15 research outputs found

    Fault diagnosis of gearboxes using wavelet support vector machine, least square support vector machine and wavelet packet transform

    Get PDF
    This work focuses on a method which experimentally recognizes faults of gearboxes using wavelet packet and two support vector machine models. Two wavelet selection criteria are used. Some statistical features of wavelet packet coefficients of vibration signals are selected. The optimal decomposition level of wavelet is selected based on the Maximum Energy to Shannon Entropy ratio criteria. In addition to this, Energy and Shannon Entropy of the wavelet coefficients are used as two new features along with other statistical parameters as input of the classifier. Eventually, the gearbox faults are classified using these statistical features as input to least square support vector machine (LSSVM) and wavelet support vector machine (WSVM). Some kernel functions and multi kernel function as a new method are used with three strategies for multi classification of gearboxes. The results of fault classification demonstrate that the WSVM identified the fault categories of gearbox more accurately and has a better diagnosis performance as compared to the LSSVM

    Fault diagnosis of gearboxes using wavelet support vector machine, least square support vector machine and wavelet packet transform

    Get PDF
    This work focuses on a method which experimentally recognizes faults of gearboxes using wavelet packet and two support vector machine models. Two wavelet selection criteria are used. Some statistical features of wavelet packet coefficients of vibration signals are selected. The optimal decomposition level of wavelet is selected based on the Maximum Energy to Shannon Entropy ratio criteria. In addition to this, Energy and Shannon Entropy of the wavelet coefficients are used as two new features along with other statistical parameters as input of the classifier. Eventually, the gearbox faults are classified using these statistical features as input to least square support vector machine (LSSVM) and wavelet support vector machine (WSVM). Some kernel functions and multi kernel function as a new method are used with three strategies for multi classification of gearboxes. The results of fault classification demonstrate that the WSVM identified the fault categories of gearbox more accurately and has a better diagnosis performance as compared to the LSSVM

    A smart fault identification system for ball bearing using simulation-driven vibration analysis

    Get PDF
    Bearings are one of the pivotal parts of rotating machines. The health of a bearing is responsible for the hassle-free operation of a machine. As vibration signatures give intimations of machine failure at an earlier stage, mostly vibration-based condition monitoring is used to monitor bearing’s health for avoiding the risk of failure. In this work, a simulation-based approach is adopted to identify surface defects at ball bearing raceways. The vibration data in time and frequency domain is captured by FFT analyzer from an experimental setup. The time frequency domain conversion of a raw time domain data was carried out by wavelet packet transform, as it takes into account the transients and spectral frequencies. The rotor bearing model is simulated in Ansys. Finally, most influencing statistical features were extracted by employing Principal Component Analysis (PCA), and fed to Multiclass Support Vector Machine (MSVM). To train the algorithm, the simulated data is used whereas the data acquired from FFT analyzer is used for testing. It can be concluded that the defects are characterized by Ball Pass Frequency (BPF) at inner race and outer raceway as indicated in the literature. The developed model is capable to monitor bearing’s health which gives an average accuracy of 99%

    Intelligent Health Monitoring of Machine Bearings Based on Feature Extraction

    Get PDF
    This document is the Accepted Manuscript of the following article: Mohammed Chalouli, Nasr-eddine Berrached, and Mouloud Denai, ‘Intelligent Health Monitoring of Machine Bearings Based on Feature Extraction’, Journal of Failure Analysis and Prevention, Vol. 17 (5): 1053-1066, October 2017. Under embargo. Embargo end date: 31 August 2018. The final publication is available at Springer via DOI: https://doi.org/10.1007/s11668-017-0343-y.Finding reliable condition monitoring solutions for large-scale complex systems is currently a major challenge in industrial research. Since fault diagnosis is directly related to the features of a system, there have been many research studies aimed to develop methods for the selection of the relevant features. Moreover, there are no universal features for a particular application domain such as machine diagnosis. For example, in machine bearing fault diagnosis, these features are often selected by an expert or based on previous experience. Thus, for each bearing machine type, the relevant features must be selected. This paper attempts to solve the problem of relevant features identification by building an automatic fault diagnosis process based on relevant feature selection using a data-driven approach. The proposed approach starts with the extraction of the time-domain features from the input signals. Then, a feature reduction algorithm based on cross-correlation filter is applied to reduce the time and cost of the processing. Unsupervised learning mechanism using K-means++ selects the relevant fault features based on the squared Euclidian distance between different health states. Finally, the selected features are used as inputs to a self-organizing map producing our health indicator. The proposed method is tested on roller bearing benchmark datasets.Peer reviewe

    Machine-learning approach for fault detection in brushless synchronous generator using vibration signals

    Get PDF
    In order to maintain continuous production and to avoid the maintenance cost increment in power plants, it is important to monitor the condition of equipment, especially the generator. Regarding the impossibility of direct access to rotating diodes in brushless synchronous generators, the condition monitoring of these elements is very important. Here, a novel fault detection method is proposed for the diode rectifier of brushless synchronous generator. At the first stage of this method, the vibration signals are recorded and feature extraction is performed by calculating the relative energy of discrete wavelet transform components. Multiclass support vector machine (MSVM) is used for classification, and the best mother wavelet and number of decomposition level are chosen based on classification performance. To enhance the performance of the classification, a modified sequential forward subset selection approach is included by which the best statistical features are selected. In this approach, besides selecting the best subset of statistical features, the classification parameter is tuned according to the selected subset to achieve the best performance. The result of the proposed method is eventually compared with those results of classification performance using conventional subset selection. Experimental results show that the proposed method can detect rectifier faults effectively

    Experimental Investigation for Fault Diagnosis Based on a Hybrid Approach Using Wavelet Packet and Support Vector Classification

    Get PDF
    To deal with the difficulty to obtain a large number of fault samples under the practical condition for mechanical fault diagnosis, a hybrid method that combined wavelet packet decomposition and support vector classification (SVC) is proposed. The wavelet packet is employed to decompose the vibration signal to obtain the energy ratio in each frequency band. Taking energy ratios as feature vectors, the pattern recognition results are obtained by the SVC. The rolling bearing and gear fault diagnostic results of the typical experimental platform show that the present approach is robust to noise and has higher classification accuracy and, thus, provides a better way to diagnose mechanical faults under the condition of small fault samples

    PHM survey: implementation of signal processing methods for monitoring bearings and gearboxes

    Get PDF
    The reliability and safety of industrial equipments are one of the main objectives of companies to remain competitive in sectors that are more and more exigent in terms of cost and security. Thus, an unexpected shutdown can lead to physical injury as well as economic consequences. This paper aims to show the emergence of the Prognostics and Health Management (PHM) concept in the industry and to describe how it comes to complement the different maintenance strategies. It describes the benefits to be expected by the implementation of signal processing, diagnostic and prognostic methods in health-monitoring. More specifically, this paper provides a state of the art of existing signal processing techniques that can be used in the PHM strategy. This paper allows showing the diversity of possible techniques and choosing among them the one that will define a framework for industrials to monitor sensitive components like bearings and gearboxes

    Aprendizaje evolutivo supervisado: Uso de histograma de gradiente y algoritmo de enjambre de partículas para detección y seguimiento de peatones en secuencia de imágenes infrarrojas

    Get PDF
    Recently, tracking and pedestrian detection from various images have become one of the major issues in the field of image processing and statistical identification.  In this regard, using evolutionary learning-based approaches to improve performance in different contexts can greatly influence the appropriate response.  There are problems with pedestrian tracking/identification, such as low accuracy for detection, high processing time, and uncertainty in response to answers.  Researchers are looking for new processing models that can accurately monitor one's position on the move.  In this study, a hybrid algorithm for the automatic detection of pedestrian position is presented.  It is worth noting that this method, contrary to the analysis of visible images, examines pedestrians' thermal and infrared components while walking and combines a neural network with maximum learning capability, wavelet kernel (Wavelet transform), and particle swarm optimization (PSO) to find parameters of learner model. Gradient histograms have a high effect on extracting features in infrared images.  As well, the neural network algorithm can achieve its goal (pedestrian detection and tracking) by maximizing learning.  The proposed method, despite the possibility of maximum learning, has a high speed in education, and results of various data sets in this field have been analyzed. The result indicates a negligible error in observing the infrared sequence of pedestrian movements, and it is suggested to use neural networks because of their precision and trying to boost the selection of their hyperparameters based on evolutionary algorithms

    System diagnosis using a bayesian method

    Get PDF
    Today’s engineering systems have become increasingly more complex. This makes fault diagnosis a more challenging task in industry and therefore a significant amount of research has been undertaken on developing fault diagnostic methodologies. So far there already exist a variety of diagnostic methods, from qualitative to quantitative. However, no methods have considered multi-component degradation when diagnosing faults at the system level. For example, from the point a new aircraft takes off for the first time all of its components start to degrade, and yet in previous studies it is presumed that apart from the faulty component, other components in the system are operating in a healthy state. This thesis makes a contribution through the development of an experimental fuel rig to produce high quality data of multi-component degradation and a probabilistic framework based on the Bayesian method to diagnose faults in a system with considering multi-component degradation. The proposed method is implemented on the fuel rig data which illustrates the applicability of the proposed method and the diagnostic results are compared with the neural network method in order to show the capabilities and imperfections of the proposed method
    corecore