1,883 research outputs found

    Multi-criteria Anomaly Detection using Pareto Depth Analysis

    Full text link
    We consider the problem of identifying patterns in a data set that exhibit anomalous behavior, often referred to as anomaly detection. In most anomaly detection algorithms, the dissimilarity between data samples is calculated by a single criterion, such as Euclidean distance. However, in many cases there may not exist a single dissimilarity measure that captures all possible anomalous patterns. In such a case, multiple criteria can be defined, and one can test for anomalies by scalarizing the multiple criteria using a linear combination of them. If the importance of the different criteria are not known in advance, the algorithm may need to be executed multiple times with different choices of weights in the linear combination. In this paper, we introduce a novel non-parametric multi-criteria anomaly detection method using Pareto depth analysis (PDA). PDA uses the concept of Pareto optimality to detect anomalies under multiple criteria without having to run an algorithm multiple times with different choices of weights. The proposed PDA approach scales linearly in the number of criteria and is provably better than linear combinations of the criteria.Comment: Removed an unnecessary line from Algorithm

    APPLICATION OF MULTI-CRITERIA ANALYSIS BASED ON THE INDIVIDUAL PSYCHOLOGICAL PROFILE FOR RECOMMENDER SYSTEMS

    Get PDF
    This paper presents a novel approach for user classification exploiting multicriteriaanalysis. This method is based on measuring the distance between anobservation and its respective Pareto front. The obtained results show that thecombination of the standard KNN classification and the distance from Paretofronts gives satisfactory classification accuracy ā€“ higher than the accuracy obtainedfor each of these methods applied separately. Conclusions from thisstudy may be applied in recommender systems where the proposed methodcan be implemented as the part of the collaborative filtering algorithm

    Water quality sensor placement: a multi-objective and multi-criteria approach

    Full text link
    [EN] To satisfy their main goal, namely providing quality water to consumers, water distribution networks (WDNs) need to be suitably monitored. Only well designed and reliable monitoring data enables WDN managers to make sound decisions on their systems. In this belief, water utilities worldwide have invested in monitoring and data acquisition systems. However, good monitoring needs optimal sensor placement and presents a multi-objective problem where cost and quality are conflicting objectives (among others). In this paper, we address the solution to this multi-objective problem by integrating quality simulations using EPANET-MSX, with two optimization techniques. First, multi-objective optimization is used to build a Pareto front of non-dominated solutions relating contamination detection time and detection probability with cost. To assist decision makers with the selection of an optimal solution that provides the best trade-off for their utility, a multi-criteria decision-making technique is then used with a twofold objective: 1) to cluster Pareto solutions according to network sensitivity and entropy as evaluation parameters; and 2) to rank the solutions within each cluster to provide deeper insight into the problem when considering the utility perspectives.The clustering process, which considers features related to water utility needs and available information, helps decision makers select reliable and useful solutions from the Pareto front. Thus, while several works on sensor placement stop at multi-objective optimization, this work goes a step further and provides a reduced and simplified Pareto front where optimal solutions are highlighted. The proposed methodology uses the NSGA-II algorithm to solve the optimization problem, and clustering is performed through ELECTRE TRI. The developed methodology is applied to a very well-known benchmarking WDN, for which the usefulness of the approach is shown. The final results, which correspond to four optimal solution clusters, are useful for decision makers during the planning and development of projects on networks of quality sensors. The obtained clusters exhibit distinctive features, opening ways for a final project to prioritize the most convenient solution, with the assurance of implementing a Pareto-optimal solution.Brentan, B.; Carpitella, S.; Barros, D.; Meirelles, G.; Certa, A.; Izquierdo SebastiĆ”n, J. (2021). Water quality sensor placement: a multi-objective and multi-criteria approach. Water Resources Management. 35(1):225-241. https://doi.org/10.1007/s11269-020-02720-3S225241351Barak S, Mokfi T (2019) Evaluation and selection of clustering methods using a hybrid group mcdm. Expert Syst Appl 138:112817Berry JW, Fleischer L, Hart WE, Phillips CA, Watson JP (2005) Sensor placement in municipal water networks. J Water Resour Plan Manag 131 (3):237ā€“243Bouyssou D, Marchant T (2015) On the relations between electre tri-b and electre tri-c and on a new variant of electre tri-b. Eur J Oper Res 242(1):201ā€“211Brentan B, Carpitella S, Izquierdo J, Luvizotto E Jr, Meirelles G (2019) A multi-objective and multi-criteria approach for district metered area design: water operation and quality analysis. In: International conference on mathematical modeling in engineering & human behaviour, vol 2019, pp 110ā€“117Brito AJ, de Almeida AT, Mota CM (2010) A multicriteria model for risk sorting of natural gas pipelines based on electre tri integrating utility theory. Eur J Oper Res 200(3):812ā€“821Broad DR, Maier HR, Dandy GC, Nixon JB (2008) Optimal design of water distribution systems including water quality and system uncertainty. In: Water distribution systems analysis symposium, vol 2006, pp 1ā€“17Candelieri A, Conti D, Archetti F (2014) A graph based analysis of leak localization in urban water networks. Procedia Eng 70:228ā€“237Carpitella S, Brentan B, Montalvo I, Izquierdo J, Certa A (2018a) Multi-objective and multi-criteria analysis for optimal pump scheduling in water systems. EPiC Series Eng 3:364ā€“371Carpitella S, Certa A, Izquierdo J, La Fata CM (2018b) k-out-of-n systems: an exact formula for the stationary availability and multi-objective configuration design based on mathematical programming and topsis. J Comput Appl Math 330:1007ā€“1015Carpitella S, OcaƱa-Levario SJ, BenĆ­tez J, Certa A, Izquierdo J (2018c) A hybrid multi-criteria approach to gpr image mining applied to water supply system maintenance. J Appl Geophy 159:754ā€“764Certa A, Enea M, Galante GM, La Fata CM (2017) Electre tri-based approach to the failure modes classification on the basis of risk parameters: an alternative to the risk priority number. Comput Indust Eng 108:100ā€“110Cheung P, Piller O, Propato M (2005) Optimal location of water quality sensors in supply systems by multiobjective genetic algorithms. In: Eight international conference on computing and control in the water industry CCWI05, vol 1, p 2Christodoulou SE, Gagatsis A, Xanthos S, Kranioti S, Agathokleous A, Fragiadakis M (2013) Entropy-based sensor placement optimization for waterloss detection in water distribution networks. Water Resour Manag 27 (13):4443ā€“4468Corrente S, Greco S, Słowiński R (2016) Multiple criteria hierarchy process for electre tri methods. Eur J Oper Res 252(1):191ā€“203Costa AS, Govindan K, Figueira JR (2018) Supplier classification in emerging economies using the electre tri-nc method: a case study considering sustainability aspects. J Clean Prod 201:925ā€“947De Schaetzen W, Walters G, Savic D (2000) Optimal sampling design for model calibration using shortest path, genetic and entropy algorithms. Urban Water 2(2):141ā€“152de Winter C, Palleti VR, Worm D, Kooij R (2019) Optimal placement of imperfect water quality sensors in water distribution networks. Comput Chem Eng 121:200ā€“211Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans Evol Comput 6 (2):182ā€“197Dias LC, Antunes CH, Dantas G, de Castro N, Zamboni L (2018) A multi-criteria approach to sort and rank policies based on delphi qualitative assessments and electre tri: the case of smart grids in brazil. Omega 76:100ā€“111Eliades DG, Kyriakou M, Vrachimis S, Polycarpou MM (2016) Epanet-matlab toolkit: An open-source software for interfacing epanet with matlab. In: Proceedings of the 14th international conference on computing and control for the water industry, CCWIFernandez E, Navarro J (2011) A new approach to multi-criteria sorting based on fuzzy outranking relations: the theseus method. Eur J Oper Res 213 (2):405ā€“413FernĆ”ndez E, Figueira JR, Navarro J, Roy B (2017) Electre tri-nb: a new multiple criteria ordinal classification method. Eur J Oper Res 263 (1):214ā€“224Figueira JR, Greco S, Roy B, Słowiński R (2010) Electre methods: main features and recent developments. In: Handbook of multicriteria analysis. Springer, New York, pp 51ā€“89Figueira JR, Greco S, Roy B, Słowiński R (2013) An overview of electre methods and their recent extensions. J Multi-Criteria Dec Anal 20 (1-2):61ā€“85FrancĆ©s-Chust J, Brentan BM, Carpitella S, Izquierdo J, Montalvo I (2020) Optimal placement of pressure sensors using fuzzy dematel-based sensor influence. Water 12(2):493Gandy M (2004) Rethinking urban metabolism: water, space and the modern city. City 8(3):363ā€“379Giudicianni C, Herrera M, Di Nardo A, Greco R, Creaco E, Scala A (2020) Topological placement of quality sensors in water-distribution networks without the recourse to hydraulic modeling. J Water Resour Plan Manag 146 (6):04020030Hart WE, Murray R (2010) Review of sensor placement strategies for contamination warning systems in drinking water distribution systems. J Water Resour Plan Manag 136(6):611ā€“619Herrera M, Abraham E, Stoianov I (2016) A graph-theoretic framework for assessing the resilience of sectorised water distribution networks. Water Resour Manag 30(5):1685ā€“1699Huang JJ, McBean EA, James W (2008) Multi-objective optimization for monitoring sensor placement in water distribution systems. In: Water distribution systems analysis symposium, vol 2006, pp 1ā€“14Kapelan ZS, Savic DA, Walters GA (2003) A hybrid inverse transient model for leakage detection and roughness calibration in pipe networks. J Hydraul Res 41(5):481ā€“492Lee JH (2013) Determination of optimal water quality monitoring points in sewer systems using entropy theory. Entropy 15(9):3419ā€“3434Liu Z, Ming X (2019) A methodological framework with rough-entropy-electre tri to classify failure modes for co-implementation of smart pss. Adv Eng Inform 42:100968Marchi A, Salomons E, Ostfeld A, Kapelan Z, Simpson AR, Zecchin AC, Maier HR, Wu ZY, Elsayed SM, Song Y et al (2013) Battle of the water networks ii. J Water Resour Plan Manag 140(7):04014009Mohammed A, Harris I, Soroka A, Nujoom R (2019) A hybrid mcdm-fuzzy multi-objective programming approach for a g-resilient supply chain network design. Comput Indust Eng 127:297ā€“312Montalvo I, Izquierdo J, PĆ©rez-garcĆ­a R, Herrera M (2014) Water distribution system computer-aided design by agent swarm optimization. Comput-Aided Civ Inf Eng 29(6):433ā€“448Mousseau V, Slowinski R, Zielniewicz P (2000) A user-oriented implementation of the electre-tri method integrating preference elicitation support. Comput Opera Res 27(7-8):757ā€“777Nafi A, Crastes E, Sadiq R, Gilbert D, Piller O (2018) Intentional contamination of water distribution networks: developing indicators for sensitivity and vulnerability assessments. Stoch Environ Res Risk Assess 32(2):527ā€“544Neto JGD, Machado MAS, Gomes LFAM, Caldeira AM, Sallum FSV (2017) Investments in a new technological infrastructure: Decision making using the electre-tri methodology. Procedia Comput Sci 122:194ā€“199Ohar Z, Lahav O, Ostfeld A (2015) Optimal sensor placement for detecting organophosphate intrusions into water distribution systems. Water Res 73:193ā€“203Oliker N, Ostfeld A (2015) Network hydraulics inclusion in water quality event detection using multiple sensor stations data. Water Res 80:47ā€“58Ostfeld A, Salomons E (2005) Optimal early warning monitoring system layout for water networks security: Inclusion of sensors sensitivities and response delays. Civ Eng Environ Syst 22(3):151ā€“169Ostfeld A, Uber JG, Salomons E, Berry JW, Hart WE, Phillips CA, Watson JP, Dorini G, Jonkergouw P, Kapelan Z et al (2008) The battle of the water sensor networks (bwsn): A design challenge for engineers and algorithms. J Water Resour Plan Manag 134(6):556ā€“568QuiƱones-Grueiro M, Verde C, Llanes-santiago O (2019) Multi-objective sensor placement for leakage detection and localization in water distribution networks. In: 2019 4th conference on control and fault tolerant systems (SysTol), IEEE, pp 129ā€“134Ramezanian R (2019) Estimation of the profiles in posteriori electre tri: A mathematical programming model. Comput Indust Eng 128:47ā€“59Rathi S, Gupta R, Kamble S, Sargaonkar A (2016) Risk based analysis for contamination event selection and optimal sensor placement for intermittent water distribution network security. Water Resour Manag 30(8):2671ā€“2685Reginaldo F (2015) Portfolio management in Brazil and a proposal for evaluation and balancing of portfolio projects with electre tri and iris. Procedia Comput Sci 55:1265ā€“1274Roy B (1968) Classement et choix en prĆ©sence de points de vue multiples. Revue franƧaise dā€™informatique et de recherche opĆ©rationnelle 2(8):57ā€“75Roy B (1990) The outranking approach and the foundations of electre methods. In: Readings in multiple criteria decision aid. Springer, New York, pp 155ā€“183SĆ”nchez-Lozano J, GarcĆ­a-cascales M, Lamata M (2016) Comparative topsis-electre tri methods for optimal sites for photovoltaic solar farms. case study in spain. J Clean Prod 127:387ā€“398Seiti H, Hafezalkotob A, Najafi SE, Khalaj M (2019) Developing a novel risk-based mcdm approach based on d numbers and fuzzy information axiom and its applications in preventive maintenance planning. Appl Soft Comput: 105559Shang F, Uber JG, Rossman LA et al (2008) Epanet multi-species extension userā€™s manual. risk reduction engineering laboratory us environmental protection agency. Cincinnati, OhioShannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379ā€“423Å tirbanović Z, Stanujkić D, Miljanović I, Milanović D (2019) Application of mcdm methods for flotation machine selection. Miner Eng 137:140ā€“146Wang H, Jiang Z, Zhang H, Wang Y, Yang Y, Li Y (2019) An integrated mcdm approach considering demands-matching for reverse logistics. J Clean Prod 208:199ā€“210WĆ©ber R, HoĢ‹s C (2020) Efficient technique for pipe roughness calibration and sensor placement for water distribution systems. J. Water Resour Plan Manag 146(1):04019070Weickgenannt M, Kapelan Z, Blokker M, Savic DA (2010) Risk-based sensor placement for contaminant detection in water distribution systems. J Water Resour Plan Manag 136(6):629ā€“63

    Detecting anomalies in water distribution networks using EPR modelling paradigm

    Get PDF
    This is the author accepted manuscript. The final version is available from IWA Publishing via the DOI in this record.Sustainable management of water distribution networks (WDNs) requires effective exploitation of available data from pressure/flow devices. Water companies collect a large amount of such data, which need to be managed correctly and analysed effectively using appropriate techniques. Furthermore, water companies need to balance the data gathering and handling costs with the benefits of extracting useful information. Recent approaches implementing data mining techniques for analysing pressure/flow data appear very promising, because they can automate mundane tasks involved in data analysis process and efficiently deal with sensor data collected. Furthermore, they rely on empirical observations of a WDN behaviour over time, allowing reproducing/predicting possible future behaviour of the network. This paper investigates the effectiveness of the evolutionary polynomial regression (EPR) paradigm to reproduce the behaviour of a WDN using online data recorded by low-cost pressure/flow devices. Using data from a real district metered area, the case study presented shows that by using the EPR paradigm a model can be built which enables the accurate reproduction and prediction of the WDN behaviour over time and detection of flow anomalies due to possible unreported bursts or unknown increase of water withdrawal. Such an EPR model might be integrated into an early warning system to raise alarms when anomalies are detected.The research reported in this paper was founded by two projects of the Italian Scientific Research Program of National Interest PRIN-2012: ā€˜Analysis tools for management of water losses in urban aqueductsā€™ and ā€˜Tools and procedures for advanced and sustainable management of water distribution networksā€™

    Towards outlier detection for high-dimensional data streams using projected outlier analysis strategy

    Get PDF
    [Abstract]: Outlier detection is an important research problem in data mining that aims to discover useful abnormal and irregular patterns hidden in large data sets. Most existing outlier detection methods only deal with static data with relatively low dimensionality. Recently, outlier detection for high-dimensional stream data became a new emerging research problem. A key observation that motivates this research is that outliers in high-dimensional data are projected outliers, i.e., they are embedded in lower-dimensional subspaces. Detecting projected outliers from high-dimensional stream data is a very challenging task for several reasons. First, detecting projected outliers is difficult even for high-dimensional static data. The exhaustive search for the out-lying subspaces where projected outliers are embedded is a NP problem. Second, the algorithms for handling data streams are constrained to take only one pass to process the streaming data with the conditions of space limitation and time criticality. The currently existing methods for outlier detection are found to be ineffective for detecting projected outliers in high-dimensional data streams. In this thesis, we present a new technique, called the Stream Project Outlier deTector (SPOT), which attempts to detect projected outliers in high-dimensional data streams. SPOT employs an innovative window-based time model in capturing dynamic statistics from stream data, and a novel data structure containing a set of top sparse subspaces to detect projected outliers effectively. SPOT also employs a multi-objective genetic algorithm as an effective search method for finding the outlying subspaces where most projected outliers are embedded. The experimental results demonstrate that SPOT is efficient and effective in detecting projected outliers for high-dimensional data streams. The main contribution of this thesis is that it provides a backbone in tackling the challenging problem of outlier detection for high- dimensional data streams. SPOT can facilitate the discovery of useful abnormal patterns and can be potentially applied to a variety of high demand applications, such as for sensor network data monitoring, online transaction protection, etc
    • ā€¦
    corecore