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Abstract: Many image processing methods, such as techniques for people re-identification, assume photometric constancy 
between different images. This study addresses the correction of photometric variations based upon changes in background 
areas to correct foreground areas. The authors assume a multiple light source model where all light sources can have different 
colours and will change over time. In training mode, the authors learn per-location relations between foreground and 
background colour intensities. In correction mode, the authors apply a double linear correction model based on learned 
relations. This double linear correction includes a dynamic local illumination correction mapping as well as an inter-camera 
mapping. The authors evaluate their illumination correction by computing the similarity between two images based on the 
earth mover's distance. The authors compare the results to a representative auto-exposure algorithm found in the recent 
literature plus a colour correction one based on the inverse-intensity chromaticity. Especially in complex scenarios the 
authors' method outperforms these state-of-the-art algorithms. 

1 Introduction 

Retrieving objects seen in earlier images is an active research 
topic within image processing. In very controlled 
environments the assumption will hold that the pixel values 
of an object are comparable between past and present 
images, but in general this is not the case due to 
illumination variations. Within this paper we consider 
conditions with multiple illumination sources, each with a 
different colour and a space-time variant intensity. In 
effect, the illumination will be different for every position, 
time and colour channel. In addition, we consider a 
non-overlapping multi-camera setup. The challenge 
addressed in this paper is to correct under such conditions 
images of the same objects such that their corresponding 
pixels are comparable, to allow re-identifying those objects 
along time and space. 

Three different strategies can be distinguished in the 
literature to improve the performance of re-identification 
algorithms under varying imaging conditions: 

1. Control the camera parameters during acquisition, by 
using auto-exposure (AE) or auto-white balance control. 
2. Assume that the matching algorithm handles the imaging 
condition changes. For instance, using intensity invariant 
colour descriptors. 
3. Correct the images using image processing after 
acquisition but before applying the matching algorithm. 

Table 1 summarizes the main relevant approaches. 

The first strategy is widely applied on current available 
cameras [1, 2]. These methods control the camera 
parameters during acquisition to compensate for the light 
variations and obtain suitable images for viewing or 
processing purposes. Nevertheless, with multiple light 
sources, each with different spatial effect, such approaches 
are unable to effectively correct at every position within an 
image because they do not allow for location-dependent 
corrections. Liu et al. [3] goes far beyond the classic 
approach because their division into regions provides better 
knowledge of the light behaviour, making the correction 
more accurate. 

The second strategy is often based on object descriptors 
that able to match two images of the same object under 
different pose and light conditions. Such descriptors [4] 
may include information about colour, location, structure, 
texture or a combination of several of these. Using invariant 
features may reduce the amount of information; for 
example, in an intensity normalised image - a common 
descriptor - it will be very hard to separate grey clothes of 
people from a black background (BG). These kinds of 
techniques are hence avoided in this paper. 

The third strategy, including this work, may be used on its 
own or in combination with the previously explained. They 
are mainly based on knowledge about image formation and 
surface reflectance models and consist of designing 
computational colour constancy methods that 'estimate the 
chromaticity of the light source and then correct the image 
to a canonical illumination using the diagonal model' [23]. 
This 'diagonal model', introduced by Finlayson et al. [24] 
as a diagonal-matrix transform (DMT) based on the von 



Table 1 Colour correction approaches 

Based on References 

acquisition control [1-3] 
colour descriptors [4] 
colour constancy [5-9] 
camera response function [10-13] 
inter-camera colour response [14-22] 

First row refers to the first strategy and the remainders to the 
third strategy while the second strategy is not dealt with in this 
paper 

Kries' model, consists of a linear transformation for each of 
the colour channels. By means of the DMT, the colour 
appearance under several light conditions can be 
maintained. A complete survey about colour constancy 
algorithms can be read in [7]. Nevertheless, these methods 
have high computational cost and require complex 
calibrations using known illuminants, causing these 
techniques to fail when they are unknown. Furthermore, 
even though there are several attempts to deal with real 
images, their accuracy [5] - or their application to complex 
scenarios [6, 8, 9] - are not sufficiently demonstrated. 

Other research lines model the camera response function 
(CRF) [10] which consists of establishing the relation 
between the amount of light collected by the camera sensor 
and the digital intensity values. Using these models, several 
correction algorithms may be applied by comparing current 
pixel intensities to reference or previous values. For 
instance, Withagen et al. [11] developed a simple and fast 
correction method by presenting different ways to estimate 
a global intensity correction factor to correct the input 
images. This method has been recently complemented by 
Sayed and Delva [13], who added a local correction using 
the mean and standard deviation variation. Nevertheless, 
this calculation is very sensitive to noise and introduces 
blurring artefacts in the image. Inspired by Grossberg and 
Nayar's work [10], Parameswaran et al. [12] implemented 
an illumination compensation method based on the fact that 
the order of the pixel intensities is maintained when the 
illumination changes. When the illumination change is 
local, several functions must be estimated, which increases 
the computational cost. Furthermore, for our purpose, these 
methods are not insufficient because they do not deal with 
multi-camera systems. 

The classic colour constancy algorithms and CRFs were the 
basis for the first designs of methods that correct photometric 
differences in non-overlapping, multi-camera architectures. 
Basically, the inter-camera colour response (ICCR) 
estimates [14] are based on the assumption that the 
appearance of an object under distinct illumination 
conditions will be the same when their respective 
cumulative histograms are equal. An initial approach from 
Javed et al. [15] utilised a supervised method performing a 
probabilistic principal component analysis using the 
normalised bin histograms of the objects for obtaining the 
brightness transfer functions (BTFs) between cameras. 
Several works have been derived from Javed's. They 
mainly focused on making the method more robust against 
illumination changes using several frames of the same 
person for the estimate [16]; defining improved BTFs [18, 
19]; or implementing non-supervised methods [17, 21]. The 
current ones also include spatiotemporal relationships 
among cameras [20, 22]. However, ICCR techniques 
require complex calibration stages, the use of colour 

checkers [5] or, in the non-supervised methods, a deeper 
knowledge of the moving objects. 

This paper focuses on a colour correction of foreground 
(FG) objects (persons) based upon observed variations in 
the BG in multi-camera scenarios. This correction is 
composed of a double mapping. The first mapping corrects 
the local illumination variations whereas the second 
compensates the photometric changes between different 
cameras. Separation between FG and BG is typically 
performed by object detection and tracking algorithms, 
which are out of the scope of this paper ([25] presents a 
complete review of these methods). The correction process 
is fast in run-time, and it only requires a training mode that 
learns inter-camera and BG-FG relations using several 
people samples as we describe in the next sections. It also 
yields worthy results with real images. Colour calibration or 
knowledge of the illuminants are not required. Advanced 
matching techniques are also out of the scope. Nevertheless, 
we made use of the earth mover's distance (EMD) [26] as a 
similarity measure for the experiments. 

The remainder of the paper is organised as follows. In 
Section 2, our linear correction model is proposed including 
both the inter-camera as well as the local corrections. 
Section 3 details the proposed technique. In Section 4, we 
describe our experiments which show the good performance 
of our algorithm in a complex photometric real scenario 
compared with state-of-the-art AE [3] and colour correction 
[27] algorithms. Finally, Section 5 summarizes conclusions 
and suggestions for future work. 

2 Linear correction model 

We start providing our notation and assumptions (Section 
2.1). Then, we define our model and adapt it to our 
requirements (Section 2.2). After that, we propose the 
double linear correction mapping (LCM) (Section 2.3). 

2.1 Notation and assumptions 

In the paper, we use the notation in Table 2. 
Our approach has the following assumptions: 

Table 2 Notation used in the paper 

Symbol Description Symbol Description 

A 

£ 

G 

/ 

/ 
i 

k 

n 

R 

t 

v 

wavelength 

spectral irradiance of 
a light source 

¡n-camera processing 
gain 

pixel intensity in an 
¡mage 

b referred to BG (as a 
superscript) 

f referred to FG (as a 
superscript) 

H normalised cumulative 
histogram 

/ / corrected 

average value of / 
illumination source 

index 
colour channel index 

location index (range 
1-A/) 

amount of electrons 
generated by each 

sensor pixel 
time 

BG region index 
(range 1-10 

M 
1 

N 

Q 

S 

V 

X 

ratio of two values of / 
camera index 

number of total 
locations 

camera sensor 
sensitivity 

photometric response 
of a surface 

number of total BG 
regions 

pixel coordinates 



1. Multiple dynamic sources: All light sources can have 
different colours and will change over time. 
2. Lambertian: The objects are mainly composed by 
Lambertian surfaces. 
3. Static surface response: The photometric surface 
responses S of an object are not dependent of either the 
illuminants or the camera response; remain similar with 
time; and are only dependent on the surface properties. 
4. Not crowded scenes: As the correction is based on BG 
information, very crowded scenes - where sufficient BG is 
not always observed - are not allowed. 
5. Linearity: The intensity is neither under nor over saturated 
and only linear digital processing is applied (ignoring, e.g. 
gamma correction). Camera's settings hold constant. 
Although not every camera obeys these assumptions, many 
cameras do, as is demonstrated in [28]. 
6. Independent channels: Changes in the product of the 
illumination E and the camera response Q is within each 
band R, G, B independent of the surface reflectivity S. We 
expect this to hold for a wide range of light sources, 
cameras and materials. 

2.3 Linear correction mapping 

Our goal is to obtain a similar digital image of the same object 
when the photometric conditions and the cameras change. For 
BG areas, the photometric surface responses of an object in 
two temporal instants remains constant (S(x, tief) — 
S(x, t) = S(x), Assumption 3 of Section 2.1). Therefore two 
images Ij (from camera yVef) and I¡ (from camera j) of the 
same area SQ having different photometric conditions 
can be written (3) as 

¡kjjx, W) = GjJt^Six) JA QkJieEjJ\, x, tKf) dA ] 

IkJ(x, t) = Gj(t)S(x) JA QkJEj(\, x, t) dA j 

Gj(t)¡kQkJEj(\,x,t)dÁ 

G7 r e f(W)JAa ! / r e f^ r e f(A,x,W)dA 

!kj(x, t) 
hjre{(

X' kf) 
Ukjb, t) 

(6) 

(7) 

2.2 Image formation model 

The image formation model of image / is modelled by the 
CRF 

4(x, 0 = C R F ^ x , 0) (1) 

where R is the amount of electrons generated by each sensor 
pixel. In this context k refers to the three (RGB) colour 
channels. The definition of Rk can be extended to 

**(• 'x, i) = Qk{X)E{\, x, t)S{\, x, t) dA (2) 

where the product E-S is the incident light arriving at pixel 
coordinates x in the sensor plane and Q is the camera 
sensitivity (similar to the model in [29]). If we assume that 
the CRF is linear, and we have independent channels 
(Assumptions 5 and 6 of Section 2.1), (1) and (2) can be 
simplified to 

(*, 0 Ik(x,t) = G(t)Sk(x,t)^ Qk(X)E(Kx,t)d\ (3) 

where G models the in-camera processing such as exposure 
variations and gain. In this expression we see three parts: (i) 
the product of G and Q which depends on the camera; (ii) 
E which depends on the source of light, location and 
scenario; and (iii) S which depends on the observed object 
surface. 

In (2) and (3), the illumination dependent term E is a sum 
of all i illumination sources, and thus, E{\, x, i) = 
^2¡E¡(X,x, t). For each illumination source, we define a 
time-varying illumination gain g¡ and a constant illumination 
term EC¡, such that E¡(\, x, t) = g¡(t)EC¡(X, x). As such we 
can rewrite the model in (2) and (3) to 

Rk(x, t) = J2 gi(t) Í Qk(WCt(X, x)S(X, x, t) dA (4) 
,' J A 

Ik(x, t) = G(t)Sk(x, t) I > W Í &(A)£C,<A,x)dA (5) 
i J X 

A4 -(JC, t) is the ¿-band relation factor between a reference 
camera jref and time tef with a camera j in time t. 

A corrected image 7¿ • is written as 

hÁx, t) = MUx, t) • IkJ(x, t) lkj kj\ (8) 

If the suitable A/¿ -(JC, i) is found, it is possible to correct any 
image 4¿(x, i) to make it similar to a reference one 

We define a double LCM for cameray' that compensates the 
variations of GQ andE in an acquired image Ikj as 

A/./x, o = 47(0 • 4j(x, t) (9) 

Each image will be corrected by two terms: a¿™ is the 
'inter-camera correction mapping' (ICCM) that compensates 
the scenario and change between cameras, and a¿ • is the 
'illumination correction mapping' (ICM) that corrects the 
change in location within the same camera and illuminant(s). 

The variation of BG intensities (A4V) regarding a 
reference time ¿ref is measured using the following expression 

Kv(x, t) 
h,v(x, tKf) 

Av(x, t) 
(10) 

where Ik v(x, t) is the average intensity value of BG region v 
in location x, time t and channel k according to the selection 
explained in the Section 3.1.1. Note the similarities between 
(10) and (7). 

Assuming camera exposure values are not modified to 
maintain a linear relation between light and image intensity, 
the variations of the BG regions model the terms g¡(t) of 
(5) with respect to tmf that influence the FGs. For that 
purpose we estimate the ICM using 

4/x, t) = (1, AIb
kA/x, t), ..., Mlrj(x, 0) • mxJ (11) 

where mx, comes from (16). 
Regarding ICCM, better results are obtained when it is 

included an offset term capable of partially compensating 
for model derivations such as camera noise, intensity offsets 



or camera non-linearity. This term accounts for any error 
because of the simplifications we made regarding the image 
formation model (Section 2.2). Therefore the original (8) is 
replaced by the following 

IkJ(x, t) = a\J • 4j(x, t) • IkJ(x, t) + $ 7 (12) 

where a¿™ and /3¿™ are constants depending on camera j . 

3 Method description 

To estimate the relationship between the people response 
(FG) and the light variations in the rest of the scene (BG), 
we define a training mode (Section 3.1) and run-time mode 
(Section 3.2). 

3.1 Training mode 

In training mode, the relation between cameras as well as the 
relation between changes in BG and FG are learned. We 
establish these relations by using some FG objects seen in 
different cameras (for ICCM), different locations and 
illuminations (for the ICM). In Section 3.1.1 we discuss the 
selection of locations and the segmentation of BG regions, 
in Section 3.1.2 we explain how to estimate the ICCM 
(a¿™) and in Section 3.1.3 the vectors z» • for ICM which 
relates the FG to the BG. 

3.1.1 Locations and BG region selection: We model 
the three-dimensional world geometry in the acquired image 
for each camera by splitting the scene in a set of n = {1,..., 
N} pre-defined locations. Thus, each pixel x is mapped to a 
location n. We define the BG regions v={l, . . . , V] 
associated to each location according to the geometry of the 
scene. The BG regions ('Reg' in the example of Fig. 1) are 
used to estimate the change in illumination to correct the 
FG objects. It is desirable to select BG regions that are 
most influenced by light changes. For example, in Fig. 1 
some regions are located on the wall on the left because 
outdoor light goes through the opposite doors. Thus, the 
light reflected on this surface will change in accordance 
with the outdoor light. In our experiments, the BG regions 
were manually specified. 

3.1.2 Camera-relation training for ICCM: In the ICCM, 
we obtain a linear mapping from one camera to another by 
using several intensity values of FG objects in the different 
locations to approximate it to the reference one. A 
comprehensive survey on FG-BG separation is presented 
by Bouwmans [25]. In our experiments, we use manually 
segmented FG objects. For comparing two images from two 
cameras, we make use of the normalised cumulative object 
histograms H with h values. If there are K training objects, 
we have W=h-K samples for each location and each colour 
channel, different from the reference one. Thus, the ICCM 
of (12) is obtained by minimising the error between the 
histogram values of the reference camera j m f and the 
estimated camera j 

( cam r>cam 
akJ > PkJ | 

W II / \ II 

= arg min Y \ < ^ " ( < C " HUj + f%f) ||2 (13) 
{ acam ocam 1 w 

*•/ kJ I 

where Hw>kj is the sample w of the normalised cumulative 
histogram between 0 and 1 of the channel k of the FG in 
camera j . Owing to overexposed pixels, shadows, erroneous 
BG region assignments etc., many of these values may be 
outliers. Since linear least-squares estimates do not work 
properly when the error distribution is not normal, they are 
not suitable tools in this case. Instead, we use a robust 
linear regression algorithm which is able to manage this 
kind of outliers. It is based on a maximum likelihood 
estimation [30] which performs an iterative reweighted 
linear squares regression using a bisquare weight function. 

3.1.3 FG/BG-relation training for ICM: The normalised 
cumulative histograms Hare also employed in the estimate of 
the relationship between BG and FG. In this case, we extract 
data from the BG and FG when the light changes. Similar to 
the ICCM estimate, we have W=3-h-K samples of data for 
each location. The estimation is independent of the channel 
because the relationship models g¡ are the same in every 
channel. Using these data, we construct the following ratios 
expressing the variation for FG (14) and BG (15) 
histograms relative to the reference time tmf 

Fig. 1 Indoor surveillance scenario modelling with selected BG 

regions 

Subscript refers to location and superscript to region index 

A<,(x, 0 
HÍÁx, t) 

AHb .(x t) - g ^ ' ( X ' W ) 

(14) 

(15) 

where Hwj is the sample w of the normalised cumulative 
histogram of camera j and v refers to the BG region. We fit 
a linear combination of the BG variations to FG using mx,. 
This is a vector that relates the change in V BG regions to 
that in the FG at location x, constant through time and 
equal for each channel k in camera j . It is estimated by 

m XJ 

II / \ 

^ r g m i n ^ l A ^ . - ( l . A H ^ , , . . . , A < F ¡ / ) "XJ 

(16) 

where J^is the number of samples and Vis the number of BG 
regions, such that v = [ 1,..., V]. To avoid unreliable samples, 



we eliminate occluded and shadowed areas of the BG. In our 
experiments, we tested two optimisation methods: robust 
linear regression algorithm and linear programming. We use 
the second method as it yields lower errors according to 
indicators explained in Section 4.2. Nevertheless, the 
selection of the correct fitting method may depend on the 
data. In our experiments we observed that, to obtain good 
fitting, we need enough samples (W^> V). 

3.2 Run-time mode 

In the run-time mode, the LCM of (12) is applied. It first 
requires the estimate of the BG intensities in the image and 
then the computation of the mappings ICM (a11) and ICCM 
(acam, /?cam). Regarding the ICCM, (12) is applied using the 
parameters estimated by (13). 

4 Experimental evaluation 

4.1 Experimental setup 

The proposed method was tested in a dedicated experiment 
with multiple cameras, multiple people, multiple locations 
and changing lighting conditions. Although there are 
several datasets on the internet related to people 
re-identification in a multi-camera network (QMUL 
underGround Re-IDentification (GRID) dataset. http://www. 
eecs.qmul.ac.uk/~ccloy/downloads_qmul_underground_reid. 
html) and some others also include light changes (VIPeR: 
Viewpoint Invariant Pedestrian Recognition. http://vision. 
soe.ucsc.edu/node/178), (Person Re-ID (PRID) 2011 
dataset. http://lrs.icg.tugraz.at/datasets/prid/index.php), we 
were not able to find any dataset that fits all our 
requirements (overall, BG information and camera's 
auto-settings off). Therefore we used our own dataset 
(Multi-Camera Dynamic Light (MCDL) dataset is publicly 
available in: https://www.researchgate.net/publication/26446 
2014_MCDL_Dataset). For the experiment, we used two 
Firewire cameras influenced by indoor and outdoor 
illumination. The illumination was changed by switching 
the indoor lights on and off, by opening and closing doors 
and by outdoor lighting variations because of changing 

cloud coverage (see Fig. 2). The time between each capture 
is enough to have a noticeable change in outdoor lighting. 
For both cameras, the variation in the average value of 
images exceeds 10%. In each camera view, we defined 
three locations (Fig. 1), used one person for the training 
phase and eight other persons for the test phase. All persons 
are captured walking in two directions. Each one of the 
training and test samples were recorded under different 
outdoor light conditions. In camera 2, the average BG 
intensity during acquisition of the training samples ranges 
between 102 and 123, whereas the average BG intensity 
during testing ranges between 97 and 112. The test persons 
each wore different shirts whose colours are well-distributed 
along the RGB space. An example picture of each subject 
is shown in Fig. 3. People outlines are manually segmented 
to obtain FG information, used during training and 
evaluation. The shadows also are manually segmented and 
discarded. To demonstrate the performance of the method 
with less optimal segmentation, an experiment has been 
carried out by eroding and dilating the manually segmented 
outlines (Section 4.6). A total of 96 frames have been used 
in training and 192 frames for testing. The 96 training 
frames have 8 repetitions for each light condition, location 
and camera (8 frames x 2 light conditions x 3 locations x 2 
cameras). The 192 test frames have 2 repetitions for each 
person, light condition, location and camera (8 persons x 2 
directions x 2 light conditions x 3 locations x 2 cameras). 

Camera's AE (aperture, exposure time and gain), 
auto-white balance (correction between bands) and gamma 
correction have been disabled. 

4.2 Similarity and error measure 

We evaluate the intensity correction by measuring the 
dissimilarity between persons using their histograms. We 
choose the EMD [26], normalised between 0 and 1, a 
cross-bin algorithm which provides a minimum cost 
solution to transform one image distribution into another 
and is robust against noise and small intensity variations. 
We calculate the Euclidean EMD for each channel and the 
combined value as the average value of these three EMDs. 

Fig. 2 Examples of light changes in both experimental scenarios 

Images show variations because of: natural outdoor light variations [(a) and (b)]\ switch the indoor lights on (c); and open (d) and close (e) multiple doors in the 
indoor scenario 

http://www
http://eecs.qmul.ac.uk/~ccloy/downloads_qmul_underground_reid
http://vision
http://soe.ucsc.edu/node/178
http://lrs.icg.tugraz.at/datasets/prid/index.php
https://www.researchgate.net/publication/26446


Fig. 3 Example images of each person 

The top-left is used for training 

We calculated both the intra-class and inter-class distances. 
For intra-class, denoted with suffix ii, we compare between 
the same person in the different acquisitions: several 
locations, illumination conditions and cameras. For 
inter-class, denoted with suffix ij, any person is compared 
with the other people under the same and different 
photometric conditions. 

We evaluate the performance of the system with an error 
measure that is based on normalised cumulative histograms 
distribution (CHD) of the computed EMDs. For the 
intra-class CHD„ closer to 0 are better whereas for the 
inter-class CHD¿, closer to 1 are better. Ideally, our 
algorithm increases the distance between CHD„ and CHD^ 
as much as possible. Using the cumulative histograms, for 
any threshold value n^: FP(«th) = CHD,y(«th) and FN(«th) = 
1 - CHD„(«th)> w e search for that threshold where the 
minimal error criterium MEC — FP + FN is minimal. 

For this MEC, high error rates are expected because of pose 
variations, partial occlusions, inter-reflections, self-casting 
shadows, which all cause the persons to appear differently. 
The research in this paper only corrects for changes in 
colour distributions caused by light variations. 

The receiver operating characteristic (ROC) curve is used 
to visualise the performance, where the true positive rate is 
TP(r) = 1 - FN(r). 

4.3 Implementation of the reference methods 

The obtained results are compared with four cases: direct 
measurements without any correction, a state-of-the-art 
automatic exposure algorithm (AE) [3], a colour correction 
based on the inverse-intensity chromaticity (IIC) [27] and a 
combination AE + IIC. 

To allow a fair comparison and use the same input images 
for all methods, the AE algorithm estimates a correction 
coefficient based on the brightness of the image, without 
modifying the camera gain and exposure time. It is based 
on three parameters: the reference average value to be 
reached, the number of regions and the weight values of 
each region. The reference value is calculated by estimating 
the average value of the illumination reference images of 
the test set. Liu did not specify the method to set up the 
number of regions or the weight values. These choices 
depend on the scenario and how it responds to the light 
changes. We decide to split the scenario into three regions 
as it is shown in Fig. 4. Regarding the weights, we choose 
0.15, 0.7 and 0.15 from left to right for camera 1. We give 
a higher weight to the central region because people are 
placed there. In a similar way, the chosen weights for 
camera 2 are 0.2, 0.7 and 0.1. In this case, the region on 
the left has a greater weight than the region on the right 

Camera 1 

Camera 2 
Fig. 4 Region setup used by the AE algorithm described in 
Section 4.3 



because the light coming from outside is reflected on the wall 
on the left. These weights have been chosen empirically after 
testing several variations, being the ones that perform the best. 

Similar to AE, IIC is applied to each channel using Tan's 
implementation. With AE + IIC, IIC correction is applied 
over the AE-corrected image. 

4.4 Intra-camera results 

An example of a corrected image for the intra-camera 
correction is shown in Figs. 5a, b and d. Table 3(a) and (b) 
shows the numerical results of intra-camera experiments. 
The results from camera 1 show an error reduction for our 
algorithm compared with the uncorrected case (MEC is 
0.42 and 0.66, respectively), which implies an improvement 
of 37%. The IIC algorithm do not work as well as LCM, 
and AE makes the uncorrected case even worse. 

In the ROC curve (Fig. 6), the improvement of our 
algorithm is very substantial whereas the IIC algorithm, 
which yields the best alternative results, hardly outperforms 
the original images. 

This is probably because our method rejects the 
overexposed regions of the BG, making our algorithm more 
robust against highlights. Furthermore, the BG-FG 
relationship is more reliable than the transformation values 
calculated by AE and IIC algorithms, as the BG-FG 
relationship has been trained for local rather than global 
illumination changes. 

Table 3 Results of cameras correction 

Fig. 5 Example of image correction 

(a) Original image to be corrected. Corrected images for the intra-camera (b) 
and inter-camera (c) results. Reference images taken in the intra-camera (d) 
and inter-camera (e) experiment. Images (b) and (c) are more similar to 
images (d) and (e) in colour distribution, respectively 

Method 

(a) Camera 1 correction 
uncorrected 
AE[3] 
IIC [27] 
AE + IIC [3, 27] 
LCM 
LCM (-30, +60) 
LCM (-90, +200) 

(b) Camera 2 correction 
uncorrected 
AE[3] 
IIC [27] 
AE + IIC [3, 27] 
LCM 
LCM (-30, +60) 
LCM (-90, +200) 

MEC 

0.66 
0.69 
0.64 
0.67 
0.42 
0.50 
0.55 

0.59 
0.39 
0.70 
0.57 
0.40 
0.40 
0.38 

(c) Comparing ¡mages between both cameras 
uncorrected 
AE[3] 
IIC [27] 
AE + IIC [3, 27] 
LCM 
LCM (-30, +60) 
LCM (-90, +200) 

0.69 
0.61 
0.71 
0.66 
0.50 
0.52 
0.69 

Improvement, % 

-
- 4 
4 

-1 
37 
24 
18 

-
34 

-19 
4 

32 
32 
36 

-
12 
-4 
5 

27 
24 
-1 

Value of the MEC besides the improvement compared with the 
¡mages with no correction are shown. Each row is: uncorrected 
¡mages, by using the AE algorithm (AE), the IIC, AE plus IIC 
(AE + IIC) and our algorithm using three different segmentations 
for the FG: (i) manual - LCM - (ii) modifying the area size of the 
manual segmentations in -30 and 60% - LCM (-30, +60) - and 
(¡ii) area variations of -90 and 200% - LCM (-90, +200) 

The results in camera 2 confirm that LCM outperforms the 
others. Note that IIC does not improve the uncorrected case 
[in Table 3(b)] and - in comparison with (AE) alone - it 

- Uncorrected 

LCM 

LCM (-30.+60) 

LCM (-90.+200) 

0.4 0.5 0.6 

False positive rate 
0.S 

Fig. 6 ROC curve for camera 1 

True positive rate against the false positive rate of the five analysis cases are 
shown. The lightest solid lines belong to the uncorrected case, the black solid 
lines to the best alternative performance (IIC [27]), the middle grey solid lines 
to our algorithm using a manual segmentation, the dashed ones to our 
algorithm with segmentation errors of —30 and +60% of area variation and 
the dotted ones to our algorithm with segmentation errors of —90 and 200% 



Table 4 Estimated ICCM parameters using to correct ¡mages 
from camera 1 

Channel 

red 
green 
blue 

1.1909 
1.2043 
1.3264 

-0.0118 
-0.0150 
-0.0195 

Intensity range is [0,1] 

also does not improve when both methods (AE + IIC) are 
combined. Although results of AE are positive and 
noteworthy (MEC is 0.39 and the improvement is 34%), 
LCM error is similar (MEC is 0.40 and the improvement is 
32%). 

In the case of camera 2, the most important source of light 
is the sun, and the indoor lights have less influence. Although 
indoor lights have been switched on/off, the influence of the 
outdoor light variation produces a higher intensity and colour 
variation. Thus, it seems that IIC is not able to estimate the 
correct main illuminant in every picture. In addition, the 
indoor lights do not over expose the image acquisition as 
happened in camera 1. It can be said that the multiple light 
sources and overexposed BG areas in camera 1 make a 
more complex scenario compared with camera 2. This 
makes photometric variations in camera 2's FG objects 
simpler, so it seems reasonable that errors in uncorrected 
images are slightly smaller than in camera 1, as Table 3(b) 
shows. 

To conclude, results on this dataset demonstrate that our 
algorithm is able to correct photometric variations in objects 
even in complex illumination scenarios on condition that 
BG areas are close enough to FG objects and the camera 
works on the linear region. In this context, complex 
scenarios may be those where there are a multitude of 
reflections on Lambertian surfaces, at least one illuminant is 
changed and the intensity of lights vary significantly. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
False positive rate 

Fig. 7 ROC curve for camera 2 

Figure description is similar to Fig. 6. In this case, the best alternative is the 
AE [3] 

4.6 Robustness against segmentation errors 

To evaluate the robustness of our method against 
segmentation errors in the FG extraction, an additional 
experiment was carried out. 

The size of each FG object was extended or reduced. The 
values of -30/60% and -90/200% were chosen to reflect 
small and large errors in the FG segmentation, where a 
negative value refers to a reduction and a positive value 
refers to an extension. For each image, the decision about 
the extension or reduction was random. 

4.5 Inter-camera results 

An example of a corrected image for the inter-camera 
correction is shown in Figs. 5a, c and e. The estimates of 
the ICCM are shown in Table 4. 

Table 3(c) shows the results of inter-camera correction. 
Compared with intra-camera results the MEC are slightly 
worse than the corresponding mean of cameras 1 and 2 
MEC. Deterioration of LCM is probably because of 
different illuminations and shadow geometries at both 
cameras. Still our algorithm significantly outperforms the 
others. As Table 3(c) shows, the MEC improvement of IIC 
correction is negative and using the AE + IIC algorithm is 
fairly close to the uncorrected case (a difference of 5%) 
because of the poor performance of camera 1. The 
inter-camera results show that LCM obtains a large 
improvement of 27%, which it is noteworthy and more than 
twice the AE algorithm's improvement. Fig. 8 confirms the 
LCM improvement: although AE curve is over the 
uncorrected curve for almost every false positive rate value, 
the LCM curve is even closer to 1 and, hence, much better 
than AEs. 

These results show that in a non-overlapping multi-camera 
system - although scenarios' illumination is different (indoor 
and outdoor) - our algorithm is able to estimate a correction 
that helps to maintain the colour appearance of objects in such 
scenarios. 

— Uncorrected 

— AE 

— LCM 

• - LCM (-30.+60) 

• • • LCM (-90.+200) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
False positive rate 

Fig. 8 ROC curve for both cameras 

Figure description is similar to Fig. 7. In this case, the best alternative is the 
AE [3] 



Note that the scope of this paper is on colour correction. 
For colour correction, the FG segmentation is only used 
during training mode whereas the correction during 
run-time is based on BG intensities only. FG segmentation 
during run-time only is used for evaluation. To determine 
the sensitivity of the colour correction method, only the 
segmentation during training mode is modified by erosions 
and dilations, and not the segmentation used in evaluation 
within the EMD matching. 

The assessment was the same as the exposed above. The 
results are presented in Table 3 and Figs. 6-8 for 
comparison with the rest of the methods. These demonstrate 
that our method maintains similar error rates when the size 
variation is reduced by 30% and enlarged by 60%. In this 
case it still outperforms the AE, IIC and AE + IIC methods. 
The deterioration of the algorithm becomes noticeable when 
the segmentation errors are always large (in the case of -90 
and 200%). 

5 Conclusions 

In this paper, we describe a computationally efficient method 
to correct photometric variations between scenarios. For each 
image, these variations are estimated by simple vector 
operations and the correction is based on a double linear 
mapping. This is linked with the fact that, contrary to other 
colour constancy algorithms, the illuminants do not have to 
be estimated. Therefore, the scenarios are easy to calibrate 
and the use of canonical, known illuminants or 
colour-checker patterns are not required. 

The main conclusions of this paper are the following: our 
algorithm performs much better than uncorrected images 
and state-of-the-art AE together with a representative colour 
correction algorithm. Furthermore, it is able to work 
properly in complex environments with several illuminants 
because, unlike most of inter-camera and other correction 
methods, local photometric changes are taken into account 
and the estimate of the BG-FG relation makes it easy to 
adapt changes in any object using BG information. It is also 
robust against FG segmentation errors. 

Our algorithm is able to correct changes in the settings of 
the camera as long as the change in the camera response is 
linear. Gain, aperture and exposure time variations mostly 
produce linear variations in the image if the post-processing 
is also linear. In future work, we will investigate a 
combination of non-linear in-camera processing as present 
in many cameras with our algorithm. This shall include 
automatic characterisation of such non-linear processing 
[31-33] and an adequate compensation. 

Future work will also involve the development of a 
segmentation algorithm that automatically creates a 
segmentation of BG regions that are classified by their 
response to the illumination changes. 
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