13,579 research outputs found

    Multi-criteria approximation schemes for the resource constrained shortest path problem

    Get PDF
    In the resource constrained shortest path problem we are given a directed graph along with a source node and a destination node, and each arc has a cost and a vector of weights specifying its requirements from a set of resources with finite budget limits. A minimum cost source-destination path is sought such that the total consumption of the arcs from each resource does not exceed its budget limit. In the case of constant number of weight functions we give a fully polynomial time multi-criteria approximation scheme for the problem which returns a source-destination path of cost at most the optimum, however, the path may slightly violate the budget limits. On the negative side, we show that there does not exist polynomial time multi-criteria approximation scheme for the problem if the number of weight functions is not a constant. The latter result applies to a broad class of problem as well, including the multi-dimensional knapsack, the multi-budgeted spanning tree, the multi-budgeted matroid basis and the multi-budgeted bipartite perfect matching problems

    New approaches to multi-objective optimization

    Get PDF
    A natural way to deal with multiple, partially conflicting objectives is turning all the objectives but one into budget constraints. Many classical optimization problems, such as maximum spanning tree and forest, shortest path, maximum weight (perfect) matching, maximum weight independent set (basis) in a matroid or in the intersection of two matroids, become NP-hard even with one budget constraint. Still, for most of these problems efficient deterministic and randomized approximation schemes are known. Not much is known however about the case of two or more budgets: filling this gap, at least partially, is the main goal of this paper. In more detail, we obtain the following main results: Using iterative rounding for the first time in multi-objective optimization, we obtain multi-criteria PTASs (which slightly violate the budget constraints) for spanning tree, matroid basis, and bipartite matching with k=O(1)k=O(1) k = O ( 1 ) budget constraints. We present a simple mechanism to transform multi-criteria approximation schemes into pure approximation schemes for problems whose feasible solutions define an independence system. This gives improved algorithms for several problems. In particular, this mechanism can be applied to the above bipartite matching algorithm, hence obtaining a pure PTAS. We show that points in low-dimensional faces of any matroid polytope are almost integral, an interesting result on its own. This gives a deterministic approximation scheme for kk k -budgeted matroid independent set. We present a deterministic approximation scheme for kk k -budgeted matching (in general graphs), where k=O(1)k=O(1) k = O ( 1 ) . Interestingly, to show that our procedure works, we rely on a non-constructive result by Stromquist and Woodall, which is based on the Ham Sandwich Theorem

    Coverage, Matching, and Beyond: New Results on Budgeted Mechanism Design

    Full text link
    We study a type of reverse (procurement) auction problems in the presence of budget constraints. The general algorithmic problem is to purchase a set of resources, which come at a cost, so as not to exceed a given budget and at the same time maximize a given valuation function. This framework captures the budgeted version of several well known optimization problems, and when the resources are owned by strategic agents the goal is to design truthful and budget feasible mechanisms, i.e. elicit the true cost of the resources and ensure the payments of the mechanism do not exceed the budget. Budget feasibility introduces more challenges in mechanism design, and we study instantiations of this problem for certain classes of submodular and XOS valuation functions. We first obtain mechanisms with an improved approximation ratio for weighted coverage valuations, a special class of submodular functions that has already attracted attention in previous works. We then provide a general scheme for designing randomized and deterministic polynomial time mechanisms for a class of XOS problems. This class contains problems whose feasible set forms an independence system (a more general structure than matroids), and some representative problems include, among others, finding maximum weighted matchings, maximum weighted matroid members, and maximum weighted 3D-matchings. For most of these problems, only randomized mechanisms with very high approximation ratios were known prior to our results

    Bi-Criteria and Approximation Algorithms for Restricted Matchings

    Full text link
    In this work we study approximation algorithms for the \textit{Bounded Color Matching} problem (a.k.a. Restricted Matching problem) which is defined as follows: given a graph in which each edge ee has a color cec_e and a profit peQ+p_e \in \mathbb{Q}^+, we want to compute a maximum (cardinality or profit) matching in which no more than wjZ+w_j \in \mathbb{Z}^+ edges of color cjc_j are present. This kind of problems, beside the theoretical interest on its own right, emerges in multi-fiber optical networking systems, where we interpret each unique wavelength that can travel through the fiber as a color class and we would like to establish communication between pairs of systems. We study approximation and bi-criteria algorithms for this problem which are based on linear programming techniques and, in particular, on polyhedral characterizations of the natural linear formulation of the problem. In our setting, we allow violations of the bounds wjw_j and we model our problem as a bi-criteria problem: we have two objectives to optimize namely (a) to maximize the profit (maximum matching) while (b) minimizing the violation of the color bounds. We prove how we can "beat" the integrality gap of the natural linear programming formulation of the problem by allowing only a slight violation of the color bounds. In particular, our main result is \textit{constant} approximation bounds for both criteria of the corresponding bi-criteria optimization problem

    Approximation Schemes for Multi-Budgeted Independence Systems

    Full text link
    A natural way to deal with multiple, partially conflicting objectives is turning all the objectives but one into budget constraints. Some classical optimization problems, such as spanning tree and forest, shortest path, (perfect) matching, independent set (basis) in a matroid or in the intersection of two matroids, become NP-hard even with one budget constraint. Still, for most of these problems efficient deterministic and randomized approximation schemes are known. For two or more bud-gets, typically only multi-criteria approximation schemes are available, which return slightly infeasible solutions. Not much is known however for strict budget constraints: filling this gap is the main goal of this paper. It is not hard to see that the above-mentioned problems whose solution sets do not correspond to independence systems are inapproximable al-ready for two budget constraints. For the remaining problems, we present approximation schemes for a constant number k of budget constraints using a variety of techniques: i) we present a simple and powerful mech-anism to transform multi-criteria approximation schemes into pure ap-proximation schemes. This leads to deterministic and randomized ap-proximation schemes for various of the above-mentioned problems; ii) we show that points in low-dimensional faces of any matroid polytope are almost integral, an interesting result on its own. This gives a de-terministic approximation scheme for k-budgeted matroid independent set; iii) we present a deterministic approximation scheme for 2-budgeted matching. The backbone of this result is a purely topological property of curves in R2
    corecore