7,157 research outputs found

    TDMAとDCFの組み合わせによるアドホックネットワーク上でのQoS通信の実現方式

    Get PDF
     An ad hoc network does not rely on the fixed network infrastructure; it uses a distributed network management method. With the popularity of the smart devices, ad hoc network has received more and more attention, supporting QoS in ad hoc network has become inevitable. Many researches have been done for provision of QoS in ad hoc networks. These researches can be divided into three types. The first type is contention-based approach which is the most widely used. IEEE 802.11e MAC (media access control) protocol belongs to this type which is an extension of IEEE 802.11 DCF(Distributed Coordination Function). It specifies a procedure to guarantee QoS by providing more transmission opportunities for high priority data. However, since IEEE 802.11eis designed based on the premise that access points are used, when the number of QoS flows increases, packet collisions could occur in multi-hop ad hoc network. The second type is using TDMA-based approach. The TDMA approach can provide contention-free access for QoS traffics through the appropriate time slot reservation. The current TDMA approaches reserve time slots for both QoS traffics and best-effort traffics. However, it is difficult for TDMA as the only approach to allocating channel access time for best-effort traffics sincet he required bandwidth of the best-effort traffics changes frequently. We propose a QoS scheme, which takes advantage of both contention-based approach and TDMA-based approach. In the proposed scheme, contention-based approach DCF provides easy and fair channel time for best-effort traffics, and TDMA approach serves the QoS traffics. A time frame structure is designed to manage the bandwidth allocation. A time frame is divided into two periods, specifically the TDMA periods and the DCF periods. The proportion of two periods is decided by QoS traffics. Therefore the QoS traffics are given absolutely higher priority than best-effort traffics. In order to guarantee the transmission of each QoS packet in TDMA period, a time slot assignment algorithm based on QoS data rate has been proposed. The proposed scheme also employs an admission control scheme, which rejects the new QoS user when the channel capacity is reached. In addition, we provide the configuration of the proposed scheme in the mobile environment. The procedures are designed for route changes and new-adding users.  The proposed scheme is simulated in the QualNet simulator. In the static environment, the performance of the proposed scheme is evaluated in the case of a gradual increase in the number TCP flows and in the case of gradual increase in QoS data rate. Simulation results show that in the static environment the proposed scheme can not only provide effective QoS performance, but also can provide good support for best-effort flows. In the mobile environment, we simulated the performance of the proposed scheme at different moving speed (maximum is 5 Km/h) when the ARF (Auto Rate Fallback) is available. From the simulation results, in a specific mobile environment, the proposed scheme can support the QoS transmission well.電気通信大学201

    Cognitive Radio Network with a distributed control channel and quality-of-service solution

    Get PDF
    The proliferation of wireless access and applications to the Internet and the advent of a myriad of highly evolved portable communication devices; creates the need for an efficiently utilized radio spectrum. This is paramount in the licensed and unlicensed radio frequency bands, that spawn an exponential growth in Dynamic Spectrum Access (DSA) research, Cognitive Radio (CR) and Cognitive Radio Networks (CRN) research. DSA research has given way to the paradigm shift toward CR with its dynamic changes in transmission schemas. This paradigm shift from a fixed and centralized frequency spectrum environment has morphed into a dynamic and decentralized one. CR provides wireless nodes the capability to adapt and exploit the frequency spectrum. The spectrum information obtained is scanned and updated to determine the channel quality for viability and a utilization/availability by the licensed (primary) user. To take advantage of the CR capabilities, previous research has focused on a Common Control Channel(CCC) for the control signals to be used for spectrum control. This utilization generates channel saturation, extreme transmission overhead of control information, and a point of vulnerability. The traditional designs for wireless routing protocols do not support an ad hoc multi-hop cognitive radio network model. This research focuses on a real world implementation of a heterogeneous ad hoc multi-hop Cognitive Radio Network. An overall model, coined Emerald, has been designed to address the architecture; the Medium Access Control layer, E-MAC; and the network layer, E-NET. First, a Medium Access Control(MAC) layer protocol is provided to avoid the pitfalls of a common control channel. This new design provides CRNs with network topology and channel utilization information. Spectrum etiquette, in turn, addresses channel saturation, control overhead, and the single point of vulnerability. Secondly, a routing model is proposed that will address the efficiency of an ad hoc multi-hop CRN with a focus on the Quality-of-Service(QoS) of the point-to-point as well as end-to-end communication. This research has documented weaknesses in spectrum utilization; it has been expanded to accommodate a distributed control environment. Subsets of the model will be validated through Network Simulator-2(NS/2) and MatLab© simulations to determine point-to-point and end-to-end communications

    Network-Layer Resource Allocation for Wireless Ad Hoc Networks

    Get PDF
    This thesis contributes toward the design of a quality-of-service (QoS) aware network layer for wireless ad hoc networks. With the lack of an infrastructure in ad hoc networks, the role of the network layer is not only to perform multihop routing between a source node and a destination node, but also to establish an end-to-end connection between communicating peers that satisfies the service level requirements of multimedia applications running on those peers. Wireless ad hoc networks represent autonomous distributed systems that are infrastructure-less, fully distributed, and multi-hop in nature. Over the last few years, wireless ad hoc networks have attracted significant attention from researchers. This has been fueled by recent technological advances in the development of multifunction and low-cost wireless communication gadgets. Wireless ad hoc networks have diverse applications spanning several domains, including military, commercial, medical, and home networks. Projections indicate that these self-organizing wireless ad hoc networks will eventually become the dominant form of the architecture of telecommunications networks in the near future. Recently, due to increasing popularity of multimedia applications, QoS support in wireless ad hoc networks has become an important yet challenging objective. The challenge lies in the need to support the heterogeneous QoS requirements (e.g., data rate, packet loss probability, and delay constraints) for multimedia applications and, at the same time, to achieve efficient radio resource utilization, taking into account user mobility and dynamics of multimedia traffic. In terms of research contributions, we first present a position-based QoS routing framework for wireless ad-hoc networks. The scheme provides QoS guarantee in terms of packet loss ratio and average end-to-end delay (or throughput) to ad hoc networks loaded with constant rate traffic. Via cross-layer design, we apply call admission control and temporary bandwidth reservation on discovered routes, taking into consideration the physical layer multi-rate capability and the medium access control (MAC) interactions such as simultaneous transmission and self interference from route members. Next, we address the network-layer resource allocation where a single-hop ad hoc network is loaded with random traffic. As a starting point, we study the behavior of the service process of the widely deployed IEEE 802.11 DCF MAC when the network is under different traffic load conditions. Our study investigates the near-memoryless behavior of the service time for IEEE 802.11 saturated single-hop ad hoc networks. We show that the number of packets successfully transmitted by any node over a time interval follows a general distribution, which is close to a Poisson distribution with an upper bounded distribution distance. We also show that the service time distribution can be approximated by the geometric distribution and illustrate that a simplified queuing system can be used efficiently as a resource allocation tool for single hop IEEE 802.11 ad hoc networks near saturation. After that, we shift our focus to providing probabilistic packet delay guarantee to multimedia users in non-saturated IEEE 802.11 single hop ad hoc networks. We propose a novel stochastic link-layer channel model to characterize the variations of the IEEE 802.11 channel service process. We use the model to calculate the effective capacity of the IEEE 802.11 channel. The channel effective capacity concept is the dual of the effective bandwidth theory. Our approach offers a tool for distributed statistical resource allocation in single hop ad hoc networks, which combines both efficient resource utilization and QoS provisioning to a certain probabilistic limit. Finally, we propose a statistical QoS routing scheme for multihop IEEE 802.11 ad hoc networks. Unlike most of QoS routing schemes in literature, the proposed scheme provides stochastic end-to-end delay guarantee, instead of average delay guarantee, to delay-sensitive bursty traffic sources. Via a cross-layer design approach, the scheme selects the routes based on a geographical on-demand ad hoc routing protocol and checks the availability of network resources by using traffic source and link-layer channel models, incorporating the IEEE 802.11 characteristics and interaction. Our scheme extends the well developed effective bandwidth theory and its dual effective capacity concept to multihop IEEE 802.11 ad hoc networks in order to achieve an efficient utilization of the shared radio channel while satisfying the end-to-end delay bound

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required

    Distributed QoS Guarantees for Realtime Traffic in Ad Hoc Networks

    Get PDF
    In this paper, we propose a new cross-layer framework, named QPART ( QoS br>rotocol for Adhoc Realtime Traffic), which provides QoS guarantees to real-time multimedia applications for wireless ad hoc networks. By adapting the contention window sizes at the MAC layer, QPART schedules packets of flows according to their unique QoS requirements. QPART implements priority-based admission control and conflict resolution to ensure that the requirements of admitted realtime flows is smaller than the network capacity. The novelty of QPART is that it is robust to mobility and variances in channel capacity and imposes no control message overhead on the network
    corecore