15 research outputs found

    Multitarget Tracking in Nonoverlapping Cameras Using a Reference Set

    Get PDF
    Tracking multiple targets in nonoverlapping cameras are challenging since the observations of the same targets are often separated by time and space. There might be significant appearance change of a target across camera views caused by variations in illumination conditions, poses, and camera imaging characteristics. Consequently, the same target may appear very different in two cameras. Therefore, associating tracks in different camera views directly based on their appearance similarity is difficult and prone to error. In most previous methods, the appearance similarity is computed either using color histograms or based on pretrained brightness transfer function that maps color between cameras. In this paper, a novel reference set based appearance model is proposed to improve multitarget tracking in a network of nonoverlapping cameras. Contrary to previous work, a reference set is constructed for a pair of cameras, containing subjects appearing in both camera views. For track association, instead of directly comparing the appearance of two targets in different camera views, they are compared indirectly via the reference set. Besides global color histograms, texture and shape features are extracted at different locations of a target, and AdaBoost is used to learn the discriminative power of each feature. The effectiveness of the proposed method over the state of the art on two challenging real-world multicamera video data sets is demonstrated by thorough experiments

    Linear color correction for multiple illumination changes and non-overlapping cameras

    Get PDF
    Many image processing methods, such as techniques for people re-identification, assume photometric constancy between different images. This study addresses the correction of photometric variations based upon changes in background areas to correct foreground areas. The authors assume a multiple light source model where all light sources can have different colours and will change over time. In training mode, the authors learn per-location relations between foreground and background colour intensities. In correction mode, the authors apply a double linear correction model based on learned relations. This double linear correction includes a dynamic local illumination correction mapping as well as an inter-camera mapping. The authors evaluate their illumination correction by computing the similarity between two images based on the earth mover's distance. The authors compare the results to a representative auto-exposure algorithm found in the recent literature plus a colour correction one based on the inverse-intensity chromaticity. Especially in complex scenarios the authors’ method outperforms these state-of-the-art algorithms

    Exploiting Multiple Detections for Person Re-Identification

    Get PDF
    Re-identification systems aim at recognizing the same individuals in multiple cameras, and one of the most relevant problems is that the appearance of same individual varies across cameras due to illumination and viewpoint changes. This paper proposes the use of cumulative weighted brightness transfer functions (CWBTFs) to model these appearance variations. Different from recently proposed methods which only consider pairs of images to learn a brightness transfer function, we exploit such a multiple-frame-based learning approach that leverages consecutive detections of each individual to transfer the appearance. We first present a CWBTF framework for the task of transforming appearance from one camera to another. We then present a re-identification framework where we segment the pedestrian images into meaningful parts and extract features from such parts, as well as from the whole body. Jointly, both of these frameworks contribute to model the appearance variations more robustly. We tested our approach on standard multi-camera surveillance datasets, showing consistent and significant improvements over existing methods on three different datasets without any other additional cost. Our approach is general and can be applied to any appearance-based metho

    Unveiling the Power of Self-supervision for Multi-view Multi-human Association and Tracking

    Full text link
    Multi-view multi-human association and tracking (MvMHAT), is a new but important problem for multi-person scene video surveillance, aiming to track a group of people over time in each view, as well as to identify the same person across different views at the same time, which is different from previous MOT and multi-camera MOT tasks only considering the over-time human tracking. This way, the videos for MvMHAT require more complex annotations while containing more information for self learning. In this work, we tackle this problem with a self-supervised learning aware end-to-end network. Specifically, we propose to take advantage of the spatial-temporal self-consistency rationale by considering three properties of reflexivity, symmetry and transitivity. Besides the reflexivity property that naturally holds, we design the self-supervised learning losses based on the properties of symmetry and transitivity, for both appearance feature learning and assignment matrix optimization, to associate the multiple humans over time and across views. Furthermore, to promote the research on MvMHAT, we build two new large-scale benchmarks for the network training and testing of different algorithms. Extensive experiments on the proposed benchmarks verify the effectiveness of our method. We have released the benchmark and code to the public

    Towards Open-World Person Re-Identification by One-Shot Group-Based Verification

    Get PDF
    corecore