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ABSTRACT

Liu, Chao Ph.D., Purdue University, August 2016. Three Dimensional Moving Pic-
tures with a Single Imager and Microfluidic Lens. Major Professor: Lauren Christo-
pher.

Three-dimensional movie acquisition and corresponding depth data is commonly

generated from multiple cameras and multiple views. This technology has high cost

and large size which are limitations for medical devices, military surveillance and

current consumer products such as small camcorders and cell phone movie cameras.

This research result shows that a single imager, equipped with a fast-focus microflu-

idic lens, produces a highly accurate depth map. On test material, the depth is

found to be an average Root Mean Squared Error (RMSE) of 3.543 gray level steps

(1.38%) accuracy compared to ranging data. The depth is inferred using a new Ex-

tended Depth from Defocus (EDfD), and defocus is achieved at movie speeds with

a microfluidic lens. Camera non-uniformities from both lens and sensor pipeline are

analysed. The findings of some lens e↵ects can be compensated for, but noise has

the detrimental e↵ect. In addition, early indications show that real-time HDTV 3D

movie frame rates are feasible.
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1. INTRODUCTION

Depth inference is a key research area for modeling 3D objects in the 3D en-

vironment; for consumer electronics, robotics, and computer vision. In consumer

electronics, depth maps are used in Depth Image Based Rendering (DIBR) displays,

they are used as part of improved e�ciency 3D compression algorithms, and can be

used in future virtual reality.

Depth may be inferred using stereo disparity [1]; however this requires multi-

ple source images where two cameras or complex optics are needed to achieve the

left-right views. Depth also may be found by ranging techniques, but this requires

additional transmit and receive hardware. New light-field or integral imaging cameras

can produce depth [2], but the microlens array reduces the maximum imager resolu-

tion capability. None of the current 3D imaging systems is easily miniaturized to fit

with the form factor of a small consumer camera, such as the type in cell phones and

tablet devices. For medical devices such as endoscopes, the large size of the imaging

system limits the applications. Military surveillance applications such as unmanned

vehicles have limited space for cameras, and would benefit from 3D videos. The size

and cost of the current systems includes two imagers and/or expensive lens arrays

or ranging devices. Depth from defocus inference [3–5] requires only one imager cap-

turing two focus images, which can be done with a standard camera with varying

focus. Inferring depth is done by a pixel-by-pixel comparison of two or more defo-

cussed images, where the object’s blur radius is related to its distance. This depth

inference uses Bayesian and Markov Random Field (MRF) statistical structure [6–8].

The published data are promising, but the classical approach can be improved by

combination with other computational imaging techniques. The motivation of this

research is to extend the classical DfD to Extended Depth from Defocus (EDfD) and

using a fast focus optics to make a real-time system.
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The new EDfD algorithm is using a new optimization function, extended to adapt

to both the image color data and high frequency image data. This research shows

significant depth accuracy improvements compared to the currently published DfD

techniques. Depth is important in new consumer electronics products in order to cre-

ate immersive 3D experiences for the user with new 3D displays. Accurate depth in-

formation is also needed for improved compression e�ciency and for super-resolution

techniques. A method for enhancing a ranging cameras resolution was reported in [9],

which used Markov Random Field methods with the 2D image to provide a more ac-

curate depth result for DIBR display. This reference uses a ranging camera in addition

to the visible light imager. Another thread of research explores 2D to 3D conversion

in two representative papers, the first uses edge information from the 2D image [10] to

provide a depth map from a hypothesis depth map starting point; the second provides

a depth map specifically for outdoor scenes using the dark channel (the e↵ect of haze

in the image) to estimate depth [11]. The results from EDfD show significant quality

improvement compared to these two papers, and EDfD is generally applicable to a

variety of scenes.

For the EDfD method, fast focus optics is required. New bio-inspired microfluidic

lenses [12, 13] allow a time-domain approach for the very fast focus change. These

new lenses use two fluids and electrostatic forces to rapidly change the shape of a very

small lens. To design the total system then requires balancing the maximum focus

speed of the microfluidic lens with the capability and accuracy of the depth inference.

Based on my previous research [14], this thesis presents a new extended DfD

depth inference method, together with a fast focus lens which enables depth map

generation of an average accuracy 3.543 RMSE compared to ground truth, and small

size due to a single imager. The computational complexity is similar to other methods,

with opportunity for further improvements. The results are shown for synthetic blur

images for accuracy testing and for a single imager matched with microfluidic lens

for generating the 2 focus images. Chapter 2 introduces di↵erent depth estimation

methods including depth from defocus algorithm. Chapter 3 provides the theoretical
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background for optics and DfD model. Chapter 4 describes the new improvements

to the state of the art. Chapter 5 illustrates regularization methods for depth from

defocus. Chapter 6 simulates the e↵ects from lens and camera. Chapter 7 presents

the experimental results, and finally Chapter 8 contains the goals and plans for future

research.
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2. DEPTH ESTIMATION METHODS

Depth acquisition methods can be broadly classified as optical and non-optical meth-

ods. Non-optical methods are based on technologies like Magnetic and Ultrasound.

Working with Lasers, the non-optical methods could get accurate single point depth

information, but they require very expensive computations to achieve a dense depth

map. Optical methods usually could provide acceptable depth accuracy from images.

Here are two kinds of Methods: Active Method and Passive Method. Active methods

are the methods using controlled energy beams like structure light [4]. But they are

constrained by the environment. Passive methods are more applicable without any

environmental constraint and are widely employed in many areas [4]. The research

in this thesis belongs to passive optical depth recovery which will be presented in the

next Section.

Monocular and Binocular are two kinds of Optical depth estimation techniques.

Binocular vision technologies, for example, Depths from Stereo imaging requires at

least two images captured from di↵erent viewpoints. By comparing these images, the

disparity between the images is related to the actual depth. Monocular techniques

estimate depth by using only one single camera. Depth is determined by using the

relative size of the objects, the distribution of light and shade, movement at a di↵erent

distance, and the amount of focus or defocus. Monocular vision techniques include:

Depth from Focus, Depth from Defocus and so on.

2.1 Stereo imaging

As described in [15], stereo imaging systems use two or more images which cap-

tured from di↵erent viewpoints as input to calculate depth. Every viewpoint is sep-

arated from others by some distance. By doing this way, the depth information can
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be computed by the disparity information between these images. The typical stereo

system capturing two images is shown in Figure 2.1

Fig. 2.1. Binocular Stereo Geometry [16]

As introduced in [16], Figure 2.1 shows a model of stereo imaging system. O
l

and

O
r

are detected points of object O in the left and right image planes, respectively.

By using geometry similarity property, as shown by equations 2.1 and 2.2:

x

z
=

x
0
l

f
(2.1)

x� b

z
=

x
0
r

f
(2.2)

Depth Z can be calculated by combing equations 2.1 and 2.2,

z =
bf

x
0
l

� x0
r

(2.3)

So if parameters f and b are known, the depth map of the whole image can be

estimated by calculating the disparity (x
0
l

� x
0
r

) of each pair of pixels between corre-

sponding image points. However, how to establish the correspondence between the
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objects in the two images is a challenge in stereo imaging. It requires unique match-

ing points to create pairs of relationship. This kind of relationship will be hard to

establish when the scene has uniform intensity or occlusions.

2.2 Light field imaging

A LightField camera is one kind of special camera which has a microlens array

in front of the imaging sensor. The microscopic lens splits the light rays into many

tiny images depending on the corresponding microlens position in the array. Depth

information of each pixel can be calculated by tracking each light trace. Although

light-field imaging cameras can calculate depth map with acceptable results [2], the

limitation of the size of the microlens array on the imager lessens the resolvable

resolution.

2.3 Depth from focus

Depth from Focus (DFF) uses the camera parameters to estimate the depth of an

object. A sequence of images captured at di↵erent lens positions and the sharpness

of focus is measured for each one. Then the actual depth is calculated by using the

lens law, shown in Figure 2.2.



7

Fig. 2.2. depth from focus

When the object at distance d
f

from the lens is in-focus, the image is formed at

a distance S on the image sensor. The relation between the focal length of the lens

f , the object distance d
f

and the image distance S is given by the lens law:

1

f
=

1

d
f

+
1

S
(2.4)

In practice, to get di↵erent sharp focus images on di↵erent objects, a series of im-

ages are captured by adjusting either the focal length f or the image distance S. The

critical step is how to measure focus. Brenner [17] proposed a method based on sum-

ming the squares of the horizontal first derivative. Similarly, the focus could also be

measured by convolving the image with either a 3x3 or a 5x5 Laplacian operator [18].

Other methods [19] use image histogram, image statistics or correlation..

Depth from focus method is monocular and can calculate the actual depth using

the lens law. Di↵erent from stereo imaging, it does not have the correspondence

problem. However, to get accurate depth map for each object, DFF requires 10 to
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12 images as input. Extra time is therefore needed to adjust the camera parameters

before capturing each image, during which the scene must remain stationary.

2.4 Depth from defocus

In theory, all light rays from the same point of an object should be converged at

the same point on the image plane, if the point is at the in-focus position. However, if

the object is not at the in-focus position, on the image plane, here will not be a clear

point but a blurred circular disc. The basic idea of Depth from Defocus (DFD), is to

measure the radius of the blur and relate it to the actual depth using the simple lens

law. DfD also does not have the correspondence matching problem. In comparison

to DFF, the DFD methods only need a few images(usually 2) to compute a reliable

depth map.

Subbarao and Gurumoorthy [20] proposed a method for recovering depth by mea-

suring the blurring degree of an edge. The degree of a blurred edge is then fed into

Line Spread Function computation. However, Subbarao and Gurumoorthy’s method

is only powerful for isolated edges.

Based on the inhomogeneous reverse heat equation, Namboodiri and Chaud-

huri [21] proposed to estimate the blur information and depth. The heat equation is

formed by the Gaussian point spread function. The di↵erence between the observed

image and the reconstructed image is then used to estimate the depth information.

Zhuo [22] presented how to recover the defocus map from a single image. The

spatially varying defocus blur at the edge locations is estimated in this method. On

the input defocus image, the blur is added by a Gaussian kernel. The comparison

between the gradients of input and re-blurred images determines the blur amount.

By propagating the blurring amount at all the image’s edges, the full defocus map is

formed.

Many other DfD techniques use two or more images captured by di↵erent cam-

era settings to estimate the depth map. For example, Chaudhuri [23] proposed an
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algorithm that recovers depth information from a pair of defocus images. In that

algorithm, the blur parameter was modeled as Markov Random Field (MRF). Sim-

ulated Annealing was used as the Optimization algorithm. More details about DfD

Method used in this research will be discussed starting from next chapter.



10

3. OPTICS AND DFD METHOD

The purpose of this chapter is to explain some of the fundamental theory that is used

in Depth from Defocus (DfD) methods. This chapter has been designed to illustrate

the main theoretical elements, and has been organized into three sections,

• Lens systems and defocus/depth relationships

• Modelling defocus blur

• Depth of Defocus field

3.1 Lens Systems and Defocus/Depth Relationships

Figure 3.1 shows a single thin lens system. The light rays from the object pass

through the thin lens and then converge on the image plane at distance S. The basic

equation of this single lens system is given by (3.1):

1

d
f

+
1

S
=

1

f
(3.1)

Where the focal length of the thin lens is defined as f , the distance between the lens

and the object is defined as d
f

, and S represents the distance between the lens and

image plane.

When the object is not at the focused position, the light rays will not be converged

at the focus point but some other point with distance v. And in the image plane, a

defocus blur of radius R is formed as shown in Figure 3.2.
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Fig. 3.1. Lens system with object at focused position

Fig. 3.2. Lens system with object at defocused position

In Figure 3.2, D is defined as the distance between the lens and object at out of

focus position, and r is the radius of the lens. Therefore, the relationship is:

1

d
f

+
1

S
=

1

f
(3.2)
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Also based on geometry theory:

R

r
=

S � v

v
(3.3)

Then combing equations (3.3) and (3.2), equation (3.4) is formed.

R = rS

✓
1

f
� 1

D
� 1

S

◆
=

rd
f

f

d
f

� f

✓
1

d
f

� 1

D

◆
(3.4)

If the following camera settings are given;

• f : the focal length of the lens

• d
f

: the distance of the focused object from the lens

• r: e↵ective radius of the lens

The radius of the blur circle, R, is a non-linear monotonically increasing function of

D, the distance between object and lens. This implies the image captured by camera

would have increasing blur for increasing distance between the object and lens.

3.2 Modelling Defocus: Point Spread Function

As mentioned in section 3.1, the radius of defocus blur is related to the actual

depth. Then estimation of the depth can be converted to estimating defocus blur

level. As is known, for each pixel in one image, the defocus blur can be modeled by

convolving one in-focus image with a point spread function (PSF).

The point spread function is a geometric result after the light rays passes through

the lens. If incident light energy is A units, the the focused image can be expressed

as A�(x, y). Here �(x,y) is the Dirac delta function [24]. And if h(x, y) is defined

as the response function of the input signal �(x,y) in the lens system. Based on the
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assumption that the blurred point light is circular in shape, the intensity distribution

can be modeled as:

h(x, y) =

8
<

:

1
⇡r2

if x2 + y2  r2

0 otherwise
(3.5)

In order to avoid lens di↵raction, as suggested in [5], a symmetric two-dimensional

Gaussian function h(x, y) (3.6)is used to model the PSF.

h(x, y) =
1

2⇡�2
e�

x

2+y

2

2�2 (3.6)

Where � is 2D Gaussian blur parameter such that

� = k ⇥R for k > 0 (3.7)

k is a constant proportional characteristic for a given lens. And � and R are both de-

fined in millimeters(mm). Referencing Eq. 3.8, � in pixel can also be calculated based

on the relationship between R in pixels and R in millimeters (3.8). Sensor width
mm

stands for the width of camera sensor in millimeter; Image width
pixel

is the width in

pixel of the image take from camera. It determined by the resolution sensor.

R
pixel

=
R

mm

Sensor width
mm

⇥ Image width
pixel

(3.8)

Once PSF h(x, y) is known, a defocused image is denoted by a convolution:

b(x, y) = f(x, y) ⇤ h(x, y) (3.9)

The 2D Gaussian blur parameter � is proportional to R, therefore the depth D can

be calculated using Equation (3.4).

3.3 Depth of defocus field

As presented in previous sections, for a near-focus defocus image, the objects

closer to camera are in-focus and the objects far away from camera are out of focus.
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The defocus blur increases as the distances of objects to camera increases. However,

if the distance is too large, the di↵erences in blur cannot be distinguished. This can

be demonstrated as follows: By rearranging Eq. 3.4,

R =
D � d

f

D
⇥ f

d
f

� f
⇥ r (3.10)

Where r is e↵ective radius of lens which is proportional to aperture size. Aperture

size is defined as:

Aperture =
f

f
number

(3.11)

Here f is focal length of the lens, f
number

determines the size of iris. So Eq. 3.11 can

be modified to Eq. 3.12

R =
D � d

f

D
⇥ f

d
f

� f
⇥ f

f
number

(3.12)

For fixed focal length f , F-stop number f
number

, and focus distance d
f

, the blur radius

is proportional to the distance D of the out of focus object as the distance changes.

In order to compute the resolvable depth field of view and resolvable depth step size,

these equations will set the limits. First, we combine Eq. 3.7, Eq. 3.8 and Eq. 3.10.

Next, use D1 and D2 to define the depth of objects located at di↵erent locations. If

the di↵erence between D1 and D2 is small and D1, D2 are big enough, here is no

di↵erence of the defocus blur for the objects on these two distances shown in images.

At that point, the radius of blur circle values R in pixels are less one 1 pixel, which

can be calculated by the equation below. This will set the limit on the resolvable

depth step size.

����
1

D2
� 1

D1

����⇥ d
f

⇥ f

d
f

� f
⇥ f

f
number

⇥ Image width
pixel

Sensor width
mm

< 1 (3.13)
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T and Q are used here to simplify the notation (Eq. 3.14, Eq. 3.15 ), and Eq. 3.12

and Eq. 3.13 are rewritten to Eq. 3.14 and Eq. 3.15

T =
f

d
f

� f
⇥ f

f
number

(3.14)

Q =
Image width

pixel

Sensor width
mm

(3.15)

R =
D � d

f

D
⇥ T (3.16)

����
1

D2
� 1

D1

����⇥ d
f

⇥ T ⇥Q< 1 (3.17)

In order to find the point at which the maximum depth is indecipherable from infinity,

the simplification is made assuming D1 > D2, then
��� 1
D2

� 1
D1

��� has a maximum value

at 1/D2 when D1 is infinity. So based on Eq. 3.17, when depth D � d
f

⇥ T ⇥ Q,

the blur radius R will remain the same value T � 1/Q. For a given d
f

, the radius of

defocus blur, R, increases as the depth increases. While the increasing rate of R is

lower and lower until it meets its largest value: T � 1/Q.

For example, if one specific camera has the settings as shown below:

• f = 9mm

• f
number

= 3.7

• Sensor width
mm

= 4.9mm

• Image width
pixel

= 1024 pixels

• Focus distance d
f

= 1 m



16

Then regarding to Equ. 3.14 and Equ. 3.15, T = 0.0221 and Q = 208.33. So maximum

radius of blur R
max

can be calculated by using R
max

= T � 1/Q = 0.0172m and the

corresponding maximum depth D
max

can be calculated by using D
max

= d
f

⇥T⇥Q =

4.604m. This means if use this camera with the settings above, if the object distance

is larger than D
max

, the radius of defocus blur will not change but keep the value

R
max

. So for this case, the workable region for EDfD is from 1m to 4.604m.

In EDfD algorithm, defocus blurs are divided into 256 steps. For this case, the

range for R is from 0 to 0.0172. So step interval is 0.0172/255. Figure 3.3 shows

defocus blur step is a non-linear monotonically increasing funciton of depth until to

the maximum depth position.

Fig. 3.3. Illustration of Depth of defocus field

3.4 Summary

This chapter introduced the method of modeling defocus blur by using Gaussian

Point Spread Function. Also by finding the relationship between defocus blur radius



17

and actual depth, the radius of the blur circle is shown to be a non-linear mono-

tonically increasing function with depth. Therefore, the depth estimation problem is

equivalent to estimating defocus blur level. This research presents a new analysis of

the depth of defocus field, one of the innovations of this research. If camera settings

are given, the workable field for EDfD can be determined. Additionally, the defocus

blur steps are also non-linear monotonically increasing functions related to depth un-

til to the maximum depth position. After introducing the relationship between depth

and defocus blur, new research improvements of the EDfD method will be presented

in next chapter.
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4. NEW RESEARCH IMPROVEMENTS

This new EDfD algorithm is extended from classical depth from defocus method.

For the EDfD method, color, edge and texture information, are added to improve

the accuracy of depth estimation. Section 4.1 introduces the overview of this EDfD

algorithm. Section 4.2-4.4 show the benefits of incorporating color, edge, and texture

information.

4.1 Algorithm overview

The classical DfD algorithm compares individual pixels of the defocused image

to the all in-focus image passed through the Gaussian filters, according to the en-

ergy function of Equation (5.10). The implementation of this research is shown in

Figure 4.1. In contrast to the traditional approaches which only have used grayscale

images as input images, EDfD research takes advantage of the color images. An

all-focus image and a defocused image of the same scene is the input to the EDfD.

The first step converts both of these two color images into YCbCr channel. The Y

channel contains the intensity of color image, and the Cb and Cr channels are added

to improve the accuracy of depth estimation.

After splitting the two input images into three channels, a new preprocessing pro-

cedure is used on the in-focus image before doing MAP estimation. The preprocessing

procedure has two main tasks. Image processing is used to distinguish textured and

texture-less regions of the image. Second, the edges in the image are isolated with a

highpass filter.

Next an initial depth map is combined with the output of previous steps as input

to the revised MAP estimator, and the final depth map is the output.
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Fig. 4.1. Proposed algorithm overview

4.2 Initial depth map generation

Initial depth map generation is a very important procedure which is the baseline

of the whole algorithm. The new approach is to use the EM/MPM optimization

algorithm in the MAP Estimator. In Figure 4.2, the greyscale all in-focus image I
inf

and defocused image I
def

are the input to the initial MAP estimator. 256 levels of

blurred images I
b1, Ib2, , Ib256 are created by applying 256 di↵erent Gaussian filters

to I
inf

. The Gaussian blur parameters are chosen with equal step size. At the same

time, depth class label map I
s

is initialized as a MRF with the same image size as

I
inf

and I
def

. Starting from I
s

as initial depth map, I
s

, I
def

, I
b1, Ib2, , Ib256 are passed

to the initial MAP estimator.

For each pixel c with depth class label k (k = 1, 2, , 256), the data term, d(c, k), and

smoothness term, prior(c, k), are calculated using Equation (4.1) and (4.2). Based

on Equation (5.10) the energy function can be expressed as (4.3).
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Fig. 4.2. Initial MAP Estimation

d(c, k) = |I
def

(c)� I
bk

(c)| (4.1)

prior(c, k) =
X

r2N
c

|I
s

(r)� S
c

(k)| (4.2)

logpost(c, k) = log �
k

+
(I

def

(c)� I
bk

(c))2

2�2
k

+
X

r2N
c

|I
S

(r)� S
c

(k)| (4.3)

Finally, the initial depth map I
s

is generated by optimizing logpost(c, k) for each

pixel using EM/MPM.
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4.3 Preprocessing

From the initial depth map shown in Figure 4.2, new image processing is used to

improve the quality of depth map. One challenging case is where some regions in the

image have little or no details with which to infer the depth. For the traditional DfD

algorithm, Gaussian filter would remove the low frequency objects in the scene which

do not contain edges (spatial high frequencies), and the inference algorithm then does

not have enough detail to choose one solution. So the initial depth map would have

some ambiguous depth values in some texture-less regions. The baseline algorithm

can achieve an accurate result in a textured region or on the edges. However to handle

the texture-less regions, two new preprocessing functions are introduced. As shown

in Figure 4.3, the input to the preprocessing is one in-focus image. The first function

uses a highpass filter to find the edges, and then generates a highpass image with

the same size as the input. The second function is a texture region identifier which

determines whether this region is texture-less.

Fig. 4.3. Preprocessing procedure

Figure 4.4 illustrates an example of input and output of the preprocessing pro-

cedure. Column 1 shows the in-focus image. Column 2 shows the highpass image

output after applying the filter. Column 3 shows the textured image output from the

textured region identifier. As defined in [8], the texture-less regions are regions where

the squared horizontal intensity gradient averaged over a square window is below a
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Fig. 4.4. Example of input and output of preprocessing procedure

given threshold. As Figure 4.4 shows, the textured images are binary ones, where a

white region means texture-less and the black region is textured.

Figure 4.5 illustrates the benefits of implementing preprocessing on small texture-

less regions. Figure 4.5(a) shows a synthetic all in-focus image with a no-texture

region in the center. Figure 4.5(c) shows the synthetic ground truth of a texture-less

region and textured region at di↵erent depths. As Figure 4.5(e) shows, the traditional

method in an initial depth map can only find accurate results in a textured region or on

the boundaries. The preprocessing results in the Figure 4.5(f) showing the improved

final depth map (much closer to the ground truth) used as input to “Revised MAP

Estimation” in next subsection.
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Fig. 4.5. Example of the benefits of preprocessing procedure. (a) All
in-focus image (b) Defocus image (c) Depth ground truth (d) Texture
image (e) Initial depth map (f) Final depth map after using texture
information

4.4 Revised MAP Estimation using texture information

In the next section, Equation (5.10) is introduced as the energy function, this

is formed from two terms: a data term and a smoothing term. These terms are

modified by the texture information using the weighting factor �. Since the texture-

less region has few details to infer the depth, the goal is to de-emphasize the data

term, and rely more on the prior smoothing term in the optimization. Therefore, for

each channel (Y,Cb,Cr), it is important to maintain the weighting factor in textured
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regions; and modify the weighting in texture-less regions. The new research result

is due to providing a higher weighting on the neighboring pixels which are on the

boundary of these texture-less regions.

The decision tree for this adaptation is shown in Figure 4.6. For each channel, the

first step is to identify if pixel c belongs to texture-less region. If not, the next step

is to determine whether pixel c is on the edge. If “Yes”, then a smaller value, �1, is

given to �, otherwise � is set to be a larger value, �2. The last step follows equation

(5.10) for MAP estimation.

Fig. 4.6. Revised MAP Estimation

If pixel c belongs to texture-less region, the 8 neighboring pixels will be checked

first to form a new modified energy function, introduced in equation (4.4). A new

weighting factor ↵
r

is involved. If neighbor pixel r is on the boundary of texture-less

region which means it could have a higher probability of the correct depth, then ↵
r
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will be set a large value ↵1, typically bigger than 1. Otherwise, ↵
r

equals 1. If at

least one neighbor pixel r is found on the boundary which has the similar intensity

to the center pixel c, then c is merged into a textured region.

The next step is the same as in the textured region, if a pixel c is on the edge,

then a smaller value, �3, is given for �, otherwise � is set to be a larger value �4 (�4

> �3 > �2 > �1).

S
c

= argmin

(
log �

S

c

+
(g

c

� b
k

c

)2

2�2
S

c

+ �
X

r2N
c

↵
r

|S
r

� S
c

|
)

(4.4)

4.5 Summary

This chapter presents the new improvement of this research from classical depth

from defocus method. Color information is added to improve the accuracy of depth

estimation. Another innovation uses the edge and texture information determine the

relative weights of the data and smoothing terms in the energy function. Based on

this information, ambiguous nature of blur in the textureless areas is substantially

improved. The EDfD algorithm was introduced in this chapter and more details

about di↵erent regularization algorithms used in this research will be presented in

next chapter.
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5. REGULARIZED DEPTH FROM DEFOCUS

The energy function of EDfD algorithm is developed in section 5.1. Di↵erent regu-

larization algorithms are also introduced in this chapter. EM/MPM method (section

5.2) gives better results compared with other methods. While graph-cut method gives

even better performance which is shown in section 5.3.

5.1 MAP-MRF

The general MAP Estimation technique has been widely used in such applications

such as denoising, deblurring and segmentation. In this research, it is combined with

Markov Random Filed (MRF) and Bayesian statistical estimator to estimate depth

label for each pixel as shown in Figure 5.1.

Two input images are used to determine the blur. The first is an all-focus or

in-focus image f(x, y), and the second is the defocused image g(x, y). So g(x, y) can

be represented as:

g (x, y) = f (x, y) ⇤ h (x, y) + w (x, y) (5.1)

Where h(x, y) is the space-variant blur function modeled by the Gaussian kernel, and

w(x, y) is the noise.

Let S denote the depth label of pixel, then a prior distribution p(s) can be used

with a Markov Random Field (MRF) model. The blur is quantized to 256 classes

(8 bits) of space-variant blur parameter �. Then, based on Equation (5.1), the a

posteriori probability distribution of S can be expressed as: P (S = s|G = g). Using

Bayes equation, the closed form of the distribution is given below (5.2)(5.3):
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Fig. 5.1. General MAP Estimation block diagram

P (S = s|G = g) =
P (G = g|S = s)P (S = s)

P (G = g)
(5.2)

p(s) =
1

z
exp

 
��

X

r2N
c

|S
r

� S
c

|
!

(5.3)

Maximizing P (S = s|G = g) is equivalent to minimizing the energy function de-

scribed by Equation (5.4), as shown in [4]. This is done on a pixel by pixel basis, so

the blur class (value) will vary over the image.

U(S) = |g(x, y)� f(x, y) ⇤ h(x, y)|2 + �
X

r2N
c

|S
r

� S
c

| (5.4)

This energy function has two terms. The first term, the data-dependent term, is the
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mean squared error di↵erence of the blur image and a particular choice of blur kernel

convolved with the in-focus image. The second term, sometimes called the smoothing

term, calculates the di↵erences in choice of depth classes in every 8-neighbor clique.

This second term, the Bayesian prior, measures how di↵erent a choice of depth is

from its immediate neighbors. In Equation (5.3), S
c

is depth class label of center

pixel c; S
r

is depth class label of neighbor r; N
c

is defined as all 8 neighbors of center

pixel c. And is a weighting factor which balances the data term and smoothing term.

The better choice of blur class value will minimize this energy function, allowing the

convolution, b(x, y), to be closer to the true defocus g(x, y), while at the same time

providing a smoothness among all neighboring pixels.

5.2 EM/MPM

In order to find the best choice of blur label for each pixel, optimization process is

needed. The MAP optimization reported in Chaudhuri [4] uses Simulated Annealing

(SA) as the optimization process. The choice in this research is EM/MPM, which

has some advantages compared to SA, both in convergence speed and in optimization

over local areas. As will be seen in the results, the performance is compared between

SA and EM/MPM methods on the same test data, and EM/MPM is chosen because

of its overall better accuracy.

The general EM/MPM algorithm consists of two parts: Expectation Maximization

(EM) and Maximization of Posterior Marginals (MPM) [25]. The EM algorithm finds

the estimates for Gaussian mean and variance, while MPM classifies the pixels into

N class labels, using estimated parameters from EM.

The Gaussian mixture model used here means that Equation (5.2) is modified into

(5.5) and (5.6). Here �2
S

c

is variance of each class; µ
s

c

is mean for each class; s
c

is

blur class of the pixel c; g
c

is the pixel in the input defocussed image at location c; ✓

is the vector of means and variances of each class.
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p
s|g(s|g, ✓) =

f
g|s(g|s, ✓)ps(s)

f
g

(g|✓) (5.5)

f
g|s(g|s, ✓) =

Y

c2C

1q
2⇡�2

S

c

exp

(
�(g

c

� µ
s

c

)2

2�2
S

c

)
(5.6)

At the beginning of this process, a random blur class label is initialized into every

pixel in S. An evenly distributed vector of means and variances is used as a starting

point for the classes. Then, the estimate of S is formed by iterating several times

through the whole image. At each iteration, two steps are performed: the expectation

step and maximization step. First maximization step is performed based on Equation

(5.7), (5.8) and (5.9), then in expectation step, iterating using MPM to find the best

log-likelihood of the probability that a particular pixel belongs to one of the 256 blur

classes.

µ
k

(c) = b
k

(c) = f(c) ⇤ h
k

(c) (5.7)

�2
k

=
1
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k

X
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(c))2p
S

c

|g(k|g, ✓) (5.8)

N
k

=
X

c2C

p
S

c

|g(k|g, ✓) (5.9)

For MPM, convergence is achieved by choosing the best blur class label which mini-

mizes the expected value of the number of misclassified pixels as proved in [7]. The

final energy function is calculated in the log domain, eliminating constants and ex-

ponentials as shown in equation (5.10).

S
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(5.10)

Before implementing the proposed algorithm on video camera, the accuracy has

been verified by introducing a synthetic blur based on images that have corresponding
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real ranging ground truth. For this purpose, the test images and ground truth images

from the Middlebury 3D imaging website [26, 27] were used.

Middlebury does not have defocus images, only all-focus, so this research uses

the Middlebury ranging camera high resolution ground truth images and the in-focus

images to generate synthetic defocussed images. At each pixel c in the ground truth

image, there was assigned a blur parameter ✓
c

based on the depth ground truth

brightness. A total of 256 levels of blur are linearly mapped corresponding to the 256

levels of brightness (brighter means closer to the camera). As mentioned in previous

section, the blur function is assumed to be Gaussian. After applying these various

Gaussian blurs to each pixel in the all in-focus image, a synthetic defocus image is

generated. Finally, the in-focus image and synthetic defocus image are used as two

input images for verifying the accuracy of the proposed EDfD algorithm.

Figure 5.2 shows the experimental results of the Middlebury data. Figure 5.2(a)

and (c) are the in-focus image and ground truth, respectively. These scenes are

directly downloaded from the Middlebury website. Figure 5.2(b) is the synthetic de-

focus image generated by the method above. Figure 5.2(d), (e) and (f) are initial,

intermediate and final depth map results. Figure 5.2(d) shows the initial depth map

result which using the greyscale image as input with the new EM/MPM optimiza-

tion method. Figure 5.2(e) shows the intermediate result after adding in the color

components of the image. This YCbCr data provides more information for improv-

ing MAP estimation. The figure 5.2(d) and (e) comparison shows that adding color

information reduces misclassifications. However, some problems still appear in the

texture-less regions. Finally, in Figure 5.2(f), the depth map result is includes the

full EDfD method and the accuracy is improved significantly in small texture-less

regions, due to the new EDfD.

Figure 5.3 compares depth map results of six di↵erent images from the Middlebury

dataset, with two techniques from the DfD literature. Column (a) shows the source

input in-focus images. Column (b) shows ground truth ranging camera depth. In

Column (c), the images are depth map results using the EDfD method. The results



31

Fig. 5.2. (a) In-focus image (b) Synthetic defocus image (c) Ground
truth (d) Initial depth map (grayscale input) (e) depth map(color
input) without texture information (f) final depth map

shown in Column (d) and (e) are using Chaudhuris DfD method [28] and Favaros

Shape from Defocus method [29] respectively. Chaudhuris DfD method is based on

traditional DfD algorithm, the di↵erence is that it uses Simulated Annealing (SA) as

the optimization method for MAP estimation. The Shape from Defocus algorithm

uses two defocussed images as input. One is far-focus image and another is near-

focus image. In order to fairly compare this method with EDfD, the number of

classes was increased to 256 levels. Column (f) contains the 3D view maps using

depth information from the EDfD results.
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Fig. 5.3. Middlebury results (a) In-focus image (b) Ground truth (c)
EDfD results (d) SA results (e) Shape from defocus results (f) 3D
view maps

Using the Root Mean Square Error (RMSE) of the calculated depth map against

the ground truth, Table 5.1 and Figure 5.4 compare the proposed EDfD results to the

results using other methods. Eight sample images are compared from the Middlebury

dataset: Aloe, Art, Baby, Books, Doll, Laundry, Poster and Teddy. The EDfD

method is shown against four di↵erent methods. Two methods are the closest previous

literature methods: Simulated Annealing (SA), Chaudhuris [4] DfD, method and

Favaros [29] Shape from Defocus method (SFD). In addition two new additional

methods were explored: CME (Color plus the EM/MPM) and GME (Gray plus

EM/MPM). These two method are used to generate intermediate and initial results

respectively as illustrated in Figure 5.2(d) and (e). From Table 5.1 and Figure 5.4,
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it is shown that for each test image, the proposed EDfD method achieves the most

accurate results. While the average RMSE for EDfD is 4.677, which indicates the

error rate is about 4.677/256=0.018. The average accuracy is 98.18%.

Fig. 5.4. Comparison with other methods on Middlebury image data
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Table 5.1
Experimental results comparison, RMSE

Image EDFD CME GME SA SFD

Aloe 3.7825 4.8843 5.5787 18.2668 14.6188

Art 8.2107 8.4762 9.0997 15.6589 12.7344

Baby 5.8874 7.4889 9.3466 11.7794 13.2551

Books 4.1916 5.7961 6.6030 14.3384 16.9813

Doll 3.2111 5.5235 6.4619 12.3158 14.6848

Laundry 4.4057 6.1087 8.6766 16.1305 17.4083

Poster 2.9186 4.5216 6.7107 18.537 13.8500

Teddy 4.8989 6.9491 9.3475 17.2097 12.6796

5.3 Graph-cuts

In the field of computer vision, Graph Cuts is usually used as a very power-

ful energy optimization algorithm. Applications like image segmentation and stereo

imaging are associated with minimum cut of weighted graphs [30] that represent the

linkages between the pixel values. For a normal weighted graph, it always consists

vertices, V , and edges, E. If the edges do not have direction, the graph is called

an undirected graph. The ”Graph” in Graph Cuts, is a special undirected graph

G =< V,E >, where V and E are the sets of vertices and edges, respectively. This

kind of Graph usually contains another special node called a terminal. Here are two

types of terminals: source, S, and the sink, T . All the vertices should connect with

terminals. For the graph G in the Graph Cut method, here are two types of edges [30]:

• N-link: the edges connect the pixels with their neighbors.

• T-link: the edges connect the pixels with terminals.
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Fig. 5.5. Graph Cut for segmentation example

Figure 5.5 shows a S-T graph of an image. Each pixel corresponds to an vertex

in S-T graph. The figure has these two types of edges. The solid line represents an

n-link which connect pairs of neighboring pixels. The dashed line represents a t-link

which connects pixels and terminals.

Every edge in this S-T graph has a non-negative weight or cost. Cutting an N-

link edge will have a penalty cost for neighboring pixels. And similarly, cutting a

T-link edge will lead a cost for assigning the corresponding label to the pixel. So

after one cut, the cost of all edges has the minimum value, it is called minimum-cut.

The max-flow/min-cut method developed by Boykov and Kolmogorov [30] used the

energy function shown below (Eq. 5.11 ) to obtain the minimum cut of S-T graph.

E(L) =
X

s✏S

D
s

(L
s

) +
X

(s,r)✏N

V
s,r

(L
s

, L
r

) (5.11)

where L is a set of labels for each pixel in image, D
s

() is a data penalty function

of pixel s. V
r,s

() indicates the similarity of the pixel with its neighbors. And N is

the set of all pairs of neighboring pixels. By minimizing the energy function, the
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original image can be segmented into di↵erent parts. The research cited proved that

finding the minimum cut is the same as to finding the maximum flow. The most

common algorithm to find maximum flow are the pushrelabel algorithm [31] and the

FordFulkerson algorithm [32].

Depth from defocus algorithm can be described as assigning a label to each pixel

in such a way that an energy function (Eq. 5.10) is minimized. The energy function is

a map from the set of all possible labels and is minimized when the segmentation best

conforms to a cut model. By using graph-cut algorithm to minimize energy function

(Eq. 5.10), 256 blur classes are used as nodes and the pixels in initial depth map are

used as vertices for the S-T graph.

For this kind of multi-label graph-cut problem, Boykov et. al. [33] proposed a

fast approximation algorithm called ↵-expansion which is used in this thesis. ↵-

expansion is an iterative optimization method. In every iteration, for each pixel, new

labels would be obtained if here are better than choices the current ones. The energy

function will finally converge when here is no better label could be found.

Figure 5.6, Figure 5.7 and Figure 5.8 compare depth map results of eight di↵erent

images from the Middlebury dataset. For each figure, Column (a) shows the source

input in-focus images. In Column (b), the images are depth map results using the

EDfD with EM/MPM method. The results shown in Column (c) is using EDfD with

Graph-cut. Column (d) shows ground truth ranging camera depth.
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Fig. 5.6. Middlebury results 1 (a) In-focus image (b) EDfD (use
EM/MPM) (c) EDfD (use Graph-Cut) (d) Ground truth
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Fig. 5.7. Middlebury results 2 (a) In-focus image (b) EDfD (use
EM/MPM) (c) EDfD (use Graph-Cut) (d) Ground truth
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Fig. 5.8. Middlebury results 3 (a) In-focus image (b) EDfD (use
EM/MPM) (c) EDfD (use Graph-Cut) (d) Ground truth

As was presented in the previous section, we again use the Root Mean Square Error

(RMSE) of the to evaluate the calculated depth map against the ground truth. The

updated Table 5.2 and Figure 5.9 compare the proposed EDfD(Graph-cut) results

to the results using EDfD(EM/MPM) and other methods. Eight sample images

are again compared from the Middlebury dataset: Aloe, Art, Baby, Books, Doll,

Laundry, Poster and Teddy. Besides EDfD(EM/MPM), Simulated Annealing (SA),

Shape from Defocus method (SFD), CME (Color plus the EM/MPM) and GME

(Gray plus EM/MPM) are illustrated. From Table 5.2 and Figure 5.9, it is shown

that for each test image, the proposed EDfD(Graph-cut) method achieves the most

accurate results. While the average RMSE for EDfD is 2.773, which indicates the

error rate is about 3.543/256=0.0138. The average accuracy is 98.62%.
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Fig. 5.9. Graph-cut results Comparison with other methods

Table 5.2
Graph cut experimental results comparison, RMSE

Image GRAPH CUT EDFD CME GME SA SFD

Aloe 3.2924 3.7825 4.8843 5.5787 18.2668 14.6188

Art 6.9989 8.2107 8.4762 9.0997 15.6589 12.7344

Baby 3.5495 5.8874 7.4889 9.3466 11.7794 13.2551

Books 2.8431 4.1916 5.7961 6.6030 14.3384 16.9813

Doll 2.5582 3.2111 5.5235 6.4619 12.3158 14.6848

Laundry 3.7763 4.4057 6.1087 8.6766 16.1305 17.4083

Poster 2.3128 2.9186 4.5216 6.7107 18.537 13.8500

Teddy 3.0151 4.8989 6.9491 9.3475 17.2097 12.6796
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5.4 Summary

In this chapter, several results of EDfD algorithm with di↵erent regularization

methods are illustrated. By comparing with some other DfD methods, the new EDfD

method using EM/MPM or Graph cuts has much better performance. However, the

examples introduced in this chapter are all synthetic images, so in next chapter, a real

lens and camera system is used, and the a↵ect the EDfD performance under various

impairments will be discussed.
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6. REAL LENS/CAMERA SIMULATION

Since the accuracy of the proposed EDfD method was refined by using synthetic

images; the next step is to verify that a camera system can achieve the same quality

result. The main blocks of digital camera system are shown in Fig 6.1. A scene

reflects the light towards the camera, the lens in the camera focuses the light to the

image sensor that captures the light information and converts it into digital signals.

Finally, the image processing pipeline (ISP) is used to get a high quality digital image.

The EDfD algorithm could be influenced by several parts of this process, such

as the lens, sensor, and ISP. The simulation in this chapter will include the e↵ects

from lens distortion, relative illumination and optical blur. Also sensor noise, sensor

resolution and illumination are performed in the sensor simulation section.

Fig. 6.1. Physical image formation process
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6.1 Lens simulation

Ideally, for a perfect lens system, if the light rays from the same object point, they

could converge to the one point in the image plane. However, the lens sometimes is

not perfect and could cause focus errors. This phenomenon is called lens aberration.

In this section, three types of lens aberrations will be described: spherical aberration,

coma, and distortion.

6.1.1 spherical aberration

Spherical aberration is one common lens aberration. This kind of lenses has spher-

ical surfaces that the parallel light rays cannot converge to the same point. As intro-

duced in [34], Figure 6.2(a) shows 4 dots in-focus with no aberration. Figure 6.3(b)

shows these dots at in-focus position but has spherical aberration.

Fig. 6.2. Spherical aberration example (a) No aberration (b) Spherical
aberration [34]

In the ideal lens case, all the parallel rays should focus to same distance. However,

if the lens has a spherical surface, as shown in Figure 6.3, the light rays further away
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from optic axis will have a shorter focus distance. Similarly, the light rays closer to

optic axis will have a further focus distance compared with the accurately focused

point.

Fig. 6.3. Spherical aberration

As discussed in the previous chapter, the optical system can also be described by

the point spread function (PSF). However, the PSF varies for each point in space due

to optical aberrations. If using I(x, y) to represent the output of an optical system,

I(x, y) can be represented by an ideal input image I1(u, v), convolving a PSF, P (x, y)

(Eq. 6.1)

I(x, y) =

ZZ 1

�1
I1(u, v)P (x� u, y � v)dudv (6.1)

If the optical system has aberrations, the PSF should be spatially varying. And

if assuming all objects in a scene have the same depth, the PSF varies only in x, y

directions (Eq. 6.2).

I(x, y) =

ZZ 1

�1
I1(u, v)

NX

i=1

w
i

(u, v)P
i

(x� u, y � v)dudv (6.2)
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Where p
i

are the basis PSF, N represents the number of basis PSF and w
i

are the

corresponding weights.

For a 3D space (2D+depth), the space variant filtering is described as (Eq. 6.3):

I(x, y) =

ZZ 1

�1
I1(u, v)

NX

i=1

w
i

(x, y, z)P
i

(x� u, y � v)dudv (6.3)

This new PSF is also dependent on a third variable z, which represents the depth

value.

Based on Eq.6.2, a new all-in-focus image with spherical aberration is simulated as

Fig. 6.5(a). Fig. 6.5(b) shows the defocus image generated by using Eq.6.3. Fig. 6.5(c)

is the EDfD depth map result calculated based on (a)(b) and has a strong e↵ect from

the lens aberration.

Fig. 6.4. spherical aberration result (a) In-focus image (b) Defocus
image (c) Depth map

However, it is still possible to fix the depth map error. If the point spread function

in Eq.6.2 can be calculated or inferred, an accurate depth map can still be achieved.

For a fixed, known lens, this can be calculated and compensated for. This compen-

sation is shown in Fig. 6.5. As in the previous uncompensated example; (a) and

(b) are in-focus and defocus images respectively, and are both a↵ected by spherical

aberration. The compensated method is used, and (c) is depth map result by using

EDfD method with a known aberration-PSF. (d) is depth map results calculated from
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the input pairs without spherical aberration. Since (c) and (d) are equivalent, it is

concluded that accurate depth map results can be achieved based on a spherically

compensated known PSF.

Fig. 6.5. spherical aberration result (PSF known) (a) In-focus image
(b) Defocus image (c) Depth map result by using a known PSF (d)
Depth map result (No aberration)

For the lens, an additional optical component can be used to reduce the spherical

aberration. For multiple lenses, some lens elements like symmetric doublets could be

applied to eliminate the spherical aberration.
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6.1.2 Coma

Similar to the spherical aberration, coma is an also a common aberration but

caused by o↵-axis light rays. A lens with a large coma could generate a sharp image

at the field center, and a more blurred image near the edge locations.

As introduced in [34], Figure 6.6(a) shows 4 dots in-focus with no aberration.

Figure 6.3(b) shows these dots at in-focus position but has coma aberration.

Fig. 6.6. Coma illustration (a) No aberration (b) Coma aberration [34]

Fig 6.7 shows how light rays could be a↵ected by a lens with coma. Especially

the o↵-axis light rays, passing through the lens, finally focus on the image plane with

di↵erent sizes of circles and project at slightly di↵erent positions.
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Fig. 6.7. Coma aberration [35]

Similar to the spherical aberration, an accurate depth map can be generated if the

PSF is clear. Coma can be corrected by bending the light using added lens element

for a single lens. Also combining the symmetric lenses could achieve a better creation

which is a better solution to solve coma problem.

6.1.3 Distortion

Lens distortion does not change the color or the sharpness of the image but its

shape. Here are two types of distortion: barrel distortion and pincushion distor-

tion [36] (Fig. 6.8).
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Fig. 6.8. Distortion [36]

Here barrel distortion is used as an example. As shown in Fig. 6.9, the object is

placed at out of focus position. If the lens has no distortion, light rays (red lines) stop

at the lens position and converge at point A in the virtual image plane. If the lens

has barrel distortion, light rays (purple lines) first stop in front of the lens, and then

converged at point B in the virtual image plane which locates closer to the spindle.

In image plane, due to lens theory, the object at out of focus position will be a

blur disc for both of these two situations. Based on math geometric theory, R
0
will be

larger than R which means the object appears stronger blurry in image plane if the

lens has barrel distortion. According to 3.4, the radius of blur disc is proportional to

depth. So barrel distortion of the lens could lead to error estimation of depth.
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Fig. 6.9. Barrel Distortion

Fig. 6.10 shows an example of calculating depth map when the lens has barrel

distortion. (a), (b) show in-focus image and defocus image with barrel distortion. (c)

is the depth map calculated by (a) and (b). (d) represents ground truth of depth

map. Comparing (c) and (d), depth map errors are demonstrated, a↵ected by barrel

distortion.
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Fig. 6.10. Depth map result with Barrel Distortion (a) In-focus image
(b) Defocus image (c) Depth map result(with Barrel Distortion) (d)
Depth map result(without distortion)

In order to improve the quality of depth map, it is important to minimize these

lens distortions. One way is to use the optical methods, as is suggested above with

the other lens aberrations. Another way is to use the image processing tools of

camera calibration for correction. Two methods have been explored in this thesis:

Correction-first and EDfD-first. Correction-first is correcting the barrel distortion for

in-focus and defocus images first, then EDfD is used to generate depth map; EDfD-

first is correcting the barrel distortion of depth map directly, from the distorted input

pairs. An example is shown in Fig. 6.11. Examples (a) and (b) are in-focus and

defocus images after correcting the barrel distortion. (e) is the ground truth of depth
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map. (c) and (d) represent depth map images by using Correction-first and EDfD-

first respectively. It is shown that the quality of depth map can be improved after

correction and Correction-first method is improved over the EDfD-first method.

Fig. 6.11. Depth map result after correcting distortion (a) In-focus
image after correcting barrel distortion. (b) Defocus image after cor-
recting barrel distortion. (e) is the ground truth of depth map. (c)
represents the resulting depth map with the correction-first method,
and (d) is the depth map using EDfD-first.

6.2 Simulate Camera digital image processing pipeline

After capturing the light information, the camera converts it into digital signals

from the sensor. The image signal processing pipeline (ISP) is used to generate a

final digital image output with high quality [37].
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While the EDfD algorithm could be a↵ected by several modules on the pipeline.

The simulation in this section will include the major e↵ects from sensor noise, illu-

mination and contrast.

6.2.1 Pipeline introduction

An example of typical ISP is shown in Fig. 6.12. For color cameras, the way to

get a color image out is to put a filter on top of imaging sensor [37]. Usually a Bayer

pattern color filter is chosen. The image sensor does not sense red green and blue for

each pixel, it senses one color for each pixel. Then interpolation is needed to generate

the color information of the pixels by using adjacent pixels. This is called demosaicing,

and it is the primary job of ISP. In addition, the ISP also controls autofocus, exposure,

and white balance for the camera system. Things like noise reduction, color correction,

gamma correction, edge enhancement, contrast enhancement, and conversion between

color spaces etc are also included. Recently, correcting for lens imperfections like

vignetting or color shading coming from the imperfect lens system has been added as

well.
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Fig. 6.12. Image signal processing pipeline (ISP)

6.2.2 Noise

CMOS image sensors are widely used in the market. However, the images captured

from CMOS image sensors could contain noise, especially under low light conditions.

In order to test the EDfD with noise, we introduce the following noise models. Gener-

ally, here are two types of noise from CMOS image sensor: fixed-pattern noise (FPN)

and temporal random noise. FPN is easy to eliminate because it has the same spatial

location frame to frame. However, temporal random noise is known as photon shot

noise, and it is much more di�cult to remove. Usually it can be approximated by the

Gaussian distribution [38]. A special additive White Gaussian Noise (AWGN) model

is used to describe it in [38]. This results in a standard deviation of temporal noise

that is proportional to pixel intensity: the higher intensity value, the larger standard

deviation of noise [39].

As presented in [39], a noisy pixel can be noted by Equation 6.4:
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g = f + f� · u+ v (6.4)

Where g is the pixel with noise, f is pixel without noise. u and v are zero-mean

random variable with variances �2
u

and �2
v

. So the standard deviation of the noise can

be expressed as [39]:

�2 = f 2� · �2
u

+ �2
v

(6.5)

Based on the suggestion from [39], � is set to 0.5. So the Equation 6.5 is rewritten

to Equation 6.6. In this equation, the noise variance is linearly related to the pixel

intensity value.

�2 = f · �2
u

+ �2
v

(6.6)

Fig. 6.13 illustrates an example of images with intensity-dependent noise added

to them. �2
v

is set as 10�4 and �2
u

is set as 6 ⇥ 10�3. Fig. 6.13(c) and (d) are in-

focus and defocus images without noise respectively; (a) is an in-focus image with

intensity-dependent noise; (b) shows a defocus image with intensity-dependent noise

as well.
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Fig. 6.13. Intensity dependent noise (a) In-focus image with intensity-
dependent noise (b) Defocus image with intensity-dependent noise (c)
In-focus image without noise (d) Defocus image without noise

By using Fig. 6.13(a) and (b) as input for EDfD algorithm, depth map result is

shown in Fig. 6.14(a). Compared with depth map result without noise e↵ect and

Ground truth of depth map in Fig. 6.14(b) and (c) respectively. This example shows

that intensity-dependent noise will highly a↵ect EDfD result. This is seen especially

in ”white” regions (e.g. lower left corner of Fig. 6.13(a) and (b)), where the pixels
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there have large intensity values and have stronger noise. This leads to large mistakes

in the calculated depth map (e.g. lower left corner of Fig. 6.14(a) and (b)).

Fig. 6.14. EDfD example result with noise e↵ect (a) EDfD result using
noisy inputs (b) EDfD result using noise-free inputs (C) Ground truth

Figure 6.15 shows RMSE of the calculated depth map against the ground truth,

The updated Table 6.1 and Figure 6.15 compare the EDfD(Graph-cut) results using

noise-free inputs to the results using noisy inputs. Eight sample images are still
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compared from the Middlebury dataset: Aloe, Art, Baby, Books, Doll, Laundry,

Poster and Teddy. From Table 6.1 and Figure 6.15, it is shown that for each test

image, the proposed EDfD(Graph-cut) method is highly a↵ected by noise. And using

Middlebury dataset Teddy as an example, refer to Eq. 6.6, fixing �2
v

and changing �2
u

from 0.1⇤10�3 to 8⇤10�3, the RMSEs are increased from 7.3248 to 29.1242 as shown

in Figure 6.16.

It is shown that sensor noise has a significant e↵ect on EDfD performance. Spatial

or temporal noise reduction methods will be developed in future research.

Fig. 6.15. Middlebury EDfD result with noise e↵ect
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Table 6.1
Noisy inputs experimental results comparison, RMSE

Image EDFD(GRAPH CUT) EDFD(GRAPH CUT)+NOISE

Aloe 3.2924 21.6847

Art 6.9989 51.8614

Baby 3.5495 62.6769

Books 2.8431 35.8835

Doll 2.5582 21.8150

Laundry 3.7763 25.8648

Poster 2.3128 19.0883

Teddy 3.0151 24.6516

Fig. 6.16. Teddy with noise e↵ect, RMSE
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6.2.3 Illumination and Contrast ratio

For the EDfD method, the in-focus and defocus image are captured at di↵erent

times. In order to avoid getting di↵erent gain for each pair, auto exposure function

will be inhibited, at least during the pair’s acquisition. So the exposure time and

gain will be set as fixed number. The contrast ratio of output image will only be

a↵ected by the illumination of the scene. To better understand the e↵ects of image

contrast ratio, the several Middlebury images are chosen from di↵erent exposures but

the same illumination to understand the brightness e↵ect on the EDfD algorithm

performance..

Fig. 6.17. EDfD example result under di↵erent Illumination
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Fig. 6.17 represents EDfD results under di↵erent exposure times but same illumi-

nation. The image exposure data are sourced from Middlebury. Each row shows one

type of contrast. From top to bottom, the exposure time are 4000ms, 1000ms and

250ms respectively. From left to right, each column shows in-focus image, defocus

image and depth map EDfD result respectively.

It is shown that under low illumination, the EDfD result will be worse than normal

and high. However, the error rates do not increase more than 35%. This confirms

that the exposure di↵erence (and illumination di↵erence) will not have a strong e↵ect

on EDfD algorithm compared with the e↵ect of noise.

Fig. 6.18. RMSE of EDfD example results under di↵erent exposures
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6.2.4 Resolution e↵ects

The camera sensor usually has di↵erent resolution settings (e.g. 1280x720, 640x360)

which lead to output images having di↵erent size. Refer to Eq. 3.8, if using the same

camera and lens, camera sensor’s width wiil be a fixed number, and for the same

depth, the radius of defocus blur in millimeters will not changed. So the radius, R, in

pixels will change with the same scale factor as the changes of image width or height

when changing image resolution (assuming image width and height are changed using

the same scale factor). And regarding Eq. 3.7, the 2D Gaussian blur � should also

be changed with the same scale number.

For example, for one defocus image, the resolution is 1280x720 and the maximum

� corresponding to the largest depth value is 3. If the image resolution is reduced to

640x360, the maximum � should be 1.5.

This can be demonstrated as shown in Figure 6.19. In Figure 6.19, (a), (b) and

(c) are original size in-focus image, defocus image and corresponding depth map

calculated by proposed EDfD method, respectively. (d) and (e) are the half-size

version of (a) and (b) that both width and length of images are one-half of original

ones. These images are scaled by using Bicubic interpolation [40]. (f) shows the EDfD

result by using (d) and (e) as input, and the maximum � is set as one-half of the

value used for original size. As is shown, the depth map result has the same quality

as original one. So resolution does not have a strong e↵ect on the RMSE of EDfD

algorithm.
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Fig. 6.19. Resolution e↵ects (a) In-focus image (original size) (b)
Defocus image (original size) (c) EDfD result (use (a) and (b)) (d)
In-focus image (half size) (e) Defocus image (original size) (f) EDfD
result (use (d) and (e))

6.3 Summary

This chapter discussed several important impact factors in real Lens and cam-

era systems which a↵ect the accuracy of EDfD result. For the lens: if it has lens

aberrations like spherical aberration, coma, and distortion, it will a↵ect the EDfD

results. However, the known aberrations can be fixed, or the PSF can be calculated

using experiments; then the accurate depth map result can still be achieved. For

the camera ISP: illumination, contrast ratio, and resolution di↵erences are not the

major problems for the favorable EDfD results. However, this research finds that

the signal-dependent noise from CMOS image sensor does have a significant e↵ect

on EDfD performance. How to reduce the noise while preserving the original image

information will be important research in future.
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7. EXPERIMENTAL RESULTS FROM CAMERA WITH

MICOFLUIDIC LENS

Since the accuracy of the proposed EDfD method was refined by using synthetic

images; the next step is to verify that a camera with a microfluidic lens can achieve

the same quality result. A single imager with a fast-focus microfluidic lens is needed.

Some focus and optical performance experiments with this lens were introduced in

previous papers [41, 42].

Fig. 7.1. Single imager system
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Figure 7.1 shows the single imager system which is used in this research. The sys-

tem consists five components: lens focus controller, microfluidic lens, complementary

metal-oxide-semiconductor (CMOS) imager, CMOS imager development board and

a desktop computer (not shown in Figure 7.1).

The image is formed on the imager, then the camera passes data to develop-

ment board in real time. There is another board installed in the computer which is

connected to the development board. The computer sends commands to lens focus

controller. By changing the voltage, the microfluidic lens can change the focus set-

tings and di↵erent focus images appear on the imager. Once the system is connected,

the video stream is sent to the computer and observed on the monitor.

7.1 Micofludic lens

In this research, an electrowetting microfluidic lens [12] is used to capture the

focused and defocused images in real time. The technology uses the electrowetting

principle and transparent liquids to create a lens. The innovation of this technology

is the focal length can be fast changed by only adjusting the voltage added on this

particular liquid lens.

Fig. 7.2 represents the relationship between e↵ective focal length and voltage

based on experiments using CASPIAN C-39N0-16 module which equipped Arctic

39N0 Liquid Lens. Blue dots are results from whole lens module, and orange dots

are from liquid lens only. The minimum working voltage for this liquid lens is 42V

and e↵ective focal length starts from 16mm - 16.5mm. As is shown, the focal length

decreases as the voltage increases.
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Fig. 7.2. E↵ective focal length vs liquid lens voltage

This particular lens specification guarantees that the focus can be adjusted con-

tinuously up to 60 frames per second. It also has a very fast response time and wide

focus range from 10cm to infinity. In this research, the voltages for capturing in-focus

and defocus images are 52.4V and 53.1 respectively. Fig. 7.3 shows relationship of

optical power (also named diopter) and voltage. Optical power is the inverse of focal

length. As is shown in this figure, optical power is linearly relative with voltage 7.1.

As voltage is only changed less than 1V, optical power changes around 1 optical

power. By using 7.4 as reference, changing 1 optical power corresponds to less than

10ms response time.

Optical Power = V oltage� 42.1 (7.1)
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Fig. 7.3. optical power vs liquid lens voltage
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Fig. 7.4. optical power vs response time

7.2 True camera results

By using this single imager system, both still and motion images can be collected.

Figure 7.5 to Figure 7.8 show four di↵erent collected images captured by this single

imager system. In every figure, (a) are in-focus images are captured by the camera.

The (b) images are the defocused images which are captured directly by the camera

at a di↵erent lens voltage. The column (c) are the depth maps generated by the EDfD

algorithm. In (d) the 3D view maps of EDfD depth maps can be seen. Finally, in

(e) are shown the 3D view maps which are generated by in-focus images and depth

maps.
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Fig. 7.5. Train and gift box (a) in-focus image captured by camera
(b) defocus image captured by camera (c) EDfD depth map (d) 3D
view map of EDfD depth map (e) 3D view map of in-focus image
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Fig. 7.6. Basket and Malaysia (a) in-focus image captured by camera
(b) defocus image captured by camera (c) EDfD depth map (d) 3D
view map of EDfD depth map (e) 3D view map of in-focus image
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Fig. 7.7. Dog and gift box (a) in-focus image captured by camera (b)
defocus image captured by camera (c) EDfD depth map (d) 3D view
map of EDfD depth map (e) 3D view map of in-focus image
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Fig. 7.8. Basket and train (a) in-focus image captured by camera (b)
defocus image captured by camera (c) EDfD depth map (d) 3D view
map of EDfD depth map (e) 3D view map of in-focus image

In order to confirm the real time operation of the lens and algorithm, the algo-

rithms running time was tested on PC with single CPU. The size of test images were

640 by 480 and OpenCV library was used for the research. The average running time

of the EDfD(EM/MPM) components is summarized in Table 7.2. As shown in this

table, the iterative MAP-EM/MPM is the dominant factor. Table 7.1 only shows

the starting frame, not a frame to frame processing. For frame to frame processing,

Table 7.2 reflects that the initial depth generation is no longer needed because the

calculated depth map of previous frame is used as initial depth map. Because this

is a good estimate, the MAP-EM/MPM step converges to final result much faster

than the starting frame. With the Middlebury data, the starting picture requires 40
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iterations for convergence, however for the frame-to-frame speed using the previous

depth map only requires 8 iterations. For these experiments, the research has not yet

taken advantage of any parallelism.

Table 7.1
Average running time for each starting picture (EM/MPM)

STEPS RUNNING TIME(S)

Initial depth generation 27.532

Preprocessing 0.143

Gaussian blur generation 28.724

MAP-EM/MPM (40 iterations) 425.879

Table 7.2
Average running time for frame to frame processing (EM/MPM)

STEPS RUNNING TIME(S)

Preprocessing 0.143

Gaussian blur generation 28.724

MAP-EM/MPM (8 iterations) 85.617

The running time is further improved by using EDfD(Graph-cut). As shown in

Table 7.3, ”Initial depth generation”, ”Preprocessing” and ”Gaussian blur generation”

will remain the same. The table shows that the algorithm runs much faster due to

the dominant factor of Graph-Cut.
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Table 7.3
Average running time for each starting picture (Graph-cut)

STEPS RUNNING TIME(S)

Initial depth generation 27.532

Preprocessing 0.143

Gaussian blur generation 28.724

Graph-cut 32.618

Table 7.4
Average running time for frame to frame processing (Graph-cut)

STEPS RUNNING TIME(S)

Preprocessing 0.143

Gaussian blur generation 28.724

Graph-cut 24.571

By using the same dataset, the calculated the running time for SA-DfD and SFD

was researched. For SA-DfD, the running time was tested on the same PC and also

using OpenCV library. The average running time is 238.491s. And for SFD, the

running time was tested using Matlab and running parallel on 8 CPUs. The average

running time is 77.182s, using the 8 times parallelism. Compared the running time

with these two algorithms, the EDfD research in the same order of magnitude, but

is not fast enough yet for real time use in 30 frames per second movie cameras. One

option is parallel execution in software, where up to 8 times improvement is feasible

in EDfD speed with multi-core hardware. In addition, our previous research [43]

which employs FPGA parallelism, showed that the hardware implementation of the

EM/MPM function achieves over 100 times speed improvement. So, the conclusion

is that this EDfD research is capable of real-time operation, given hardware future

improvements.
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8. POTENTIAL APPLICATION

This research could be used in many potential applications. In the medical field,

using 3D over 2D images improves diagnosis accuracy and speed of procedures. This

implies a strong potential for small, compact 3D cameras, such as described in this

thesis. The output to a display can be a 2D image plus its depth map, which is a

natural format to use in virtual augmented reality. This can be applied to image-

guided surgery, for example. Therefore, this 3D camera and EDfD research gives the

opportunity to get a 2D plus depth image in real-time.

Cooperating with University of Colorado Denver, this research is contributing

as an important part of a new computer vision aided stereotactic system for brain

surgery. The new system creates a real time three dimensional (3D) view and location

guidance for the surgeon during the operation based on multi-view imaging, 3D image

rendering, pattern recognition and real time 3D display techniques.

Figure 8.1 shows an example of preliminary result. (a) is an in-focus image of skull

and (b) is a defocused one. The in-focus image and defocus image are both captured

by using single camera equipped with microfluidic lens. (c) presents the depth map

result by using EDfD algorithm.

Another application which under development is using 3D camera (this method)

to evaluate bicyclist behavior analysis to inform the research toward transportation

safety. In the transportation industry safety systems are becoming more autonomous,

and pedestrian and bicyclist behavior needs to be analyzed in 3D. However, previous

applications are based on the videos which are recorded by surveillance cameras or

the cameras installed in vehicles. The cameras are set up on bicycles. So the videos

recorded are from the first-person perspectives. Moreover, by using the particular

lens - microfluidic lens, focus and defocus images are captured with fast speed. Using
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Fig. 8.1. EDfD result of a skull (a) In-focus image (b) Defocus image
(c) EDfD depth map

EDfD algorithm in the post-processing stage, the depth information can be calculated

which is a very useful statistical parameter for analyzing the behavior of bicyclists.
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9. SUMMARY AND FUTURE WORK

The motivation of this research is to find a low-cost real-time imaging system to

achieve an accurate depth map. Compared with multi-camera methods, single cam-

era method has a significant improvements in the cost and miniature size of the

equipment.

Depth from Defocus (DfD) is one of the methods which produces a depth map

using one single camera imager. One contribution of this research was the introduction

of a new method of calculating depth information. The experiments show a very

favorable accuracy result for the new Extended Depth from Defocus (EDfD) method,

achieving an average Root Mean Squared Error (RMSE) of 3.543 gray level steps

(1.38%) compared to ranging ground truth. This is an improvement of nearly two

times when compared to standard techniques (SA-DfD and SFD).

Compared with traditional DfD methods, the EDfD algorithm is improved in

several aspects: First, color information is added. Three channel images give the

algorithm more reliable data to improve the accuracy of depth estimation. Second

is the edge and texture information used to determine textured and textureless re-

gions. Based on this information, the textureless areas can be resolved. Third, unlike

the other methods, the EDfD algorithm showed the EM/MPM or Graph-Cuts as

regularization methods showed much better performance.

Another innovation of this research is choosing the microfluidic lens for the EDfD

imaging system. The low cost microfluidic lens is very suitable for small medical or

consumer electronics devices. Also, it is capable of focus changes by only changing the

controlling voltage. Moreover, the voltage can be changed at speeds fast enough to

match the movie camera speed. It makes real-time frame rates feasible. Although the

EDfD algorithm speed is not yet real time, the speed is within the same order of mag-
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nitude as the competing algorithms, and it has significantly improved performance

compared to other methods on a standard PC platform.

Further research help define the limits of the optics combined with the EDfD. First,

the working area of EDfD is defined by the camera lens and parameter settings. If

the camera settings are fixed, the maximum depth resolvable can be calculated. The

depth of objects outside that range are equivalent to infinity. We also show that the

defocus blur step is a non-linear monotonically increasing function related to depth

up to the maximum depth position.

Camera’s non-uniformities like lens aberration, lens distortion, di↵erent noise con-

ditions and di↵erent contrast ratios were tested. If lens aberrations and distortions

can be fixed by optics or could be measured by doing experiments, by incorporating

them into the PSF function an accurate depth map can still be achieved. However,

the signal dependent noise from imaging sensor is concluded as the primary detri-

mental e↵ect for the EDfD algorithm. So in future, research on the e↵ects of noise

reduction on the EDfD will be developed.

Finally, the algorithm speed is not yet real time. However, in our previous work

with similar algorithms, we confirm that a hardware speed improvement can be used

to approach real time movie speeds. Further improvements to the algorithm can be

made to reduce the computational load, such as incorporating motion information in

the optimization.
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