9,165 research outputs found

    Medium access control for inter-gateway handoff support in multi-hop wireless mesh networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged to be a key wireless technology to support large-scale wireless Internet access. Seamless inter-gateway handoff support is an essential issue to ensure continuous communications in multi-hop WMNs. When the movement of a mobile mesh node (MN) causes its attachment point change in the Internet, the complete handoff process may include two steps: the link-layer handoff and the network-layer handoff. During the network-layer handoff, network- layer signaling packets need to be transmitted between the MN and the Internet via the multi-hop wireless mesh backbone. Due to the multi-hop transmission of network- layer handoff signaling packets, the handoff performance in WMNs can be largely degraded by the long queueing delay and medium access delay at each mesh router, especially when the backbone traffic volume is high. However, this critical issue is ignored in existing handoff solutions of multi-hop WMNs. In addition, the channel contention between data packets and handoff signaling packets is not considered in existing medium access control (MAC) designs. In this research, the seamless handoff support is addressed from a different perspec- tive. By eliminating channel contentions between data and handoff signaling pack- ets, the queueing delay and channel access delay of signaling packets are reduced, while data throughput is maintained. Since various WMNs have different channel resources and hardware cost requirements, four MAC schemes are proposed to im- prove the multi-hop handoff performance in single-channel single-radio, single-channel multi-radio, multi-channel single-radio, and multi-channel multi-radio WMNs. With the proposed MAC schemes, the inter-gateway handoff performance can be improved significantly in multi-hop WMNs

    Mobility management for Wi-Fi infrastructure and mesh networks

    Get PDF
    Magister Scientiae - MScThis thesis shows that mobility management protocols for infrastructure Internet may be used in a wireless mesh network environment. In this research Mobile IPv6 and Fast Handover for Hierarchical Mobile IPv6 are successfully implemented in a wireless mesh network environment. Two experiments were carried out: vertical and horizontal handover simulations. Vertical handover simulation involved a heterogeneous wireless environment comprising both wireless local area and wireless mesh networks. An OPNET Mobile IPv6 model was used to simulate the vertical handover experiment. Horizontal handover simulation involved Mobile IPv6 and Fast Handover for Hierarchical Mobile IPv6 applied in ns2 wireless mesh network. The vertical handover results show that MIPv6 is able to manage vertical handover between wireless local area and wireless mesh network. The horizontal handover results illustrate that in mesh networks, Fast Handover for Hierarchical Mobile IPv6's performance is superior to Mobile IPv6. Fast Handover for Hierarchical Mobile IPv6 generates more throughput and less delay than Mobile IPv6. Furthermore, Fast Handover for Hierarchical Mobile IPv6 drops less data packets than Mobile IPv6. The simulations indicate that even though there are multi-hop communications in wireless mesh networks, the performance of the multi-hop routing may not play a big role in the handover performance. This is so because the mesh routers are mostly static and the multi-hop routes are readily available. Thus, the total handover delay is not affected too much by the WMN hops in the paths for signaling message transmission.South Afric

    NEIGHBOURHOOD LOAD ROUTING AND MULTI-CHANNELS IN WIRELESS MESH NETWORKS

    Get PDF
    As an emerging technology, wireless mesh networks are making significant progress in the area of wireless networks in recent years. Routing in Wireless Mesh Network (WMN) is challenging because of the unpredictable variations of the wireless environment. Traditional mechanisms have been proved that the routing performance would get deteriorated and ideal metrics must be explored. Most wireless routing protocols that are currently available are designed to use a single channel. The available network capacity can be increased by using multiple channels, but this requires the development of new protocols specifically designed for multi-channel operation. In this paper, we propose Neighbourhood load routing metric in single channel mesh networks and also present the technique to utilize multiple channels and multiple interfaces between routers for communication. The traditional routing metrics Hop Count and Weighted Cumulative Expected Transmission Time (WCETT) are used in routing. We compare performance of AODV-HOP, WCETT and NLR routing metrics in singlechannel and multichannel environment by considering throughput and end to end delay performance metrics. Our results show that NLR performs better in singlechannel environment

    Performance Analysis of Concurrent Transmission with Reducing Handshakes in Multi-Hop Wireless Mesh Networks (WMNS)

    Get PDF
    The IEEE 802.11 Distributed Coordination Function (DCF) Medium Access Control (MAC) protocol continues to suffer from throughput degradation when directly applied in multi-hop Wireless Mesh Network (WMN). The Request-to-Send/Clear-to-Send (RTS/ CTS) signaling partially solved hidden node problems however the exposed node problems remain unaddressed. These exposed nodes lead to throughput degradation especially when the transmission in multi-hop networks is considered. The major reason for this poor performance is the restricted nature of the IEEE 802.11 MAC, which does not allow exposed nodes to initiates its transmission for the entire duration of ongoing transmission. Moreover, since multi-hop communication such as wireless mesh network transfer the data packet via intermediate nodes, the amount of control handshakes that take place at each intermediate node significantly reduce the throughput. This project proposes a set of enhancement to the existing IEEE 802.11 DCF MAC by enabling concurrent transmission by the exposed nodes and reduces the amount of handshakes required at every hop until the data packet reaches its destination. Analytical models are developed for analytical study of MAC protocols operating in multi-hop mesh networks and simulated over quasi-static Rayleigh fading channel. The multi-hop network performances are evaluated in terms of throughput and delay. The protocol outperforms the existing IEEE DCF MAC with more than 260% increase in overall throughput of multi-hop WM

    Impacts of Channel Switching Overhead on the Performance of Multicast in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising technology for next generation wireless networking. A WMN extends network coverage using wireless mesh routers that communicate with each other via multi-hop wireless communications. One technique to increase the network capacity of WMNs is to use routers equipped with multiple radios capable of transmitting and receiving on multiple channels. In a Multi-Channel Multi-Radio wireless mesh network (MCMR WMN), nodes are capable of transmitting and receiving data simultaneously through different radios and at least theoretically doubling the average throughput. On the other hand, the use of multi-radio and multi-channel technology in many cases requires routers to switch channels for each transmission and/or reception. Channel switching incurs additional costs and delay. In this thesis, we present a simulation-based study of the impacts of channel switching overheads on the performance of multicast in MCMR WMNs. We study how channel switching overheads affect the performance metrics such as packet delivery ratio, throughput, end-to-end delay, and delay jitter of a multicast session. In particular, we examine: 1. the performance of multicast in MCMR WMNs with three orthogonal channels versus eleven overlapping channels defined in IEEE 802.11b. 2. the performance of the Minimum-interference Multi-channel Multi-radio Multicast (M4) algorithm with and without channel switching. 3. the performance of the Multi-Channel Minimum Number of Transmissions (MCMNT) algorithm (which does not do channel switching) in comparison with the M4 algorithm (which performs channel switching)

    RECOMAC: a cross-layer cooperative network protocol for wireless ad hoc networks

    Get PDF
    A novel decentralized cross-layer multi-hop cooperative protocol, namely, Routing Enabled Cooperative Medium Access Control (RECOMAC) is proposed for wireless ad hoc networks. The protocol architecture makes use of cooperative forwarding methods, in which coded packets are forwarded via opportunistically formed cooperative sets within a region, as RECOMAC spans the physical, medium access control (MAC) and routing layers. Randomized coding is exploited at the physical layer to realize cooperative transmissions, and cooperative forwarding is implemented for routing functionality, which is submerged into the MAC layer, while the overhead for MAC and route set up is minimized. RECOMAC is shown to provide dramatic performance improvements of eight times higher throughput and one tenth of end-to-end delay than that of the conventional architecture in practical wireless mesh networks
    • …
    corecore