter τ .

5.1.3 Cost function

We denote the image motions using a function u : V → Z2, and we say that vertex

v is matched to location x(v) + u(v) in I2. The cost function is defined over the

graph structure for this displacement function u:

C(u) = λ0
∑
v∈V
Pv(u(v)) + λ1

∑
v∈V
Dv(u(v)) +

∑
(vp,vc)∈E

Svp,vc(u(vp),u(vc)) . (5.4)

Here, Pv(u(v)) is a prior term that encourages each node to have a small offset.

The term Dv(u(v)) is a unary matching term that measures how well vertex v

is matched, and Svp,vc(u(vp),u(vc)) is a smoothness term defined over the set of

edges. The parameters λ0 and λ1 control the tradeoff of these terms.

We set Pv(u(v)) = Dv(u(v)) = 0 for all nodes that do not correspond to pixels at

the base of the hierarchy. In other words, our data term affects only the leaves.

The hierarchy thus is used only for enforcing smoothness. It is possible to add

unary costs to internal nodes to incorporate region information, but we do not

consider this here.
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Figure 5.3: Distribution of offsets in MPI-Sintel. A Cauchy distribution was
fit to the data, for which γ = 3.9342. This Cauchy distribution is used as our
spatial prior term.

5.1.3.1 Spatial prior term

The spatial prior term encourages pixels to have small displacements. For this

term, we fit a Cauchy distribution to the set of groundtruth offsets in the MPI-

Sintel dataset, as shown in Figure 5.3. The spatial prior term is then the negative

log-likelihood of the associated Cauchy distribution with γprior = 3.3942:

Pv(u(v)) = log
[
π
(
u(v)2 + γ2

prior

)
/γprior

]
. (5.5)

5.1.3.2 Matching term

We use a data matching term that is composed of both a color and a gradient

component. Let I1 and I2 be two images in the Lab color space. For color features,

we construct a 5× 5 array of cells, centered at a given pixel. The size of the cells
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can be varied in order to accumulate a larger or smaller contextual area. All pixel

values within each cell are averaged, and this is applied to all three channels of the

Lab color images, resulting in a 75-dimensional feature vector. Distances between

feature vectors are computed using an L1 distance function. Let [·]C be a function

that maps an image to its 75-dimensional color feature vector. The cost function

is then given by:

DLABv (u(v)) = ‖[I1]C(x(v))− [I2]C(x(v) + u(v))‖1 . (5.6)

The gradient component of our data cost function uses SIFT features (Lowe, 2004)

computed densely at every pixel. Let [·]S be a function that maps an image to its

128-dimensional SIFT features computed densely at each pixel location in Ω. We

use an L1 cost function:

DSIFTv (u(v)) = ‖[I1]S(x(v))− [I2]S(x(v) + u(v)))‖1 . (5.7)

The final cost function is a weighted linear combination of the color and SIFT

costs:

Dv(u(v)) = αDLABv (u(v)) + (1− α)DSIFTv (u(v)) . (5.8)

Note that the only desideratum of the distance function is that it be computa-

tionally efficient; it need not be a metric, differentiable, convex, or even continu-

ous. This allows us to use SIFT features in dense optical flow without computing

matches beforehand, and opens the door to more complex descriptors and dis-

tances.
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5.1.3.3 Smoothness term

The smoothness term encourages vertices to have a similar offset to their parent.

We use a weighted L1 penalty,

Svp,vc(u(vp),u(vc)) = w(vp, vc)‖u(vp)− u(vc)‖1 , (5.9)

for vp the parent of vc, where w(vp, vc) is the associated edge weight as defined in

Equation (5.3).

Note that this tree based smoothness term is a significant departure from more

traditional smoothing functions which are usually formulated on a graph that

connects each image region to all of its neighbors. It has been previously observed

that people’s perceptual organization of objects in an image is hierarchical in

nature (Martin et al., 2001); we likewise argue that this tree-based smoothing

term captures most of the salient features of the true motion field, while yielding

a tractable optimization problem.

5.2 Optimization

Our model can be though of as a large “deformable parts” model (DPM) (Felzen-

szwalb et al., 2010a), which is a widely-used framework in object recognition. In

a DPM, an object is represented by a tree that models how the parts of the object

are connected to each other. Each node has a unary cost function that reflects

its preference for various matches, and each edge in the tree is associated with a

smoothness function which constrains the relative motion of the two parts. Al-

though our model is more complex – our tree describes an entire image rather than
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a single object – the optimization problem is similar: in both cases the model is

a tree-structured MRF and the label space captures the set of possible displace-

ments.

The relationship between our model and a DPM allows us to leverage optimization

techniques first developed within the DPM literature. First, because our graph

is a tree, the minimum-energy solution can be found in polynomial time using

a generalization of the Viterbi algorithm (Felzenszwalb and Huttenlocher, 2005).

Also, because we use an L1 distance function, the cost matrices at each node can

be computed very efficiently using a linear-time distance transform (Felzenszwalb

and Huttenlocher, 2004).

To briefly summarize this procedure, the cost for each node is computed as a

function of its children. This process begins at the leaf (pixel) nodes, and the cost

matrices of each internal node are computed by applying distance transforms to

the cost matrices of its children and summing them. We also compute and store

a Voronoi array that specifies the optimal label for each vertex given a label for

its parent. When the root of the tree is reached, the optimal cost for the entire

model is found, and the labels of each vertex are set by backtracing back down

the tree using the stored Voronoi arrays.

To more formally specify this optimization procedure, we first note that the cost

function given in Equation (5.4) can be rewritten recursively with respect to each

subtree:

Cv(u) = λ0Pv(u(v)) + λ1Dv(u(v)) +
∑

(v,vc)∈E
{Sv,vc(u(v),u) + Cvc(u(vc))} . (5.10)

In words, this says that the cost of the subtree corresponding to vertex v is equal

to the sum of its unary costs (the prior and data terms), the smoothness costs to
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its children, and then the recursively-computed costs of each of its children. The

cost of the full model is then Cv0(u), where v0 is the root vertex of the tree. Note

that in our setup, the unary cost terms are zero for all nodes other than the leaves

of the tree, but we include it in the optimization procedure here for completeness.

The goal of the optimization is to compute the minimum-cost solution: minu Cv0(u).

We do so using dynamic programming, by recursively defining the cost of each ver-

tex’s label as a function of the best placement of its children,

Cv(u(v)) = λ0Pv(u(v))+λ1Dv(u(v))+
∑

vc:(v,vc)∈E
min
u(vc)
{Sv,vc(u(v),u(vc)) + Cvc(u(vc))} .

(5.11)

The optimal cost is then given by minu(v0) Cv0(u(v0)) for root node v0. Note that

since the leaves of the tree have no children, Cv(u(v)) = λ0Pv(u(v)) + λ1Dv(u(v))

for all leaf nodes v. Thus, at the leaf nodes only the unary costs need to be

computed. For all other nodes, the cost matrices are recursively computed using

Equation (5.11). At each node v, we store the cost matrix Cv(u(v)) that specifies

the optimal cost of the subtree model for each position of the node v. In addition

to the costs, we also store matrices that specify the optimal location of the node

for a given position of its parent: these location matrices are the Voronoi matrices

associated with the given cost function.

The optimization thus begins at the leaves of the tree and proceeds to the root

where the optimal location of the root is selected, yielding the optimal cost of the

full model. The locations of all other nodes are then determined by recursively

tracing back down the tree using the stored Voronoi matrices.
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5.2.0.4 Computation using generalized distance transforms

In order to have an efficient algorithm, the computation of the right side of Equa-

tion (5.11) should be done as efficiently as possible. Consider this equation for

isolated for a single vertex v′ given a vertex v:

fv(v′) = min
u(v′)
{Sv,v′(u(v),u(v′)) + Cv′(u(v′))} . (5.12)

The function Sv,v′(·) is a distance measure (in our case, a weighted `1 norm), and

Cv′(·) is a unary cost. Intuitively, this is trying to find a value of u(v′) which is

close to u(v) and also has a low unary cost. This is exactly the form of the gen-

eralized distance transform as given in (Felzenszwalb and Huttenlocher, 2004). In

(Felzenszwalb and Huttenlocher, 2004), a linear-time algorithm is given for com-

puting generalized distance transforms for several distance measures, including the

squared Euclidean distance and the `1 norm. The algorithm is based on the ob-

servation that generalized distance transforms are equivalent to min-convolutions,

which is a convolution where multiplication and summation are replaced with

addition and taking the minimum, respectively.

The overall runtime of our algorithm is O(nk) where n is the number of pixels and k

is the number of MRF variables. Details on this optimization procedure as applied

to deformable parts models for object recognition can be found in (Felzenszwalb

and Huttenlocher, 2005; Felzenszwalb et al., 2010a).
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5.2.1 Implementation details

Even though our tree-based MRF model can be optimally solved in polynomial

time, a naive implementation would still be computationally demanding because

of the number of nodes and the size of the label space. We make the following

changes to the algorithm so that it can be computed on a standard computer in

a reasonable amount of time with high accuracy. Some of these details introduce

approximations, and although the final solution may no longer be exactly the

minimum-energy solution for our cost function, we show in Section 5.4.8 that the

resulting solutions are virtually indistinguishable from the true global optima.

Subsampling of superpixels We assume that the superpixels at the base of

the segmentation hierarchy are sufficiently small that the optimal offsets of their

constituent pixels will be very similar. This implies that their cost matrices will

also be very similar, and so rather than computing a separate cost matrix for

every pixel within a superpixel, we only compute the cost matrix for a small

set of randomly-sampled constituent pixels. In practice, we use only 10 pixels per

superpixel, and since each superpixel may contain hundreds or thousands of pixels,

this significantly reduces the computational complexlity.

However, this creates a problem when backtracing down the tree to label each pixel.

Because a cost matrix is not created for all pixels at the base of the hierarchy, they

cannot all be directly labeled. We could circumvent this problem by computing

the full cost matrix for each pixel only when it needs to be labeled at the end of

the backtracing step, but this is still time consuming. Instead, we assume that a

pixel’s offset will be close to its parent’s offset and only compute the cost in a small

window around the parent’s offset. In practice, we use a window that has a radius

that is either 2 pixels or 20% of the magnitude of the parent’s offset, whichever is
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larger. Because a large majority of pixels in many datasets have small motions,

this is significantly more efficient than computing the full cost matrix for each

pixel when backtracing.

Subsampled cost matrices When performing the upward pass of optimization,

we do not compute a full cost matrix for each node. Instead, we only compute

every kth pixel in a grid for some value of k. Because neighboring pixels will have

similar costs, this results in a minimal decrease in accuracy while significantly

speeding up the optimization. This strategy effectively reduces the number of

labels on the upwards pass by only allowing each node to take every kth label.

However, at the final level of the downward pass, we compute a dense cost matrix

for each pixel in the vicinity of its parent’s optimal displacement and use this to

determine its label. Thus, the size of the label space for the pixels is not reduced.

Sub-pixel localization Although our method is discrete, sub-pixel estimates

may improve results. We do so in a similar way to (Fortun et al., 2014). At the

pixel-level of the downward pass of the optimization, a cost matrix for each pixel is

computed as mentioned previously. Let (x, y) be the location of the minimum value

in the pixel-level cost matrix. We fit a parabola to locations (x− 1, y), (x, y), (x+

1, y) and analytically locate the minimum. The y-location is treated similarly by

finding the minimum of a parabola fit to the values (x, y − 1), (x, y), (x, y + 1).

Note that because (x, y) is the minimum location, the two quadratics will have

a well-defined minimum near the location (x, y). Because the minimum of the

two quadratics can be found analytically, this results in a negligible increase in

runtime.

Compressing the cost matrices The values within the cost matrices need
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(a) Cost matrix (b) Distance trans-
form

(c) Voronoi dia-
gram

(d) Indices stored

Figure 5.4: The Voronoi diagram encodes the optimal label of a node given
its parent’s location. It can be compressed two ways. The last column shows
the entries that need to be stored of the cost matrix (first row) or Voronoi
diagram (second row). Top row: When the smoothness cost is small, the
Voronoi diagram is dominated by a few entries. Only a few locations of the cost
matrix are needed to reproduce the Voronoi diagram. Bottom row: When the
smoothness cost is large, most indices of the Voronoi diagram are just the index
of the location itself, and we only store the indices which differ.

to be known only approximately. Rather than store the full matrix as double-

precision floating point values, we store the minimum and maximum values in

each matrix, scale the cost matrices to be between 0 and 28 − 1, and store them

as unsigned 8-bit integers.

Compressing the Voronoi matrices The Vornoi diagrams – which encode

where every node should be placed as a function of its parent’s offset – need to be

computed and stored for each of the nodes in the graph and this can consume a

significant amount of memory. In practice we have observed that these diagrams

often conform to one of two patterns (Figure 5.4). If the smoothness cost is small,

the Voronoi diagram will be dominated by only a few entries corresponding to a

few dominant local minima of the cost matrix and all other cost matrix values

can be discarded without altering the resulting Voronoi diagram. In this case, we

store only these entries of the cost matrix and the Voronoi diagram can then be

recomputed when it is needed.

Alternatively, if the smoothness constraint is relatively high then the best motion
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of a node will usually be similair to that of its parent. In this case we store a sparse

matrix encoding the entries where the child’s displacement differs from that of its

parent. The full, non-sparse Voronoi diagram can then be constructed when it is

needed.

At runtime the system determines which compression scheme is most effective for

each node and applies it.

5.3 Multi-frame optical flow

For two-frame optical flow, large displacements can make it difficult or even im-

possible to find correct correspondences, such as when an object moves out of

frame. In Chapter 4, we proposed a simple method to incorporate information

from multiple frames without changing the optical flow algorithm itself. This is

done by assuming that objects move linearly, from inertia, over a short time span.

Multiple “inertial” estimates of the flow are formed from nearby frames under this

assumption and subsequently fused using a classifier. However, this requires run-

ning the flow computation multiple times, in addition to training a classifier and

using it to fuse the estimates.

In our global optimization framework, inertial estimates can be directly incorpo-

rated into the data cost term and the optimization does not change at all as shown

in Figure 5.5. Let Dt+1
v (u(v)) be the data term for pixel node v with respect to

frame t+ 1, which is just the standard two-frame data cost function. Similarly, let

Dt−1
v (−u(v)) be the cost as projected onto frame t− 1 and let Dt+2

v (2u(v)) be the

cost with respect to frame t + 2. If a vertex is occluded, it may have a high cost

with respect to frame t + 1, but might match better to one of the other frames.
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Figure 5.5: Depiction of our multi-frame term. Rather than only computing
the data cost from frame t to t + 1, the offset is extended to other adjacent
frames, and the data terms are combined into a single cost matrix that is used
during optimization. The intuition is that if a node is occluded, it may match
better to another adjacent frame, assuming linear motion.

In other words, we want vertex v to match to one of the three frames, but not

necessarily all. We then define

Dv(u(v)) = min
{
Dt+1
v (u(v)), Dt−1

v (−u(v)) + β, Dt+2
v (2u(v)) + β

}
, (5.13)

where β > 0 biases the cost towards matching to frame t + 1. This data cost

is then used directly within the optimization. This approach results in minimal

increase in runtime especially when the distance function can be computed effi-

ciently. It would be difficult to use this method within a continuous optimization

framework because this approach introduces many extra local minima and results

in some points not being differentiable, but neither of these issues is a problem

in our discrete framework. We evaluate this approach on the MPI-Sintel dataset

in Section 5.4.2, and find that it significantly decreases the error over two-frame

optical flow, especially for unmatched pixels.
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5.4 Experiments

In the sequel our algorithm is denoted by HCOF, while the HCOF+multi variant

uses multiple frames as described in Section 5.3.

Parameters Parameters were determined for the MPI-Sintel and Middlebury

datasets using a small-scale grid search on each training dataset. For MPI-Sintel,

we set α = 0.15, λ0 = 1, λ1 = 2, η0 = 50, η1 = −0.05, τ = 0.01, and β = 40 when

multiple frames were used. For Middlebury, we set α = 0.05, λ0 = 0, λ1 = 0.2,

η0 = 50, η1 = −0.05, τ = 0.01, and β = 0. For the Synthetic and Tracking datasets

evaluated in Sections 5.4.4 and 5.4.5, the parameters from the MPI-Sintel dataset

were used.

Ten pixels were sampled per superpixel to compute the cost matrices on the upward

pass. When computing the cost matrices for each individual pixel on the downward

pass we used a window around the parent’s offset that had a width of the greater

of 5 and 20% of the magnitude of the parent’s offset. The maximum offset was set

to 200 pixels for all datasets except for Middlebury where it was set to 40 pixels.

Note that a maximum offset of 200 pixels accounts accounts for 99.9% of all pixels

in MPI-Sintel and results in a label space with 160,000 labels. On the upward

pass, the data cost matrices were sampled every 3 pixels. The SIFT features had

a cell size of 5 pixels and the Lab color features had a cell size of 3 pixels. For

SLIC superpixels, the region size parameter was set to 50 and the regularization

parameter was also set to 50.
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Army Meq. Scheff. Wood. Grove Urban Yos. Teddy mean
Layers++ 0.08 0.19 0.20 0.13 0.48 0.47 0.15 0.46 0.27
(Sun et al., 2010b)
MDP-Flow2 0.09 0.19 0.24 0.16 0.74 0.46 0.12 0.78 0.35
(Xu et al., 2012)
DeepFlow 0.12 0.28 0.44 0.26 0.81 0.38 0.11 0.93 0.42
(Weinzaepfel et al., 2013)
LDOF 0.12 0.32 0.43 0.45 1.01 0.10 0.12 0.94 0.56
(Brox and Malik, 2011)

HCOF 0.36 1.74 0.92 1.07 1.09 1.39 0.71 1.16 1.05

Table 5.1: Endpoint error on the Middlebury test dataset.

5.4.1 Middlebury

The Middlebury dataset is a commonly-used optical flow dataset (Baker et al.,

2011). The motions are quite simple and there are minimal occlusions. Results on

the training dataset are shown in Figure 5.6. The results are fairly accurate, and

most of the large errors can be traced to an incorrect segmentation. We note that

this discrete, global-optimization algorithm is not ideal for the Middlebury dataset:

the motions on Middlebury are small enough that local optimization performs very

well. Results on the test dataset are given in Table 5.1. As expected, the results are

also somewhat worse than algorithms that use continuous optimization methods

due to the simplicity of this dataset.

5.4.2 MPI-Sintel

The MPI-Sintel dataset (Butler et al., 2012) is a difficult optical flow dataset

created using an open-source 3D computer-generated film. The dataset consists of

over 1000 images and contains difficulties such as large displacements, significant

occlusions, lighting variation, and motion blur.
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EPE: 0.240

EPE: 0.274

EPE: 0.321

EPE: 0.367

EPE: 0.907

EPE: 0.754

EPE: 0.996

(a) First image (b) Segmentation

EPE: 0.591
(c) Estimated flow (d) Groundtruth flow

Figure 5.6: Results on the Middlebury training set. Colors for the estimated
flow values are scaled based on the maximum offset of the groundtruth flow.
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EPE s0-10 s10-40 s40+
HCOF 5.882 3.163 6.786 17.596
HCOF+multi 5.265 2.800 5.928 15.892

Table 5.2: Evaluation on the Final training dataset of MPI-Sintel. The use if
inertial estimates improves results.

Results for several images chosen from the Final training set of MPI-Sintel are show

in Figure 5.7. The global nature of the optimization coupled with the underlying

superpixel segmentation results in flow estimates with crisp motion boundaries

as opposed to the oversmoothed motions produced by many schemes based on

continuous optimization.

We have found that the use of multiple inertial estimates of optical flow in the

data cost can significantly improve results, especially in occluded regions. This is

illustrated quantitatively in Table 5.2 which summarizes the results obtained with

both HCOF and HCOF+multi on the Final training dataset.

Quantitative results on the test set for the method HCOF+multi are shown in

Table 5.3. Our method is competitive with many modern methods, although the

errors are still below the state-of-the-art. A significant fraction of the error can be

attributed to segmentation errors, as we show in Section 5.4.3. When we evaluated

the method on the training dataset using a segmentation derived from the ground

truth motion, the EPE error results improved by 15% on the training set. This

suggests that future work could consider strategies that refine the segmentation

tree as the optimization proceeds.
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(a) First image (b) Second image (c) Segmentation

EPE: 8.50
(d) HCOF

EPE: 7.68
(e) HCOF+multi (f) Groundtruth

EPE: 17.90 EPE: 11.80

EPE: 17.92 EPE: 13.99

EPE: 3.31 EPE: 2.80
Figure 5.7: Results on several images from the Final dataset of MPI-Sintel.
The flow images are colored with respect to the maximum groundtruth displace-
ment.

5.4.3 Effect of segmentation error

Because our graphical model is set up based on a hierarchical image segmentation,

it is sensitive to segmentation errors. In order to get a sense of how this affects
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EPE s0-10 s10-40 s40+
EpicFlow 6.285 1.135 3.727 38.021
(Revaud et al., 2014)
TF+OFM 6.727 1.512 3.765 39.761
(Kennedy and Taylor, 2015)
DeepFlow 7.212 1.284 4.107 44.118
(Weinzaepfel et al., 2013)
AggregFlow 7.329 1.241 4.296 44.858
(Fortun et al., 2014)
ChannelFlow 8.835 1.292 5.349 54.648
(Sevilla-Lara et al., 2014)
LDOF 9.116 1.485 4.839 57.296
(Brox and Malik, 2011)
AnisoHuber.L1 11.927 1.155 7.966 74.796
(Werlberger et al., 2009)

HCOF+multi 8.799 1.682 5.786 51.363

Table 5.3: Evaluation on the Final test dataset of MPI-Sintel. We report
endpoint error for all pixels, and also based on the groundtruth speed.

the results, we perform the following experiment. For the training set of MPI-

Sintel, rather than using the image itself to generate a segmentation, we run the

segmentation algorithm on the colorized flow image of the groundtruth optical flow.

The resulting segmentation should divide the image into regions based explicitly

on the true motion field, rather than on color differences in the original image.

Quantitative results are given in Table 5.4, and several example images are shown

in Figure 5.8. By using an “oracle” segmentation of the flow image, we obtain a

15.138% improvement on the training dataset. This indicates that segmentation

error is a significant source of error in our approach, and subsequent research might

get improved results by focusing on this issue. Observe that if we obtained the

same percentage improvement on the test set, the resulting endpoint error would

be 7.446, putting us much close to the current state-of-the-art.
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(a) First image (b) Second image (c) Groundtruth
flow

(d) Segmentation
EPE: 10.49

(e) HCOF+multi (f) Segmentation
(oracle)

EPE: 7.84
(g) HCOF+multi
(oracle)

EPE: 1.81 EPE: 0.75

EPE: 5.12 EPE: 4.27

EPE: 9.59 EPE: 6.59

Figure 5.8: Example images showing the effect of segmentation error on opti-
cal flow results on MPI-Sintel. We show the optical flow results using a segmen-
tation of the image, as well as when segmentation is performed on the colorized
groundtruth flow image, denoted as the “oracle”. The improved segmentation
often results in improved flow estimates.
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EPE s0-10 s10-40 s40+
HCOF+multi 5.265 2.800 5.928 15.892
HCOF+multi (oracle) 4.468 2.225 5.076 13.609
% improvement 15.138% 20.536% 14.372% 14.366%

Table 5.4: Effect of segmentation error on MPI-Sintel. Rather than segment-
ing the image, we apply the segmentation algorithm to the colorized groundtruth
flow image on the training dataset. This results in an improved segmentation.
Otherwise, all parameters are kept constant.

5.4.4 Synthetic Dataset

In order to illustrate the issues that often occur in the face of large motions, we

constructed a simple synthetic dataset using the imagery from the Final dataset

of MPI-Sintel. An example of an image pair from this dataset is shown in Figure

5.9. For each such pair a background is generated by choosing an image uniformly

at random and selecting a random 256×256 square patch from that image. We

then generate an “object” by selecting a random 32×32 patch from another image.

The object patch is placed at a random location on the background and is then

translated in a random direction by a specified offset distance. For a given offset

distance, we evaluate each algorithm averaged over 100 such random images.

We deliberately chose a relatively simple motion stimulus to illuminate how various

schemes handle layered motions with large displacements. Adding more layers,

more motions and more objects would not fundamentally alter the results.

We compare our own algorithm, HCOF, to several other modern approaches for

which code was readily available: Classic+NL (Sun et al., 2010a), LDOF (Brox

and Malik, 2011), and DeepFlow (Weinzaepfel et al., 2013). Classic+NL is a mod-

ern implementation of a coarse-to-fine variational approach. Large Displacement

Optical Flow (LDOF) incorporates sparse feature matching into the optimization



Chapter 5. Hierarchically-Constrained Optical Flow 108

(a) First image (b) Second image (c) Groundtruth

Figure 5.9: An example of an image from our synthetic dataset. A random
256×256 patch is used as a background while another 32×32 “object” patch is
moved a given offset between images. In this example, the offset is 50 pixels.
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Figure 5.10: Endpoint error on a synthetic dataset where an object is trans-
lated a varying amount. The Baseline method is a zero-flow estimate. The
endpoint error is averaged over 100 images and we show the standard error as
error bars. In (a), endpoint error is averaged over the entire image, while in (b)
we plot the error for only the object itself.

in order to better deal with large displacements. Finally, DeepFlow is a top-

performing algorithm on MPI-Sintel that uses a more advanced feature matching

term to account for deformation. For all approaches, we used their default param-

eters, except for DeepFlow where we used the “improved settings” as documented

in their code. We also compare to the baseline method of predicting a zero-valued

flow.
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Results on this dataset are given in Figure 5.10. We show the mean endpoint error

for each method as averaged over 100 random images, and the offset is varied from

a minimum of 10 pixels to a maximum of 100 pixels. The error is evaluated for

both the full image as well as only the object patch itself.

In all cases, the error increases roughly linearly as the offset is increased. For

offsets of less than 20 pixels, HCOF is outperformed by the other coarse-to-fine

continuous methods which are able to achieve better sub-pixel accuracy and are

not affected by segmentation error. However, HCOF is significantly more robust

to large displacements. For offsets of 100 pixels, our method achieves errors several

times lower than other approaches. The reason for this is that the magnitude of

the offset has little effect on the accuracy of our method because it uses a discrete,

global optimization.

It is interesting to note that all other methods based on continuous optimization

fail for very large displacements on this simple dataset even though they often

achieve state-of-the-art results on the more realistic MPI-Sintel dataset (Secion

5.4.2). This is due to the motions and images in MPI-Sintel being more complex:

as the offsets get larger, they are often made even more difficult by deformations

and rotations of the object, motion blur, and large lighting changes. These effects

also cause an image segmentation to have errors which leads to an incorrect hier-

archy in our model. Continuous methods are able to handle these deformations

better and are not subject to errors in segmentation. However, HCOF might then

outperform other methods in situations that involve large translational motions

when there is minimal segmentation ambiguity. We explore this further in the

next section.



Chapter 5. Hierarchically-Constrained Optical Flow 110

(a) First im-
age

(b) Second
image

(c) Estimated
background

(d) HCOF

(e)
HCOF+multi

(f) LDOF (g) DeepFlow (h) Clas-
sic+NL

Figure 5.11: An example of a result from the Tracking dataset. In (a), the
black boxes indicate the people for which annotations are provided and the
extent of the boxes is the area over which we look for the lowest endpoint error
for each person. In (c), we show the estimated background pixels, for which we
assume the flow is zero in our evaluation. The results of different methods are
given in (d)-(h). The results of our method HCOF are much more localized.

5.4.5 Tracking Dataset

To demonstrate that the issues illustrated in Section 5.4.4 do in fact occur in real

images we evaluated our algorithm on the Hotel sequence from the BIWI Walking

Pedestrians dataset (Pellegrini et al., 2009), which is a video of a city sidewalk

taken from an overhead camera. The video was taken at 25 frames per second and

annotations are provided for every 10th frame indicating the positions of people

visible in the scene. We further subsample every other annotated frame so that

the dataset contains both large and small motions, resulting in a total of 572

annotated frames each with a resolution of 720×576 pixels. Two frames from this

dataset are shown in Figure 5.11.
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We evaluate flow methods on this dataset in two ways. First, we have sparse an-

notations of the locations of people. For these points we calculate the groundtruth

offsets and compare it to the results from each method. However, this may penal-

ize methods that successfully track most of a person but miss the one annotated

pixel, and so instead we find the best estimated flow value within a 41×41 box

around each annotated point, as shown in Figure 5.11. This evaluation is done

independently on all 2623 pedestrian annotations in the dataset

We also evaluate methods by noting that the camera is stationary and that much

of the image will have zero optical flow. We determine the stationary pixels in each

frame by thresholding the magnitude of the intensity difference between frames at

0.05. We evaluate the flow on these background pixels separately.

Qualitative results on a pair of frames from this dataset are shown in Figure 5.11,

and quantitative results are given in Table 5.5. For the annotated tracks, the

results are presented using average EPE and are also divided into bins based on

the magnitude of the groundtruth motion, similar to the results for MPI-Sintel

(Section 5.4.2). The last column of the table also shows the mean EPE over all

the background pixels.

LDOF performs the best of all continuous methods, but for large offsets we find

that HCOF+multi has a significantly lower error than other methods. DeepFlow

may underperform on this dataset as compared to MPI-Sintel because the objects

that are moving are relatively small and DeepFlow does not compute a fully-dense

feature matching due to memory constraints. Overall, HCOF+multi outperforms

all other methods on this dataset. We also find that HCOF and HCOF+multi

are significantly more accurate on the background pixels that have zero flow than

all methods except for Classic+NL which has a low error only because it fails on
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Annotated Tracks Background

EPE s0-10 s10-40 s40+ EPE
LDOF (Brox and Malik, 2011) 3.031 0.654 1.954 4.333 0.738
DeepFlow (Weinzaepfel et al., 2013) 13.048 0.862 4.751 20.265 0.730
Classic+NL (Sun et al., 2010a) 35.220 0.821 16.705 54.631 0.385

HCOF 2.896 0.603 2.321 4.060 0.580
HCOF+multi 2.561 0.678 2.948 3.349 0.430

Table 5.5: Evaluation on the tracking dataset. The left section of the table
shows the endpoint error over all annotated tracks, both overall and divided
based on the magnitude of the groundtruth motion vectors. The last column
measures the endpoint error over estimated background pixels.

correctly estimating the motion of the people. All other methods tend to pull

part of the background along with the objects and are less able to localize the

objects themselves. This can be seen visually in the results in Figure 5.11. Note,

for example, that all methods other than HCOF are unable to separate the two

people walking next to each other.

5.4.6 Computational Requirements

There are two parts of our algorithm that require the most computation time: the

distance transforms that are computed at each node in the hierarchy, and the ini-

tial feature computation at the leaves of the tree. The computational complexity

is thus dependent on the size of the image and of the image hierarchy – which

determine the number of variables in the MRF and the associated number of dis-

tance transforms to be computed – and on the type of features used. We evaluate

these factors on the Ambush5 image sequence from the MPI-Sintel dataset, which

consists of 49 image pairs of size 1024×436. We evaluate the time for comput-

ing optical flow on a desktop with a 2.0 GHz Intel Xeon processor and 4 GB of

memory. We evaluate with and without using multi-frame inertial estimates.



Chapter 5. Hierarchically-Constrained Optical Flow 113

The mean time taken to evaluate two-frame optical flow without the use of inertial

estimates was 15.3 minutes. When inertial estimates were used, the mean time was

40.9 minutes. The large increase in computation time occurs because the features

we use are quite complex, including both Lab and SIFT features. The computation

of these image features takes a relatively large percentage of the computation time,

and by using inertial estimates the feature computation is tripled. Still, fewer

distance transforms need to be done and no classification is needed to fuse the

inertial estimates as would be the case if they were computed separately.

We also note that much of this algorithm could be sped up through parallelization.

The computation of the data cost can be done independently for each pixel. Also,

the computation performed at each tree node can be done independently for each

node in one layer of the tree on both the upwards and downwards pass of the

algorithm.

5.4.7 Effect of Sub-Pixel Localization

Although our MRF is discrete by nature, in Section 5.2.1 we described a method

for obtaining sub-pixel localization at the last step of backtracing by fitting a

quadratic function separately for the x and y offsets. The effect of this is shown

in Figure 5.12. Without sub-pixel localization, the results are very blocky and

a grid-like pattern is clearly visible. Although our sub-pixel localization does

not completely eliminate this pattern, the results are nonetheless significantly

smoother while there is negligible additional computation time.
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(a) Without sub-
pixel localization

(b) With sub-pixel
localization

(c) Groundtruth flow

Figure 5.12: Effect of sub-pixel localization on a portion of the RubberWhale
image from the Middlebury dataset.

5.4.8 Effect of approximations

Although our tree-structured MRF can be solved optimally in polynomial time,

in Section 5.2.1 we outlined several approximations used in our actual implemen-

tation in order to speed up the computation and lessen the memory requirements.

Still, it is possible to compute an exact solution at the cost of additional compu-

tation. We examine the effect of our approximations by evaluating our algorithm

on the Middlebury dataset without such approximations. In particular, we do not

subsample the pixels when computing data cost matrices on the upward pass of the

optimization and compute a full data cost matrix for each pixel on the downward

pass when labeling each pixel.

A comparison between the exact solutions and the solutions obtained when using

our proposed approximations is given in Figure 5.13 (in both cases, sub-pixel

localization is also used). The approximate and exact solutions to the MRF are

virtually indistinguishable and have nearly identical error; the mean EPE for the

approximate and exact solutions is 0.556 and 0.564, respectively. However, the

computation time is very different: while the approximate solution is computed in

about 5 minutes the exact solution takes nearly 45 minutes.
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EPE: 0.240 EPE: 0.238

EPE: 0.274 EPE: 0.274

EPE: 0.321 EPE: 0.323

EPE: 0.367 EPE: 0.371

EPE: 0.907 EPE: 0.900

EPE: 0.754 EPE: 0.770

EPE: 0.996 EPE: 1.014

(a) First image

EPE: 0.591
(b) Approx. solution

EPE: 0.618
(c) Exact solution (d) Groundtruth flow

Figure 5.13: Results on the Middlebury training set. Colors for the estimated
flow values are scaled based on the maximum offset of the groundtruth flow.
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5.5 Limitations

Although our method finds the (near) global minimum of our optimization prob-

lem, the results are still limited by the following:

Occlusions Our model does not explicitly handle occlusions, although errors are

somewhat reduced by using a robust cost function (Black and Anandan, 1996).

However, when an entire region which is not well-connected to any other region is

occluded, it may match to a location very far from its original location, resulting

in very high endpoint error. This can be somewhat mitigated, however, by using

the inertial estimate from nearby frames.

Segmentation errors The smoothness terms in our model depends on an ac-

curate segmentation. If the segmentation is inaccurate, regions which should be

grouped together may be separated or regions with different motions may be

linked. Even when using state-of-the-art segmentation methods, we still found

that this was a source of error in our results.

Smoothness model Our hierarchical smoothness model allows for deformation,

but does not explicitly model large changes such as rotations and scale changes.

It also assumes a fronto-parallel motions, and would penalize other affine motions.

5.6 Summary

In this chapter, we have shown that image correspondence problems with very

large label spaces can be solved not only efficiently, but optimally, by using a

hierarchical segmentation. Our results are already competitive with many modern
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approaches, and we expect that the use of more informative features (Byrne and

Shi, 2013; Weinzaepfel et al., 2013), as well as prior and contextual information,

will lead to even better algorithms.

The proposed method is sensitive to segmentation quality. It may be possible to

reduce this error by re-weighting the connections between nodes, or even by dy-

namically generating the segmentation as the optimization proceeds. Our model is

also biased towards fronto-parallel motions and will have difficulty on datasets that

have excessive rotations, scale changes, or affine motions. We plan on exploring

many of these issues in future work.

Finally, we point out that this framework could be used for other problems, includ-

ing semantic segmentation. In this case, rather than using distance transforms, a

cost matrix would be kept at each vertex that records the cost of each label for

each choice of its parent’s label. While similar approaches have been used before

for this task (Feng et al., 2002; Kumar and Hebert, 2005), we have shown that

this can be done efficiently for very large label spaces, which opens the door to

large-scale semantic segmentation involving thousands of object categories.
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6
Conclusion

Decades of research into optical flow and motion estimation have resulted in a

huge number of algorithms that use a variety of different models and computa-

tional approaches. These algorithms may have different strengths and weaknesses,

but there is no doubt that the state-of-the-art in optical flow has steadily improved

over time. This progress has been quantified by a number of datasets, including

Middlebury, KITTI and now MPI-Sintel. While the simple motions present in

the Middlebury dataset have been largely dealt with and efficient algorithms can

easily find very accurate solutions, there is still a significant amount of error in

the complex MPI-Sintel dataset. These errors are caused by the much more real-

istic and complex motions present in the dataset, which include large occlusions,

complex motions, lighting changes, and atmospheric effects.

In this thesis we have presented two quite disparate algorithms: one algorithm

performs continuous optimization using a triangular decomposition of the image

while the other performs discrete optimization based on a hierarchical segmen-

tation. We have also presented a method of incorporating temporal information

into the optimization. Together, these approaches have resulted in improvements

on difficult optical flow problems. In particular, the triangulation-based method
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allows for natural occlusion estimation, the fusion of multiple frames adds addi-

tional temporal information to improve results, and the hierarchical approach uses

discrete optimization avoids getting stuck in local optima.

Although the approaches presented in this thesis have resulted in improved mo-

tion estimates for many problems, there remain many additional avenues of re-

search. As optical flow datasets have become more difficult with large motions

and occlusions, algorithms have necessarily shifted from a gradient-descent “flow”

calculation to more of a global matching since objects may have a different ap-

pearance and move to a different part of the image. In some cases, this may make

the problem difficult enough that higher-level information becomes necessary in

the flow calculation. For example, if we recognize that a person is in an image

and can identify their pose, then the motion of the corresponding pixels should be

constrained to make sense in terms of the kinematics of the human body. The use

of such information may allow us to overcome significant occlusions and changes

in visual appearance that will cause matching to fail.

Even without the use of high-level information about objects, many improvements

can also be made. For example, our hierarchical discrete approach has significant

errors on images where the segmentation fails, as often happens on the MPI-Sintel

datset. Reducing the segmentation error here would potentially result in much

better motion estimates. This approach is also the first globally-optimal discrete

optimization to be used for large-displacement optical flow, and adding additional

terms to the model to improve its accuracy would be useful. In general, there is

still room for the development of optical flow algorithms that are more efficient

and better model the motions that are present in real images.
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Appendix A

Additional examples of multi-frame fusion

EPE: 2.75 EPE: 0.39 EPE: 27.34 EPE: 16.16

EPE: 3.58 EPE: 0.49 EPE: 34.53 EPE: 26.02

EPE: 3.89 EPE: 0.48 EPE: 35.84 EPE: 20.01

EPE: 2.44 EPE: 0.29 EPE: 14.81 EPE: 8.87

Figure A.1: Examples of our multi-frame fusion on the MPI-Sintel Final
training set. Top row: Frame at time t. Rows 2-4: Inertial estimates of the
flow [t→ t+ 1], −[t→ t−1], and 1

2 [t→ t+ 2]. Row 5: Fusion classification for
each pixel. Color indicates the estimate used at each pixel. Colors correspond
to the border colors of the inertial estimates. Row 6: Fused flow estimate.
Bottom row: Groundtruth flow. For all flow estimates, the endpoint error is
printed in the image.
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EPE: 1.06 EPE: 2.34 EPE: 2.79 EPE: 0.60

EPE: 2.72 EPE: 2.35 EPE: 3.06 EPE: 1.65

EPE: 2.52 EPE: 2.31 EPE: 3.03 EPE: 0.70

EPE: 1.05 EPE: 1.79 EPE: 2.10 EPE: 0.53

Figure A.2: Examples of our multi-frame fusion on the MPI-Sintel Final
training set. Top row: Frame at time t. Rows 2-4: Inertial estimates of the
flow [t→ t+ 1], −[t→ t−1], and 1

2 [t→ t+ 2]. Row 5: Fusion classification for
each pixel. Color indicates the estimate used at each pixel. Colors correspond
to the border colors of the inertial estimates. Row 6: Fused flow estimate.
Bottom row: Groundtruth flow. For all flow estimates, the endpoint error is
printed in the image.
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EPE: 0.40 EPE: 7.08 EPE: 0.37 EPE: 2.01

EPE: 0.51 EPE: 28.84 EPE: 0.39 EPE: 2.08

EPE: 0.28 EPE: 12.40 EPE: 0.31 EPE: 2.47

EPE: 0.29 EPE: 6.78 EPE: 0.29 EPE: 1.79

Figure A.3: Examples of our multi-frame fusion on the MPI-Sintel Final
training set. Top row: Frame at time t. Rows 2-4: Inertial estimates of the
flow [t→ t+ 1], −[t→ t−1], and 1

2 [t→ t+ 2]. Row 5: Fusion classification for
each pixel. Color indicates the estimate used at each pixel. Colors correspond
to the border colors of the inertial estimates. Row 6: Fused flow estimate.
Bottom row: Groundtruth flow. For all flow estimates, the endpoint error is
printed in the image.
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EPE: 0.32 EPE: 24.58 EPE: 0.82 EPE: 0.39

EPE: 0.39 EPE: 29.73 EPE: 1.10 EPE: 0.43

EPE: 0.22 EPE: 30.60 EPE: 1.05 EPE: 0.38

EPE: 0.22 EPE: 18.36 EPE: 0.67 EPE: 0.32

Figure A.4: Examples of our multi-frame fusion on the MPI-Sintel Final
training set. Top row: Frame at time t. Rows 2-4: Inertial estimates of the
flow [t→ t+ 1], −[t→ t−1], and 1

2 [t→ t+ 2]. Row 5: Fusion classification for
each pixel. Color indicates the estimate used at each pixel. Colors correspond
to the border colors of the inertial estimates. Row 6: Fused flow estimate.
Bottom row: Groundtruth flow. For all flow estimates, the endpoint error is
printed in the image.
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EPE: 8.64 EPE: 8.05 EPE: 1.29 EPE: 3.89

EPE: 7.86 EPE: 11.71 EPE: 2.58 EPE: 7.93

EPE: 12.07 EPE: 18.68 EPE: 3.86 EPE: 13.85

EPE: 5.73 EPE: 6.55 EPE: 1.23 EPE: 3.25

Figure A.5: Examples of our multi-frame fusion on the KITTI training
dataset. Top row: Frame at time t. Rows 2-4: Inertial estimates of the
flow [t→ t+ 1], −[t→ t−1], and 1

2 [t→ t+ 2]. Row 5: Fusion classification for
each pixel. Color indicates the estimate used at each pixel. Colors correspond
to the border colors of the inertial estimates. Row 6: Fused flow estimate.
Bottom row: Groundtruth flow, interpolated using linear interpolation. For
all flow estimates, the endpoint error is printed in the image.
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EPE: 15.83 EPE: 1.00 EPE: 14.65 EPE: 1.08

EPE: 15.54 EPE: 3.02 EPE: 19.50 EPE: 4.11

EPE: 22.43 EPE: 3.12 EPE: 26.31 EPE: 4.69

EPE: 9.43 EPE: 0.95 EPE: 13.36 EPE: 0.94

Figure A.6: Examples of our multi-frame fusion on the KITTI training
dataset. Top row: Frame at time t. Rows 2-4: Inertial estimates of the
flow [t→ t+ 1], −[t→ t−1], and 1

2 [t→ t+ 2]. Row 5: Fusion classification for
each pixel. Color indicates the estimate used at each pixel. Colors correspond
to the border colors of the inertial estimates. Row 6: Fused flow estimate.
Bottom row: Groundtruth flow, interpolated using linear interpolation. For
all flow estimates, the endpoint error is printed in the image.
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EPE: 5.82 EPE: 5.25 EPE: 2.93 EPE: 3.21

EPE: 7.54 EPE: 12.52 EPE: 4.40 EPE: 4.92

EPE: 11.78 EPE: 17.64 EPE: 5.19 EPE: 8.87

EPE: 3.61 EPE: 4.48 EPE: 2.21 EPE: 2.71

Figure A.7: Examples of our multi-frame fusion on the KITTI training
dataset. Top row: Frame at time t. Rows 2-4: Inertial estimates of the
flow [t→ t+ 1], −[t→ t−1], and 1

2 [t→ t+ 2]. Row 5: Fusion classification for
each pixel. Color indicates the estimate used at each pixel. Colors correspond
to the border colors of the inertial estimates. Row 6: Fused flow estimate.
Bottom row: Groundtruth flow, interpolated using linear interpolation. For
all flow estimates, the endpoint error is printed in the image.
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EPE: 2.46 EPE: 2.49 EPE: 5.54 EPE: 0.85

EPE: 9.87 EPE: 3.19 EPE: 6.01 EPE: 3.57

EPE: 8.51 EPE: 3.53 EPE: 6.93 EPE: 1.93

EPE: 2.45 EPE: 2.19 EPE: 3.17 EPE: 0.81

Figure A.8: Examples of our multi-frame fusion on the KITTI training
dataset. Top row: Frame at time t. Rows 2-4: Inertial estimates of the
flow [t→ t+ 1], −[t→ t−1], and 1

2 [t→ t+ 2]. Row 5: Fusion classification for
each pixel. Color indicates the estimate used at each pixel. Colors correspond
to the border colors of the inertial estimates. Row 6: Fused flow estimate.
Bottom row: Groundtruth flow, interpolated using linear interpolation. For
all flow estimates, the endpoint error is printed in the image.
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