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Abstract A natural way to deal with multiple, partially conflicting objectives is turn-
ing all the objectives but one into budget constraints. Many classical optimization
problems, such as maximum spanning tree and forest, shortest path, maximum weight
(perfect) matching, maximum weight independent set (basis) in a matroid or in the
intersection of two matroids, become NP-hard even with one budget constraint. Still,
for most of these problems efficient deterministic and randomized approximation
schemes are known. Not much is known however about the case of two or more bud-
gets: filling this gap, at least partially, is the main goal of this paper. In more detail,
we obtain the following main results: Using iterative rounding for the first time in
multi-objective optimization, we obtain multi-criteria PTASs (which slightly violate
the budget constraints) for spanning tree, matroid basis, and bipartite matching with
k = O(1) budget constraints. We present a simple mechanism to transform multi-
criteria approximation schemes into pure approximation schemes for problems whose
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526 F. Grandoni et al.

feasible solutions define an independence system. This gives improved algorithms for
several problems. In particular, this mechanism can be applied to the above bipar-
tite matching algorithm, hence obtaining a pure PTAS. We show that points in low-
dimensional faces of any matroid polytope are almost integral, an interesting result
on its own. This gives a deterministic approximation scheme for k-budgeted matroid
independent set. We present a deterministic approximation scheme for k-budgeted
matching (in general graphs), where k = O(1). Interestingly, to show that our proce-
dure works, we rely on a non-constructive result by Stromquist and Woodall, which
is based on the Ham Sandwich Theorem.

Keywords Multi-objective optimization · Multi-budgeted optimization ·
Approximation algorithms · Combinatorial optimization

Mathematics Subject Classification 90C29 · 90C27

1 Introduction

In many applications, one has to compromise between several, partially conflicting
goals. Multi-Objective Optimization is a broad area of study in Operations Research,
Economics and Computer Science (see [17,36] and references therein). A variety
of approaches have been employed to formulate such problems. Here we adopt the
Multi-Budgeted Optimization approach [36]: we cast one of the goals as the objective
function, and the others as budget constraints. More precisely, we are given a (finite)
set F of solutions for the problem, where each solution is a subset S of elements from
a given universe E (e.g., the edges of a graph). We are also given a weight function
w : E → Q+ and a set of k = O(1)1 length functions �i : E → Q+, 1 ≤ i ≤ k,
that assign a weight w(S) := ∑

e∈S w(e) and an i th-length �i (S) := ∑
e∈S �i (e),

1 ≤ i ≤ k, to every candidate solution S. For each length function �i , there is a budget
Li ∈ Q+. The k-budgeted optimization problem can then be formulated as follows:

minimize/maximize w(S) subject to S ∈ F , �i (S) ≤ Li , 1 ≤ i ≤ k.

We next use OPT to denote an optimum solution. A multi-criteria (α0, α1, . . . , αk)-
approximation algorithm, αi ≥ 1, is a polynomial-time algorithm which produces an
α0 approximate solution S such that �i (S) ≤ αi Li for all 1 ≤ i ≤ k. In particular,
w(S) ≥ w(OPT )/α0 for a maximization problem, and w(S) ≤ α0 w(OPT ) for a
minimization one. In a polynomial time approximation scheme (PTAS), α0 = 1 + ε

for any given constant ε > 0, and all the other αi ’s are 1. In a multi-criteria PTAS, all
the αi ’s are at most 1+ε. Hence, a multi-criteria PTAS might return slightly infeasible
solutions. We sometimes call pure a standard PTAS, in order to stress its difference
from a multi-criteria PTAS.

Following the literature on the topic, we will focus on the set of problems below:

1 The assumption that k is a constant is crucial in this paper, since many of the presented algorithms will
have a running time that is exponential in k, but polynomial for constant k.
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New approaches to multi-objective optimization 527

• k-budgeted (perfect) matching: F is given by the (perfect) matchings of an
undirected graph G = (V, E).

• k-budgeted spanning tree (forest): F is given by the spanning trees (forests)
of G.

• k-budgeted shortest path: F is given by the paths connecting two given nodes
s and t in G.

• k-budgeted matroid independent set (basis): F is given by the independent
sets (bases) of a matroid M = (E, I).2

• k-budgeted matroid intersection independent set (basis): F is given by
the independent sets (bases) in the intersection of two matroids M1 = (E, I1) and
M2 = (E, I2).

We will consider the minimization version of k-budgeted shortest path. For
all the other problems, the minimization version is either trivial or equivalent to its
maximization counterpart. Therefore, we will focus only on the maximization version
of those problems.

All the above problems are polynomial-time solvable (see, e.g., [23]) in their unbud-
geted version (k = 0), but become NP-hard [1,6] even for a single budget constraint
(k = 1). For the case of one budget (k = 1), PTASs are known for spanning tree

[35] (see also [21]), shortest path [42] (see also [20,27]), and matching [6]. The
approach in [35] easily generalizes to the case of matroid basis. A PTAS is also
known for matroid intersection independent set [6]. In the case 2 ≤ k = O(1),
one can use a very general construction by Papadimitriou and Yannakakis [32]. Their
technique is based on the construction of ε-approximate Pareto curves, and it can be
applied to all the problems whose exact version admits a pseudo-polynomial-time
(PPT) deterministic (resp., Monte-Carlo) algorithm. We recall that the exact version
of a given optimization problem asks for a feasible solution of exactly a given target
weight. This leads to multi-criteria deterministic (resp., randomized) approximation
schemes (with αi = 1 + ε for all i). In particular, one can achieve the mentioned
approximation for k-budgeted spanning tree, k-budgeted shortest path,
and k-budgeted (perfect) matching.

We note that, if one requires feasible solutions, several of the mentioned prob-
lems are inapproximable already for two budget constraints (see also Sect. 2). More
precisely, the corresponding feasibility problem is NP-complete. In particular, this
holds for k-budgeted shortest path, k-budgeted perfect matching and k-
budgeted spanning tree (and hence also for k-budgeted matroid basis and
k-budgeted matroid intersection basis). Furthermore, for these problems we
can exchange the role of the objective function with any one of the budget constraints.
We can conclude that in any (polynomial-time) (α0, α1, . . . , αk)-approximation algo-
rithm for these problems, at most one αi can be 1.

2 We recall that E is a finite ground set and I ⊆ 2E is a nonempty family of subsets of E (independent
sets) which have to satisfy the following two conditions: (i) I ∈ I, J ⊆ I ⇒ J ∈ I and (ii)
I, J ∈ I, |I | > |J | ⇒ ∃z ∈ I\J : J ∪ {z} ∈ I. A basis is a maximal independent set. For all matroids
used in this paper we make the usual assumption that independence of a set can be checked in polynomial
time. For additional information on matroids, see e.g. [38, Volume B].
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528 F. Grandoni et al.

We also remark that, for all the other problems, the set of solutions F forms an
independence system. In other terms, for S ∈ F and S′ ⊆ S, we have S′ ∈ F .

Our Results. We obtain the following main results:
(1) Using the iterative rounding framework, we obtain simple determinisitc

(1, 1 + ε, . . . , 1 + ε)-approximation algorithm for k-Budgeted Spanning Tree

and k-Budgeted Matroid Basis. This improves on the (1 + ε, 1 + ε, . . . , 1 + ε)-
approximation algorithms for the same problems in [32], and it is best possible
approximation-wise from the above discussion. Furthermore, we obtain a (more
involved) deterministic (1 + ε, 1 + ε, . . . , 1 + ε)-approximation algorithm for k-
Budgeted Bipartite Matching. In contrast, the approach in [32] achieves the
same approximation for general graphs, but the algorithm is Monte-Carlo.

The algorithm for k-Budgeted Spanning Tree is rather simple; a vertex solution
for the natural LP relaxation of the problem is already sparse: it has about k edges
more than a spanning tree in its support due to the well-known laminarity of an
independent set of tight spanning tree constraints (see, e.g., [14]). We remove all edges
corresponding to variables of value zero, relax (remove) all the budget constraints, and
solve optimally the residual problem (which is a standard spanning tree problem). A
preliminary guessing phase ensures that the k edges not used in the tree do not add
much to the approximation bound for any of the budgets. This approach also gives a
very simple proof of the earlier result for the case k = 1 [35]. An identical approach
works also for the more general k-Budgeted Matroid Basis problem.

Our algorithm for k-Budgeted Bipartite Matching is more involved: after an
initial preprocessing phase, where the algorithm removes all edges with large weight
and large length, there is a decomposition phase. In that phase, we run an iterative
relaxation algorithm which uses the optimal solution of the natural LP formulation to
obtain a modified LP solution. The iterative algorithm ensures that the support of the
modified solution is a collection of h ≤ k vertex disjoint paths. Moreover, each of these
paths has small weight and length. In the final combination phase, we combine the
solutions on these paths to return one feasible matching. Each path can be decomposed
in two matchings. The algorithm picks one matching from each of the paths. While
the algorithm is a brute force enumeration over all choices (which are 2h ≤ 2k many),
a probabilistic argument is used to show that there exists a choice of a matching from
each path which provides a solution with the desired guarantee.

Perhaps even more importantly than these specific results, our main contribution
here is to demonstrate that the general framework of iterative rounding can be used to
obtain approximation algorithms for various multi-objective optimization problems.

(2) We present a simple but powerful mechanism to transform a multi-criteria
PTAS into a pure PTAS for problems whose feasible solutions define an independence
system. Similarly, a multi-criteria polynomial randomized time approximation scheme
(PRAS) can be transformed into a pure PRAS. The basic idea is as follows. We show
that a good solution exists even if we scale down the budgets by a small factor. This
is done by applying a greedy discarding strategy similar to the greedy algorithm
for knapsack. Applying a multi-criteria PTAS (given as a black box) to the scaled
problem gives a feasible solution for the original one, of weight close to the optimal
weight.
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To the best of our knowledge, this simple result was not observed before. Indeed, it
implies improved approximation algorithms for a number of problems. In particular,
we can combine our mechanism with the construction in [32]. For example, using
the PPT-algorithm for exact forest in [5], one obtains a PTAS for k-budgeted

forest. Similarly, the Monte-Carlo PPT-algorithm for exact matching in [30] gives
a PRAS for k-budgeted matching. The Monte-Carlo PPT-algorithms for exact

matroid intersection independent set in [9], which works in the special case of
representable matroids,3 implies a PRAS for the corresponding k-budgeted problem.

Of course, one can also exploit multi-criteria approximation schemes obtained
with different techniques. For example, exploiting the multi-criteria PTAS for
k-budgeted bipartite matching that we present in this paper, one obtains a PTAS
for the same problem. Very recently [10], a multi-criteria PRAS for k-budgeted

matroid independent set, based on dependent randomized rounding, has been
presented. This implies a PRAS for k-budgeted matroid independent set.

(3) Based on a different, more direct approach, we obtain a PTAS (rather than a
PRAS) for k-budgeted matroid independent set. The main insight here is a
structural property of faces of the matroid polytope4 which might be of independent
interest. Essentially, we show that points in low-dimensional faces of any matroid
polytope are almost integral (i.e., they contain few fractional components). More
precisely, if the face has dimension d, then at most 2d components are fractional.
A PTAS can then easily be derived as follows. We first guess the most expensive
elements in the optimum solution, and reduce the problem consequently. Then we
compute an optimal (basic) fractional solution: since the relaxation consists of the
matroid polytope with k additional linear constraints, the obtained fractional solution
lies on a face of the matroid polytope which is at most k-dimensional. Consequently, it
has at most 2k fractional components. By rounding down such fractional components,
we obtain a feasible integral solution with the desired approximation guarantee.

(4) Finally, we present a PTAS for k-budgeted matching (in arbitrary graphs).
Our PTAS works as follows. Let us confuse a matching M with the associated incidence
vector xM . We initially compute an optimal fractional matching x∗ to the natural
LP relaxation of k-budgeted matching, and express it as a convex combination
x∗ = ∑k+1

j=1 α j x j of k + 1 (or less) matchings x1, . . . , xk+1. Then we exploit a
merging procedure which, given two matchings x ′ and x ′′ with a parameter α ∈ [0, 1],
computes a matching y which is not longer than z := αx ′+(1−α)x ′′ with respect to all
k lengths, and has comparable weight. This procedure is applied successively: first on
the matchings x1 and x2 with parameter α = α1/(α1 + α2), hence getting a matching
y′. Then, on the two matchings y′ and x3 with parameter α = (α1+α2)/(α1+α2+α3),
and so on. The resulting matching is feasible and almost optimal, when performing a
preliminary guessing step before applying the patching procedure.

3 A matroid M = (E, I) is representable if its ground set E can be mapped in a bijective way to the
columns of a matrix over some field, and I ⊆ E is independent in M iff the corresponding columns are
linearly independent.
4 For some given matroid M = (E, I), the corresponding matroid polytope PI is the convex hull of the
incidence vectors of all independent sets.
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An interesting aspect of our procedure is that it relies on a non-constructive theorem
of Stromquist and Woodall, which in turn relies on the Ham Sandwich Theorem.
The theorem of Stromquist and Woodall implies that some structure exists, which
guarantees that the merging procedure we present works.

Related work. There are a few general tools for designing approximation algorithms
for budgeted problems. One basic approach is combining dynamic programming
(which solves the problem for polynomial weights and lengths) with rounding and scal-
ing techniques (to reduce the problem to the case of polynomial quantities). This leads
for example to the FPTAS for 1- budgeted shortest path [20,27,42]. Another
fundamental technique is the Lagrangian relaxation method. The basic idea is relax-
ing the budget constraints, and lifting them into the objective function, where they
are weighted by Lagrangian multipliers. Solving the relaxed problem, one obtains
two or more solutions with optimal Lagrangian weight, which can—if needed—be
patched together to get a good solution for the original problem. Demonstrating this
method, Goemans and Ravi [35] gave a PTAS for 1- budgeted spanning tree,
which also extends to 1- budgeted matroid basis. Inspired by this approach, Cor-
rea and Levin [12] presented algorithms for special classes of polynomial-time cov-
ering problems with an additional covering constraint. Using the same approach as
Goemans and Ravi, with an involved patching step, Berger, Bonifaci, Grandoni, and
Schäfer [6] obtained a PTAS for 1- budgeted matching and 1- budgeted matroid

intersection independent set. Their approach does not seem to generalize to the
case of multiple budget constraints.

The techniques above apply to the case of one budget. Not much is known for
problems with two or more budgets. However, often multi-criteria approximation
schemes are known, which provide a (1+ε)-approximate solution violating the budgets
by a factor (1 + ε). First of all, there is a very general technique by Papadimitriou and
Yannakakis [32], based on the construction of ε-approximate Pareto curves. Given an
optimization problem with multiple objectives, the Pareto curve consists of the set
of solutions S such that there is no solution S′ which is strictly better than S (in a
vectorial sense). Papadimitriou and Yannakakis show that, for any constant ε > 0,
there always exists a polynomial-size ε-approximate Pareto curve A, i.e., a set of
solutions such that every solution in the Pareto curve is within a factor of (1 + ε) from
some solution in A on each objective. Furthermore, this approximate curve can be
constructed in polynomial time in the size of the input and 1/ε whenever there exists
a PPT algorithm for the associated exact problem. This implies multi-criteria FPTASs
for k-budgeted spanning tree and k-budgeted shortest path. Furthermore,
it implies a multi-criteria FPRAS for k-budgeted (perfect) matching. The latter
result exploits the Monte-Carlo PPT algorithm for exact matching in [30].

The iterative rounding technique was introduced by Jain [22] for approximating
survivable network design problems. The basic idea in iterative rounding for covering
problems is as follows: Consider an optimal (fractional) vertex (or extreme point or
basic feasible) solution to a linear programming relaxation to the problem, and show
that there is a variable with high fractional value (e.g. at least 0.5) which can be rounded
up to an integer without losing too much (e.g. 2) in the approximation. The method
includes this rounded variable in the integral solution and iterates on a reduced prob-
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lem where the integral variables are fixed. This method can be enhanced by adding
a relaxation step, where one relaxes a constraint that can be ignored without losing
too much in the feasibility. The iterative relaxation method has been very successful
for approximating degree-constrained network design problems [24,25,39,43] and
directed network design problems [4]. Recently, using an iterative randomized round-
ing approach, Byrka et al. [8]developed an improved approximation algorithm for
the Steiner tree problem which was further developed in [16]. In the context of these
methods, our paper shows that iterative rounding is a powerful and flexible tool also
for approximating multi-objective optimization problems

All mentioned problems are easy in the unbudgeted version. Given an NP-hard
unbudgeted problem which admits a ρ-approximation, the parametric search tech-
nique in [28] provides a multi-criteria kρ-approximation algorithm violating each
budget by a factor kρ for the corresponding problem with k budgets. This only gives
a much weaker k-approximation for each objective for the problems considered here.
Other techniques lead to logarithmic approximation factors (see, e.g., [7,33,34]).

Subsequent work. After the conference versions of this paper, relevant progress has
been made on some of the problems that we consider here. In [11], a randomized round-
ing approach was suggested which leads to a PRAS for k-budgeted matroid inter-

section. Furthermore, also in [11], a PTAS for k-budgeted matching was obtained.
This algorithm is based on the derandomization of a PRAS which is obtained by apply-
ing Chernoff bounds to a randomized rounding procedure which iteratively merges
pairs of matchings along similar lines as we do here. To obtain sufficient concentration,
the symmetric difference of two matchings to merge is cut into �(k log k/ε2) pieces,
and within each of theses pieces the edges of one of the two matchings are kept, which
is decided randomly. When derandomizing the procedure, all possible 2�(k log k/ε2)

random outcomes have to be checked in each merge iteration. An advantage of the
algorithm for k-budgeted matching that we present here, is that the running time of
our algorithm does not depend on ε, apart of the initial guessing step. This is particu-
larly of interest for instances where the weight and lengths of each edge is sufficiently
small such that the guessing step can be simplified or even skipped.

Organization. The rest of this paper is organized as follows. In Sect. 2 we discuss the
approximability of part of the mentioned problems. In Sect. 3 we present our multi-
criteria approximation schemes for k-Budgeted Spanning Tree, k-Budgeted

Matroid Basis and k-Budgeted Bipartite Matching. Section 4 contains our
pure approximation schemes. In particular, we describe our feasibilization mecha-
nism, give a PTAS for k-Budgeted Matroid Independent Set, and a PTAS for
k-Budgeted Matching.

2 A simple hardness result

As a warm-up for the reader, we start by observing a few simple facts about the com-
plexity of the mentioned problems. The following simple theorem might be considered
as part of folklore.
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Theorem 2.1 For k ≥ 2, it is N P-complete to decide whether there is a feasible
solution for k-budgeted shortest path, k-budgeted perfect matching and
k-budgeted spanning tree (and hence also for k-budgeted matroid basis and
k-budgeted matroid intersection basis).

Proof It is sufficient to prove the claim for k = 2. Consider first 2- budgeted span-

ning tree: the claim for k-budgeted matroid basis and, consequently, for k-
budgeted matroid intersection basis trivially follows. Let P+ denote our (fea-
sibility) problem, and P± its variant with arbitrary (i.e., positive and/or negative)
lengths. Of course, P± includes P+ as a special case. To see the opposite reduction,
observe that a spanning tree contains exactly n − 1 edges. Hence, by adding a suf-
ficiently large value M to all the lengths, and adding (n − 1)M to the budgets, one
obtains an equivalent problem with non-negative lengths. It is easy to see that P±
includes as a special case the problem P= of determining, for a given length function
�′(·) and target L′, whether there exists a spanning tree T of length �′(S) = L′: a
reduction is obtained by setting �1(·) = −�2(·) = �′(·) and L1 = −L2 = L′. Hence it
is sufficient to show that P= is NP-complete. We do that via the following reduction
from partition: given α1, α2, . . . , αq ∈ Q and a target A ∈ Q, determine whether
there exists a subset of αi ’s of total value A. Consider graph Gq , consisting of q cycles
C1, C2, . . . , Cq , with Ci = (ai , bi , ci , di ) and ci = ai+1 for i = 1, 2, . . . , q − 1.
Let �′(ai bi ) = αi , i = 1, 2, . . . , k, and set to zero all the other lengths. The target is
L′ = A. Trivially, for each spanning tree T and each cycle Ci , the length of T ∩ Ci

is either 0 or αi . Hence, the answer to the input partition problem is yes if and only if
the same holds for the associated instance of P=.

Consider now 2- budgeted perfect matching. Since each perfect matching
contains exactly n/2 edges, with the same argument and notation as above it is suffi-
cient to prove the N P-completeness of the problem P= of determining, for a given
length function �′(·) and target L′, whether there exists a perfect matching M of length
�′(M) = L′. We use a similar reduction from partition as above. The graph is again
given by the cycles C1, . . . , Cq . However, this time each cycle forms a distinct con-
nected component. We use the same lengths �′ as above and we again set L ′ = A.
It is easy to see that, for each perfect matching M and each cycle Ci , the length of
M ∩ Ci is either 0 or αi . The claim follows. Of course, an even simpler reduction
is obtained when working with multigraphs, where the used graph can be reduced to
distinct connected components each consisting of two parallel edges.

Eventually consider 2- budgeted shortest path. We restrict our attention to
the graph Gq as used for the spanning tree reduction, and let (s, t) = (a1, cq). Since
any s-t path in this graph uses exactly 2q edges, we have by the usual argument that
it is sufficient to show the N P-completeness of the problem P= of determining, for a
given length function �′(·) and target L′, whether there exists an s-t path P of length
�′(P) = L′. The claim follows by essentially the same reduction as in the spanning
tree case. 
�

Corollary 2.2 Unless P = NP, there is no (α0, α1, . . . , αk)-approximation algo-
rithm with two or more αi ’s equal to 1 for the problems in the claim of Theorem
2.1.
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Proof Observe that one can exchange the roles of the objective function with any
one of the budget constraints for the mentioned problems. The claim follows from
Theorem 2.1. 
�

3 Multi-criteria approximation schemes

In this section we present our multi-criteria approximation schemes, which slightly
violate budget constraints. All these algorithms are based on iterative randomized
rounding. We start with the matroid basis case and conclude the section with the much
more involved algorithm for bipartite matching.

3.1 k-Budgeted matroid basis

Consider the following linear programming relaxation (LP-MB) for the problem. There
is a variable xe for each element e ∈ E . For any subset S ⊆ E , we denote x(S) =∑

e∈S xe. Here r denotes the rank function of the matroid M.

(LP-MB) maximize
∑

e∈E

w(e) xe

subject to x(E) = r(E),

x(S) ≤ r(S), ∀ S ⊆ E
∑

e∈E

�i (e)xe ≤ Li , ∀ 1 ≤ i ≤ k

xe ≥ 0, ∀ e ∈ E .

The polynomial time solvability of the linear program (LP-MB) follows from the
polynomial time separation of the rank constraints [13]. The following characterization
follows from a standard uncrossing argument. A proof is presented for completeness.

We recall that a chain is a family F of sets such that for any F1, F2 ∈ F , we have
either F1 ⊆ F2 or F2 ⊆ F1.

Furthermore, for any S ⊆ E , we denote by χ(S) ∈ {0, 1}E the incidence vector of
S, i.e., (χ(S))e = 1 for e ∈ S and (χ(S))e = 0 for e ∈ E\S.

Lemma 3.1 Let x be a vertex solution of the linear program (LP-MB) such that xe > 0
for each e ∈ E and let T = {S ⊆ E | x(S) = r(S)} be the set of all tight subset
constraints. Then there exists a chain C ⊆ T and a subset J ⊆ {1 ≤ j ≤ k |∑

e∈E �i (e)xe = Li } of tight length constraints such that

1. The vectors {χ(S) | S ∈ C} ∪ {�i | i ∈ J } are linearly independent,
2. span({χ(S) | S ∈ C}) = span({χ(S) | S ∈ T }),
3. |C| + |J | = |E |.

Proof Since (LP-MB) is a polytope with |E | variables, any vertex of (LP-MB) can be
described as the intersection of |E | constraints of (LP-MB) that are linearly indepen-
dent and tight with respect to x . Since xe > 0 for e ∈ E , the only constraints of (LP-
MB) that can be tight with respect to x are rank constraints, i.e., x(S) = r(S) for some
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Fig. 1 Algorithm for k-Budgeted Matroid Basis

set S ⊆ E , and length constraints. In general, there may be many choices of |E | linearly
independent and tight constraints that define x . Actually, among all tight constraints
with respect to x one can choose any maximal subset of linearly independent con-
straints to define x . We first choose a maximal number of linearly independent and tight
rank constraints, which can be represented by a family of tight sets C ⊆ T . Notice that
by choosing a maximal family we have span({χ(S) | S ∈ C})= span({χ(S) | S ∈ T }).
The chosen tight rank constraints define a face of the matroid polytope. By [38, p. 778],
any face of the matroid polytope can be defined by a family of tight rank constraints
corresponding to sets C that form a chain (together with possibly tight nonnegativity
constraints, which does not apply to our case since x > 0). Hence, we can choose
C to be a chain. We complete the chosen rank constraints with a maximal number
of tight length constraints that are linearly independent among each other and with
respect to the chosen rank constraints. We represent those constraints by the indices
of the chosen length constraints J ⊆ {1 ≤ j ≤ k | ∑

e∈E �i (e)xe = Li }. Hence,
{χ(S) | S ∈ F} ∪ {�i | i ∈ J } are linearly independent vectors by constructions.
Since they uniquely define x , we have |C| + |J | = |E |, thus completing the proof. 
�

Consider the algorithm for k-Budgeted Matroid Basis in Fig. 1. We first per-
form a pruning step to guess all elements in the optimal solution with i th-length at
least εLi

k for any 1 ≤ i ≤ k. Then we solve the linear program (LP-MB) for the
residual problem and remove all elements which the linear program sets to zero. We
then select the maximum weight basis under weight function w ignoring the rest of
the length functions. Observe that the last step is equivalent to relaxing all the k length
constraints and solving the integral linear program for the matroid basis problem.

Theorem 3.2 For any ε > 0, there exists an algorithm for k-Budgeted Matroid

Basis, k = O(1), which returns a basis B with �i (B) ≤ (1+ε)Li for each 1 ≤ i ≤ k,
and w(B) ≥ w(O PT ), where O PT is a maximum-weight basis that satisfies all
length constraints. The running time of the algorithm is O(mO(k2/ε)).

Proof Consider the algorithm described in Fig. 1, whose running time trivially satisfies
the claim. First observe that the support of a vertex solution to (LP-MB) on a matroid
with r(E) = n has at most n + k elements. In fact, from Lemma 3.1, we have
|E | = |C| + |J |. But |C| ≤ r(E) since C is a chain and x(C) equals a distinct integer
between 1 and r(E) for each C ∈ C. Also |J | ≤ k proving the claim. Let L ′

i be the
i th budget of the residual problem solved in step 2 of the algorithm. Observe that the
weight of the basis returned is at least the weight of the LP-solution and hence is at
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least w(O PT ). Now, we show that the i th-length is at most L′
i + εLi . Observe that

any basis must contain r(E) elements out of the r(E) + k elements in the support.
Hence, the longest i th-length basis differs from the minimum i th-length basis by at
most k · ε

k L′
i = εL′

i . But the minimum i th-length basis has i th-length at most the length
of the fractional basis which is at most L′

i . The claim follows. 
�

3.2 k-Budgeted bipartite matching

In this section we present a multi-criteria PTAS for k-Budgeted Bipartite Match-

ing.
We formulate the following linear programming relaxation (LP-BM) for the prob-

lem. We use δ(v) to denote the set of edges incident to v ∈ V .

(LP-BM) maximize
∑

e∈E

w(e) xe

subject to
∑

e∈δ(v)

xe ≤ 1, ∀ v ∈ V

∑

e∈E

�i (e)xe ≤ Li , ∀ 1 ≤ i ≤ k

xe ≥ 0, ∀ e ∈ E .

Consider the algorithm for k-Budgeted Bipartite Matching in Fig. 2. Our
algorithm works in three phases.

In the Preprocessing Phase, the algorithm guesses all the edges in O PT of weight
at least δ w(O PT ) or i th-length at least δLi for some i . Here δ is a proper function
of ε and k. This guessing can be performed in time polynomial in n (but exponential
in δ). The algorithm then includes all the guessed edges in the solution, and deletes
the remaining heavy edges and all edges incident to vertices which have already
been matched by guessed edges. It also reduces the Li ’s accordingly. After this phase
w(e) ≤ δ w(O PT ) and �i (e) ≤ δLi for each edge e.

In the Decomposition Phase our algorithm computes over a series of pruning and
iterative steps, a solution to the k-budgeted matching problem on a reduced graph that
is eventually a collection of paths. In Step (c), we discard nodes of degree 0 or of degree
3 or higher so as to leave only paths and cycles; Finally, one edge from each cycle is
removed in this step. In Step (e), we further break each path into subpaths of bounded
total weight and length. This pruning is useful in the later Combination Phase when
we choose one of the two matchings in each path: the bounded difference ensures that
one such combination is near optimal. The use of vertex solutions in all the residual
problems ensures that the total number of edges thrown away in all the above stages
is roughly of the order of the extra budget constraints in the problem which is O(k/γ )

for a parameter γ � O(ε/
√

k). Finally, we output a feasible fractional vertex solution
xg to the LP with the following properties:

(1) The support of xg is a collection of vertex disjoint paths S1, . . . , Sh where h ≤ k.
(2) xg is a (1 + ε/4)-approximate solution.
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Fig. 2 Algorithm for k-Budgeted Bipartite Matching

(3) For each Si , the degree constraints of the vertices of Si are tight except for its
endpoints.

(4) For each Si , w · xg(Si ) ≤ γ w(O PT ) and �i · xg(S j ) ≤ γ Li for each 1 ≤ i ≤ k
and 1 ≤ j ≤ h where γ = ε/

(
2
√

2k ln(k + 2)
)
.

In the final Combination Phase, the paths S1, . . . , Sh are used to compute an approx-
imate feasible (integral) solution. The algorithm enumerates over all the 2h matchings
which are obtained by taking, for each Si , one of the two matchings which partition Si .
This enumeration takes polynomial time since h ≤ k = O(1). A probabilistic argu-
ment is used to show that one of these matchings satisfies the claimed approximation
guarantee of the algorithm.

Analysis. We now analyze the three phases of the algorithm, bounding the corre-
sponding approximation guarantee and running time. Consider first the Preprocessing
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Phase. In order to implement Step (a), we have to consider all the possible choices,
and run the algorithm for each choice. Observe that there are at most (k + 1)/δ

such heavy edges in the optimal solution, and hence the number of possibilities is
O(m(k+1)/δ) = O(mO(k2√k log k/ε2)). The algorithm generates a different subproblem
for each possible guess of the edges. In the following we will focus on the run of the
algorithm where the guessed edges correspond to an optimal solution.

Consider now the Decomposition Phase. We prove that the output of this phase
satisfies the four properties stated above. Observe that by construction the algorithm
returns a collection of edge disjoint paths whose interior vertices have tight degree
constraints. Properties (3) and (4) follow by construction. We now argue that the
number of paths is bounded by k, proving Property (1).

Lemma 3.3 The number h of subpaths in Step (g) is upper bounded by k.

Proof Consider the solution x f . The number of variables |E | = ∑q
i=1 |Pi | is upper

bounded by the number of tight constraints. Let q ′ be the number of internal nodes
whose matching constraint is not tight in x f . Note that the matching constraints at
the endpoints of each path are not tight. Hence the number of tight constraints is at
most

∑q
i=1(|Pi | − 1) − q ′ + k = |E | − q − q ′ + k ≥ |E |, from which q + q ′ ≤ k.

Observe that, by definition, the number h of subpaths is exactly q +q ′ (we start with q
subpaths, and create a new subpath for each internal node whose matching constraint
is not tight). The claim follows. 
�

Clearly, solution xg satisfies all the constraints. We next argue that the weight of
xg is nearly optimal. In Steps (c), (e) and (g) we remove a subset of edges whose
optimal fractional value is larger than zero in the step considered. In the following
lemma we bound the number of edges removed. Due to the Preprocessing Phase, the
weight of these edges is negligible, which implies that the consequent worsening of
the approximation factor is sufficiently small. This proves Property (2).

Lemma 3.4 The algorithm removes at most

1. 7k edges in Step (c);
2. (k + 1)/γ edges in Step (e);
3. 2k edges in Step (g).

Proof (1) In the beginning of Step (c), all variables are strictly fractional. Thus, every
vertex in V1, the set of vertices with tight degree constraints, has degree at least
two. Let E be the residual edges. Note that |E | ≤ |V1| + k since the number of
tight constraints is at most |V1| + k. Let H be the set of nodes of degree at least 3.
Observe that

2(|V1| + k) ≥ 2|E | ≥
∑

v∈V1

deg(v) ≥
∑

v∈V1\H

2

+
∑

v∈H

deg(v) �⇒
∑

v∈H

deg(v) ≤ 2|H | + 2k.

Since deg(v) ≥ 3 for each v ∈ H we have |H | ≤ 2k. Thus
∑

v∈H deg(v) ≤ 6k.
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After removing nodes of degree 0 and at least 3, the graph consists of a set of
paths and cycles. Let C1, C2, . . . , Cq be the set of cycles, and P1, P2, . . . , Pr be
the set of paths. We next show that q ≤ k with an analogous counting argu-
ment, and hence at most k more edges are removed. Since G is bipartite, each
cycle Ci must be even and therefore the corresponding matching constraints must
be dependent. Moreover, the endpoints of each path cannot correspond to tight
matching constraints. Thus the total number of edges over all such even cycles is
|E | = ∑q

i=1 |Ci | + ∑r
j=1 |Pj | while the number of tight and independent degree

constraints and budget constraints is at most
∑q

i=1(|Ci |− 1)+∑r
j=1(|Pj |− 1)+

k = |E | − q − r + k. Since the number of variables is at most the number of tight
and independent constraints at any vertex solution, we obtain that the number of
cycles and paths altogether is at most k.

(2) Each minimal subpath P ′ considered in Step (e) satisfies either w(P ′) > γ w(xd)

or �i (P ′) > γ �i (xd) for some i . Since the edges of P ′ are not considered any
more in the following iterations of Step (e), the condition w(P ′) > γ w(xd) can
be satisfied at most 1/γ times. Similarly for the condition �i (P ′) > γ �i (xd).
It follows that the number of minimal subpaths, and hence the number of edges
remove, is upper bounded by (k + 1)/γ .

(3) Let V ′ be the set of internal vertices for which the degree constraints are not
tight in the paths P1, . . . , Pq and let V1 be the set of vertices with tight degree
constraints. Thus, we have deg(v) ≥ 2 for each v ∈ V1 ∪V ′. But the total number
of edges is at most |V1| + k. Thus we have |V ′| ≤ k. We remove exactly two
edges for each vertex in V ′ obtaining the claimed bound.


�
Each of the steps (b) to (g) is run polynomially many times and takes polynomial

time. Hence the overall running time of the Decomposition Phase is polynomial.
Consider eventually the Combination Phase. As described earlier, the running time

of this phase is bounded by O(2knO(1)). The following lemma, which is the heart
of our analysis, shows that a subset M ′ satisfying Properties (i) and (ii) defined in
the Combination Phase (h) always exists. Henceforth the algorithm always returns a
solution. Although we use a randomized argument to prove the lemma, the algorithm
is completely deterministic and enumerates over all solutions. Recall that M j and M̄ j

are the two matchings which partition subpath S j .

Lemma 3.5 In Step (h) there is always a set of edges M ′ satisfying Properties (i) and
(ii).

Proof Consider the following packing problem

(PACK ) maximize
h∑

j=1

(y j w(M j ) + (1 − y j ) w(M̄ j ))

subject to
h∑

j=1

(y j �i (M j ) + (1 − y j ) �i (M̄ j )) ≤ Li , ∀ 1 ≤ i ≤ k

y j ∈ {0, 1}, ∀ 1 ≤ j ≤ h.
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We can interpret the variables y j in the following way: M ′ ∩ S j = M j if y j = 1,
and M ′ ∩ S j = M̄ j otherwise. Given a (possibly fractional and infeasible) solution y
to PACK, we use w(y) and �i (y) as shortcuts for

∑h
j=1(y j w(M j )+ (1− y j ) w(M̄ j ))

and
∑h

j=1(y j �i (M j ) + (1 − y j ) �i (M̄ j )), respectively.
We first show that the solution xg can be interpreted as a feasible solution yg to the

linear relaxation of PACK as follows. Consider each subpath S j . By definition, each
matching constraint at an internal node of S j is tight. This implies that all the edges e
of M j (resp., M̄ j ) have the same value xg

e =: yg (resp., xg
e =: 1 − yg). Thus, we have

w(yg) = w(xg).
Now, we construct an integral solution y′ in the following manner. Independently,

for each path Si , select Mi with probability yg
i and M̄i with probability 1 − yg

i . Note
that E[w(y′)] = w(yg) and E[�i (y′)] = �i (yg) ≤ Li for all i . In order to prove the
claim, it is sufficient to show that, with positive probability, one has

w(y′) ≥ (1 − ε/2)w(xg) and li (y′) ≤ (1 + ε/2)li (xg) for all i .

This implies that a matching satisfying (i) and (ii) always exists, and hence the algo-
rithm will find it.

By Step (e), switching one variable of y′ from 1 to 0 or vice versa can change the
cost and i th-length of y′ at most by γ w(xg) and γ �i (xg), respectively. Using the
method of bounded differences (see, e.g., [29]):

Pr(w(y′) < E[w(y′)] − t) ≤ e
− t2

2h(γ w(xg ))2 and

Pr(�i (y′) > E[�i (y′)] + t) ≤ e
− t2

2h(γ �i (xg ))2 .

Recalling that E[w(y′)] ≥ w(xg), h ≤ k, and setting t = ε/2 · w(xg) =
γ w(xg)

√
2k ln(k + 2),

Pr(w(y′)<w(xg)−ε/2 · w(xg))≤ Pr(w(y′)< E[w(y′)] − γ w(xg)
√

2k ln(k + 2))

≤ e−(γ w(xg))2 2k ln(k+2)/2h(γ w(xg))2

≤ e− ln(k+2) = 1

k + 2
.

Similarly, for all i ,

Pr(�i (y′) > �i (xg) + ε/2 · �i (xg)) ≤ 1
k+2 .

From the union bound, the probability that y′ does not satisfy Property (ii) is therefore
at most k+1

k+2 < 1. The claim follows. 
�
Theorem 3.6. For any ε > 0, there exists a deterministic algorithm for k-Budgeted

Bipartite Matching, k = O(1), which returns a matching M of weight w(M) ≥
(1 − ε)w(O PT ) and length �i (M) ≤ (1 + ε)Li for each 1 ≤ i ≤ k. The running time
of the algorithm is O(nO(k2√k log k/ε2)).
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Proof Consider the above algorithm, whose running time is trivially as in the claim.
It is easy to see that the solution returned is a matching. Moreover a solution is always
returned by Lemma 3.5. The approximation guarantee of the algorithm follows from
the properties of the Decomposition step and Lemma 3.5. 
�

4 Pure approximation schemes for independence systems

In this section we present our pure approximation schemes (which do not violate
any budget constraint) when the solution space F is an independence system, i.e. if
F ∈ F and F ′ ⊆ F then F ′ ∈ F . We start by describing our feasibilization mechanism
to turn multi-criteria approximation schemes into pure approximation schemes. We
then present our deterministic approximation scheme for matroid independent set. We
conclude the section with a deterministic approximation scheme for matchings (in
general graphs) with k budget constraints, where k = (1) as usual.

4.1 A feasibilization mechanism

Since we deal with independence systems, minimization problems are trivial (the
empty solution is optimal). Therefore, we will consider maximization problems only.
Analogous to terminology used in matroid theory, for an independence system F on
some ground set E and any I ∈ F , we call the independence system {S ∈ E\I |
S ∪ I ∈ F} on ground set E\I a contraction of F . Similarly, for any I ⊆ E , the
independence system {S ∈ E\I | S ∈ F} is called a restriction of F . Combination of
contractions and restrictions are called minors.

We say that a family F of independence systems is self-reducible if it is closed
under taking minors. Self-reducibility is a natural property for independence system,
examples include feasible solutions to knapsack problems, graphic matroids, linear
matroids, matchings, and bipartite matchings.

Theorem 4.1 (Feasibilization) Let F be a self-reducible family of independence sys-
tems. Suppose that we are given an algorithm A which, for any constant δ > 0 and
k-budgeted optimization problem Pind on an independence system F ∈ F , computes
in polynomial time a solution S ∈ F to the k-budgeted maximization problem on F
of cost (resp., expected cost) at least (1 − δ) times the optimum in F , violating each
budget by a factor of at most (1 + δ). Then there is a PTAS (resp., PRAS) for Pind .5

Proof Let ε ∈ (0, 1] be a given constant, with 1/ε ∈ N. Consider the following
algorithm. Initially we guess the h = k/ε elements EH of O PT of largest weight,
and reduce the problem consequently, hence getting a problem P ′. Then we scale
down all the budgets by a factor (1− δ), and solve the resulting problem P ′′ by means
of A, where δ = ε/(k + 1). Let EL be the solution returned by A. We finally output
EH ∪ EL .

5 Notice that it suffices to assume that F is closed under contractions, since a restriction can be emulated
by setting the weights of the elements to be removed to zero.
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Let OPT ′ and OPT ′′ be the optimum solution to problems P ′ and P ′′, respectively.
We also denote by L′

i and L′′
i the i th budget in the two problems, respectively. Let

wmax be the largest weight in P ′ and P ′′. We observe that trivially: (a) w(O PT ) =
w(EH ) + w(O PT ′) and (b) wmax ≤ w(EH )/h.

Let us show that (c) w(O PT ′′) ≥ w(O PT ′)(1 − kδ) − kwmax . Consider the
following process: for each length function i , we remove from O PT ′ the element e
with smallest ratio w(e)/�i (e) until the remaining elements of OPT’ have i th length
≤ (1 − δ)L′

i . Let Ei be the set of elements removed. More formally, we number
the elements of O PT ′ = {e1, e2, . . . , eq} such that w(e1)/�

i (e1) ≤ w(e2)/�
i (e2) ≤

· · · ≤ w(eq)/�i (eq). Hence, Ei = {e1, . . . , er }, where r ∈ {0, . . . , q} is the smallest
index such that �i ({er+1, . . . , eq}) ≤ (1−δ)L ′

i . We now show w(Ei ) ≤ δw(O PT ′)+
wmax. This is trivially true if Ei = ∅, hence, we assume without loss of generality
r ≥ 1. Since �i (O PT ′) ≤ L ′

i and r is the smallest index with �i ({er+1, . . . , eq}) ≤
(1 − δ)L ′

i , or equivalently �i ({e1, . . . , er }) ≥ �i (O PT ′) − (1 − δ)L ′
i , we get

�i ({e1, . . . , er−1}) < �i (O PT ′) − (1 − δ)L ′
i ≤ δ�i (O PT ′). (1)

Furthermore, notice that for any four reals A, B, a, b > 0 with A
B ≥ a

b , we have
a+A
b+B ≥ a

b . Applying this inequality repeatedly, we obtain

w(e1)

�i (e1)
≤ w({e1, e2})

�i ({e1, e2}) ≤ · · · ≤ w(O PT ′)
�i (O PT ′)

,

and in particular

w({e1, . . . , er−1})
�i ({e1, . . . , er−1}) ≤ w(O PT ′)

�i (O PT ′)
. (2)

Hence,

w(Ei ) = w(er ) + w({e1, . . . , er−1})
(2)≤ wmax + �i ({e1, . . . , er−1}) · w(O PT ′)

�i (O PT ′)
(1)≤ wmax + δw(O PT ′),

as claimed.
It follows that O PT ′ − ∪i Ei is a feasible solution for P ′′ of weight at least

w(O PT ′)(1 − δk) − kwmax , proving (c).
We observe that EL is feasible for P ′ since, for each i , �i (EL) ≤ (1 + δ)L′′

i =
(1 + δ)(1 − δ)L′

i ≤ L′
i . As a consequence, the returned solution EH ∪ EL is feasible.

Moreover, when A is deterministic, we have
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w(EH ) + w(EL) ≥ w(EH ) + (1 − δ)w(OPT ′′)
(c)≥ w(EH ) + (1 − δ)(w(OPT ′)(1 − δk) − kwmax )

(b)≥ (1 − k/h)w(EH ) + (1 − δ(k + 1))w(OPT ′)

≥ (1 − ε)(w(EH ) + w(O PT ′)) (a)= (1 − ε)w(OPT ).

The same bound holds in expectation when A is randomized. 
�
Corollary 4.2 There are PTASs for k-budgeted forest and k-budgeted bipar-

tite matching. There are PRASs for k-budgeted matching, k-budgeted

matroid independent set, and k-budgeted matroid intersection in rep-
resentable matroids.

Proof The result about bipartite matching follows from the multi-criteria PTAS in
previous section. All the other results follow from known multi-criteria PTASs and
PRASs [5,9,10,30,32]. 
�

4.2 A PTAS for k-budgeted matroid independent set

Again, we denote by r(S) = max{|J | | J ⊆ S, J ∈ I} the rank function of a matroid
M = (E, I). Furthermore, PI = {x ≥ 0 | x(S) ≤ r(S) ∀S ⊆ E} denotes the matroid
polytope which is the convex hull of the characteristic vectors χI of the independent
sets I ∈ I.

Theorem 4.3 Let M = (E, I) be a matroid and let F be a face of dimension d of
the matroid polytope PI . Then any x ∈ F has at most 2d non-integral components.
Furthermore, the sum of all fractional components of x is at most d.

Proof Let m = |E |. We assume that the matroid polytope has full dimension, i.e.,
dim(PI) = m, or equivalently, every element e ∈ E is independent. This can be
assumed w.l.o.g. since if {e} �∈ I for some e ∈ E , then we can reduce the matroid by
deleting element e.

By [38, p. 778], any d-dimensional face F of a polymatroid, which is a generaliza-
tion of a matroid polytope, can be described as follows

F = {x ∈ PI | x(e) = 0 ∀e ∈ N , x(Ai ) = r(Ai ) ∀i ∈ {1, . . . , k}},
where A1 � A2 � · · · � Ak ⊆ E , and N ⊆ E with |N | + k = m − d.

We prove the claim by induction on the number of elements of the matroid. The
theorem clearly holds for matroids with a ground set of cardinality one. First assume
N �= ∅ and let e ∈ N . Let M ′ be the matroid obtained from M by deleting e, and let F ′
be the projection of F onto the coordinates corresponding to N\{e}. Since F ′ is a face
of M ′, the claim follows by induction. Henceforth, we assume N = ∅ which implies
k = m − d. Let A0 = ∅ and Bi = Ai\Ai−1 for i ∈ {1, . . . , k}. In the following we
show that we can assume

0 < r(Ai ) − r(Ai−1) < |Bi | ∀ i ∈ {1, . . . , k}. (3)
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Notice that 0 ≤ r(Ai ) − r(Ai−1) ≤ |Bi | clearly holds by standard properties of rank
functions (see [38, p. 664] for more details). Assume that there is i ∈ {1, . . . , k} with
r(Ai ) = r(Ai−1). Since all points x ∈ F satisfy x(Ai ) = r(Ai ) and x(Ai−1) =
r(Ai−1), we have x(Bi ) = 0. Hence for any e ∈ Bi , we have x(e) = 0 for x ∈
F . Again, we can delete e from the matroid, hence obtaining a smaller matroid for
which the claim holds by the inductive hypothesis. Therefore, we can assume r(Ai ) >

r(Ai−1) which implies the left inequality in (3).
For the right inequality assume that there is i ∈ {1, . . . , k} with r(Ai )− r(Ai−1) =

|Bi |. Hence, every x ∈ F satisfies x(Bi ) = |Bi |, implying x(e) = 1 for all e ∈ Bi . Let
e ∈ Bi , and let F ′ be the projection of the face F onto the components N\{e}. Since
F ′ is a face of the matroid M ′ obtained from M by contracting e, the result follows
again by the inductive hypothesis.

Henceforth, we assume that (3) holds. This implies in particular that |Bi | > 1
for i ∈ {1, . . . , k}. Since

∑k
i=1 |Bi | ≤ m, we have k ≤ m/2, which together with

k = m − d implies d ≥ m/2. The claim of the theorem that x ∈ F has at most 2d
non-integral components is thus trivial in this case.

To prove the second part of the theorem we show that if (3) holds then x(E) ≤ d
for x ∈ F . For x ∈ F we have

x(E) = x(E\Ak) +
k∑

i=1

x(Bi )

≤ |E | − |Ak | +
k∑

i=1

(r(Ai ) − r(Ai−1))

≤ |E | − |Ak | +
k∑

i=1

(|Ai | − |Ai−1| − 1)

= m − k = d,

where the first inequality follows from x(E\Ak) ≤ |E\Ak | and x(Bi ) = r(Ai ) −
r(Ai−1), and the second inequality follows from (3). 
�

Exploiting Theorem 4.3, we suggest in Fig. 3 a conceptually simple PTAS for
multi-budgeted optimization over the independent sets of a matroid.

Fig. 3 A PTAS for k-budgeted matroid independent set
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Corollary 4.4 The algorithm presented in Fig. 3 is a PTAS for k-budgeted matroid

independent set.

Proof The guessing step guarantees that the maximum weight wmax of an element in
the reduced problem satisfies kwmax ≤ εw(EH ). Since x∗ is chosen to be a vertex
solution, and only k linear constraints are added to the matroid polytope, x∗ lies on a
face of the matroid polytope PI ′ of dimension at most k. By Theorem 4.3, the sum of
all fractional components of x∗ is at most k, i.e., x∗(E ′\EL) ≤ k. Hence,

w(EL) =
∑

e∈E ′
w(e)x∗(e) −

∑

e∈E ′\EL

w(e)x∗(e)

≥
∑

e∈E ′
w(e)x∗(e) − wmax

∑

e∈E ′\EL

x∗(e)

≥
∑

e∈E ′
w(e)x∗(e) − kwmax.

Furthermore, since we solved a relaxation of the original problem, we have

w(OPT) ≤ w(EH ) +
∑

e∈E ′
w(e)x∗(e).

Combining the above inequalities, and using kwmax ≤ εw(EH ), we obtain

w(EH ∪ EL) ≥ w(EH ) +
∑

e∈E ′
w(e)x∗(e) − kwmax

≥ w(OPT) − kwmax

≥ w(OPT) − δw(EH )

≥ (1 − δ)w(OPT).


�

4.3 A PTAS for k-budgeted matching

In this section we present our PTAS for k-budgeted matching. We denote by M
the set of incidence vectors of matchings. With a slight abuse of terminology we call
the elements in M matchings. Let PM be the matching polytope. To simplify the
exposition, it is convenient to consider weights w and lengths �i for i ∈ {0, . . . , k}
sometimes as vectors in QE+. We denote by � = (�1, . . . , �k) the matrix whose i th
column is �i , and let L = (L1, . . . , Lk)

T be the vector corresponding to the budgets.
Using this terminology, a feasible solution to the k-budgeted matching problem is
a matching x ∈ M such that �T x ≤ L.

We will first describe a procedure that returns a feasible matching of weight at least

w(OPT)− (k+3)k2

k+1 wmax, where wmax = max{w(e) | e ∈ E}. Similar to the algorithms
seen in previous sections, it then suffices to perform a preprocessing step to guess the
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Fig. 4 Obtaining a feasible matching y ∈ M for k-budgeted matching with wT y ≤ w(O PT ) −
(k+3)k2

k+1 wmax

� (k+3)k2

ε(k+1)
� heaviest edges of the optimal solution. Our algorithm starts with an optimal

basic solution x∗ to the natural LP relaxation max{wT x | x ∈ PM, �T x ≤ L}, rewrites
x∗ as a convex combination of at most k+1 matchings that are then successively merged
to obtain a feasible matching. The procedure, modulo the sub procedure Merge, is
described in Fig. 4.

Notice that since x∗ is a vertex of the polytope PM with k additional linear con-
straints, it lies on a face of PM of dimension at most k. Hence, by Carathéodory’s
Theorem, x∗ can indeed be expressed as a convex combination of at most k +1 match-
ings as done in step 2 of the algorithm. Such a decomposition of x∗ can be obtained
efficiently by standard techniques (see for example [37]). Notice that if fewer than
k + 1 matchings are needed in the decomposition of x∗, then this corresponds to
having some of the α j equal to zero.

The procedure Merge(λ, y, μ, x) takes four arguments, where λ,μ ≥ 0, λ+μ = 1
and x, y ∈ M are matchings, and returns in polynomial time a matching y that satisfies
conditions (a) and (b) highlighted in the algorithm, i.e, (�i )T y ≤ (�i )T (λy + μx) for
i ∈ {1, . . . , k} and wT y ≥ wT (λy +μx)−2kwmax. Intuitively, the Merge procedure
takes a point z = λy + (1 −λ)x on an edge of the matching polytope PM and returns
a matching y with weight and lengths similar to z.

We give the details of Merge later, and first show the following, assuming that
Merge returns a matching with the properties described in the algorithm.

Theorem 4.5 Given an efficient Merge procedure fulfilling the requirements
described in the algorithm in Fig. 4, the algorithm in Fig. 4 is an efficient proce-
dure that returns a feasible matching y for k-budgeted matching with wT y ≤
w(O PT ) − (k+3)k2

k+1 wmax.

Proof The algorithm is clearly efficient.
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To prove feasibility of y = yk+1, we fix i ∈ {1, . . . , k} and show by induction on
j ∈ {1, . . . , k + 1} that

(�i )T y j ≤ (�i )T

⎛

⎝ 1

β j

j∑

r=1

αr xr

⎞

⎠. (4)

Feasibility then follows from feasibility of x∗ since

(�i )T yk+1
(4)≤ (�i )T

(
1

βk+1

k+1∑

r=1

αr xr

)

= (�i )T x∗ ≤ Li .

Since y1 = x1, (4) trivially holds for j = 1. Furthermore, let j ∈ {1, . . . , k} and
assume that (4) holds for any value less or equal to j . Then using property (a) of
Merge, we obtain

(�i )T y j+1
(a)≤ (�i )T z j+1

= (�i )T
(

β j

β j+1
y j + α j+1

β j+1
x j+1

)
ind. hyp. (4)≤ (�i )T

⎛

⎝ 1

β j+1

j+1∑

r=1

αr xr

⎞

⎠,

thus proving (4) and implying feasibility of y.
Similarly, to prove that y has large weight, we show by induction on j ∈ {1, . . . ,

k + 1} that

wT y j ≥ 1

β j

⎛

⎝wT

⎛

⎝
j∑

r=1

αr xr

⎞

⎠ −
⎛

⎝
j∑

r=2

βr

⎞

⎠ 2kwmax

⎞

⎠. (5)

The desired result on the weight of y = yk+1 then follows by observing that
βr ≤ r

k+1 , since α1 ≤ · · · ≤ αk+1, and

wT yk+1
(5)≥ wT

(
k+1∑

r=1

αr xr

)

−
(

k+1∑

r=2

βr

)

2kwmax

≥ wT x∗ −
(

k+1∑

r=2

r

k + 1

)

2kwmax

= w(O PT ) − (k + 3)k2

k + 1
wmax.
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Again, (5) is trivially true for j = 1 since y1 = x1. Furthermore, for j ∈ {1, . . . , k}
we obtain the following by using property (b) of Merge:

wT y j+1
(b)≥ wT z j+1 − 2kwmax = 1

β j+1
wT (

β j y j + α j+1x j+1
) − 2kwmax

ind. hyp. (5)≥ 1

β j+1

⎛

⎝wT

⎛

⎝
j∑

r=1

αr xr

⎞

⎠ −
⎛

⎝
j∑

r=2

βr

⎞

⎠ 2kwmax + wT (α j+1x j+1)

⎞

⎠

−2kwmax = 1

β j+1

⎛

⎝wT

⎛

⎝
j+1∑

r=1

αr xr

⎞

⎠ −
⎛

⎝
j+1∑

r=2

βr

⎞

⎠ 2kwmax

⎞

⎠.


�
Hence, it remains to present an efficient Merge procedure fulfilling property (a)

and (b).

4.3.1 Merging procedure

Consider fixed input parameters x ′, x ′′ ∈ M andα ∈ [0, 1]of Merge(α, x ′, 1−α, x ′′).
Merge works in two steps. First, it constructs a fractional point y ∈ [0, 1]E that is
structurally close to being a matching in a well-defined sense, and satisfies

wT y = wT (αx ′ + (1 − α)x ′′), and (6)

(�i )T y = (�i )T (αx ′ + (1 − α)x ′′) ∀i ∈ {1, . . . , k}. (7)

In a second step y is transformed to a matching with the desired properties.
More precisely, we want y to be a 2k-almost matching, defined as follows.

Definition 4.6 (r -almost matching) For r ∈ N, a vector y ∈ [0, 1]E is an r-almost
matching in G = (V, E) if it is possible to set at most r components of y to zero to
obtain a matching.

We denote by Mr the set of all r -almost matchings.

Given an r -almost matching y, we say that z is a corresponding matching (to y),
if it is a matching obtained by setting at most r components of y to zero. Such a
corresponding matching z can easily be found by first setting all fractional components
of y to zero, and then computing a maximum cardinality matching in the resulting set
of edges. Clearly, a corresponding matching z satisfies wT z ≥ wT y − rwmax. Hence,
to obtain a Merge procedure with the desired properties, it indeed suffices to present
an efficient procedure to construct a 2k-almost matching y that satisfies (6) and (7): a
corresponding matching z clearly has lower lengths, since z ≤ y, and

wT z ≥ wT y − 2kwmax = wT (αx ′ + (1 − α)x ′′) − 2kwmax,

by the above observation and (7). Hence, we now focus on efficiently getting a 2k-
almost matching y satisfying (6) and (7).
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To construct y, we start with x ′ and define a way to fractionally swap parts of
x ′ with x ′′. For this we define a generalized symmetric difference. For two vectors
z′, z′′ ∈ [0, 1]E , we define their symmetric difference z′
z′′ ∈ [0, 1]E by (z′
z′′)(e) =
|z′(e)− z′′(e)| for all e ∈ E . In particular, if z′ and z′′ are incidence vectors, then their
symmetric difference as defined above corresponds indeed to the symmetric difference
in the usual sense. Recall that, when z′ and z′′ are matchings, z′
z′′ consists of a set
of node-disjoint paths and cycles.

Consider the paths and cycles in s = x ′
x ′′. We number the edges {e0, . . . , eτ−1} in
s such that two consecutively numbered edges are either consecutive in some path/cycle
or belong to different paths/cycles. This can easily be achieved by cutting each cycle,
appending the resulting set of paths one to the other, gluing together the endpoints of
the obtained path, and then number consecutively the edges in the obtained path. For
t ∈ [0, τ ], we define s(t) ∈ [0, 1]E as

(s(t))(e) =

⎧
⎪⎨

⎪⎩

1 if e = ei , i ∈ {0, . . . , �t�};
t − �t� if e = ei , i = �t� and i ≤ τ − 1;
0 otherwise.

Furthermore, for a, b ∈ [0, τ ] we define s(a, b) ∈ [0, 1]E as follows

s(a, b) =
{

s(b) − s(a) if a ≤ b,

s(a) + s(τ ) − s(b) if a > b.

Hence, s(a, b) can be interpreted as a fractional version of a cyclic interval of edges
in s. We denote by [a, b]�, the cyclic interval contained in [0, τ ], which is defined by

[a, b]� =
{ [a, b] if a ≤ b,

[0, a] ∪ [b, τ ] if a > b.

Notice that for a, b ∈ [0, τ ], the vector y = x ′
s(a, b) is a 2-almost matching
since to obtain a matching, it suffices to set the coordinates of y that correspond
to e�a� and e�b� to zero. Analogously, for any family of k disjoint cyclic intervals
[a1, b1]� . . . [ak, bk]� ⊆ [0, τ ], the vector

y = x ′
s(a1, b1)
 . . . 
s(ak, bk) (8)

is a 2k-almost matching. We will find k disjoint cyclic intervals such that y as defined
in (8) satisfies (6) and (7).

We first prove non-constructively the existence of intervals [a1, b1]�, . . . , [ak, bk]�
that lead to a desired y, using the following slight generalization of a Theorem of
Stromquist and Woodall [40]. In the theorem below, a signed measure denotes the
difference between two finite measures. Furthermore, we call a measure non-atomic
if every singleton has measure zero.
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Theorem 4.7 Let d ≥ 2, and let μ1, . . . , μd be non-atomic signed measures on [0, 1].
For each λ ∈ [0, 1] there is a set Kλ ⊆ [0, 1] that is the union of at most d −1 circular
intervals of [0, 1] and satisfies μi (Kλ) = λμi ([0, 1]) ∀i ∈ {1, . . . , d}.

The difference between Theorem 4.7 and [40, Theorem 1] is that we allow for
signed measures instead of usual measure. Even though Theorem 4.7 is a direct gener-
alization of Stromquist and Woodall’s Theorem, for completeness, we provide a proof
in Sect. 4.3.2. Notice that Theorem 4.7 could be equivalently stated for the interval
[0, τ ] instead of [0, 1]. Based on Theorem 4.7 we obtain the following.

Theorem 4.8 There exist k disjoint cyclic intervals [a1, b1]�, . . . , [ak, bk]� ⊆ [0, τ ],
some of which may be empty, such that the vector

y = x ′
s(a1, b1)
 . . . 
s(ak, bk)

satisfies (6) and (7).

Proof We define the following k + 1 signed measures μ1, . . . , μk+1 on [0, τ ] by
providing their values on subintervals of [0, τ ]. For [a, b) ⊆ [0, τ ], let

μi ([a, b)) = (�i )T (x ′
s(a, b) − x ′) ∀i ∈ {1, . . . , k},
μk+1([a, b)) = wT (x ′
s(a, b) − x ′).

In particular, for any cyclic interval [a, b]� ⊆ [0, τ ],μi ([a, b]�) andμk+1([a, b]�)

measure the change in the i th length and weight, respectively, when replacing x ′ by
x ′
s(a, b). More generally, for k disjoint cyclic intervals [a1, b1]�, . . . , [ak, bk]�
and the vector

y = x
s(a1, b1)
 . . . 
s(ak, bk), (9)

we have

(�i )T y = (�i )T x ′ + μi (∪k
j=1[a j , b j ]�) i ∈ {1, . . . , k},

wT y = wT x ′ + μk+1(∪k
j=1[a j , b j ]�). (10)

Furthermore, it is easy to check that μi for i ∈ {1, . . . , k + 1} are non-atomic
signed measures. Hence, using Theorem 4.7 with λ = 1 − α, there exist disjoint
circular intervals [a1, b1]�, . . . , [ak, bk]� ⊆ [0, τ ] such that

μi (∪k
j=1[a j , b j ]�) = (1 − α)μi ([0, τ ]) ∀i ∈ {1, . . . , k + 1}.

Consider y being defined as in (9) for those intervals. Then combining the above
equality with (10) we obtain

(�i )T y = (�i )T x ′ + (1 − α)μi ([0, τ ])
= (�i )T x ′ + (1 − α)(�i )T (x ′′ − x ′)
= (�i )T (αx ′ + (1 − α)x ′′), ∀i ∈ {1, . . . , k},
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and similaly,

wT y = wT x ′ + (1 − α)w([0, τ ])
= wT x ′ + (1 − α)wT (x ′′ − x ′)
= wT (αx ′ + (1 − α)x ′′),

as desired. 
�
Theorem 4.9 A set of k cyclic intervals as described in Theorem 4.8 can be found
efficiently.

Proof Notice that we can efficiently guess �a j� and �b j� for j ∈ {1, . . . , k} for a set of
cyclic intervals [a1, b1]�, . . . , [ak, bk]� ⊆ [0, τ ] guaranteed to exist by Theorem 4.8.
More precisely, there are only O(τ 2k) possibilities. Since τ is bounded by the number
of vertices and k is a constant, this is polynomial. Futhermore, when the integer part
of ai , bi for j ∈ {1, . . . , k} is fixed, then the vector

y = x ′
s(a1, b1)
 . . . 
s(ak, bk)

is linear in the a j ’s and b j ’s. Therefore (�i )T y for i ∈ {1, . . . , k} and wT y are linear in
the a j ’s and b j ’s. Hence, finding values of the a j ’s and b j ’s, with predetermined integer
parts, such that the resulting y satisfies (6) and (7), reduces to solving a constant-size
linear problem, which can be done in constant time. 
�

Summarizing the above discussion, we get the following.

Corollary 4.10 There is an efficient procedure Merge(α, x ′, 1 −α, x ′′), that for α ∈
[0, 1], and x ′, x ′′ ∈ M, outputs a matching y satisfying (6) and (7).

This finishes the description of the algorithm in Fig. 4 and implies together with
Theorem 4.5 the following.

Corollary 4.11 The algorithm described in Fig. 4 is an efficient procedure that
returns a feasible matching y for k-Budgeted Matching with wT y ≥ w(OPT ) −
(k+3)k2

k+1 wmax.

To obtain a PTAS for k-budgeted matching, it suffices to guess the � (k+3)k2

(k+1)ε
�

heaviest edges of an optimal solution before applying the algorithm in Fig. 4.

Theorem 4.12 Let ε > 0. The following procedure is an efficient (1 − ε)-
approximation for k-budgeted matching.

1. Guess the � (k+3)k2

(k+1)ε
� heaviest edges EH of an optimal solution, and reduce the

problem correpondingly.
2. Apply the algorithm in Fig. 4 to the reduced problem to get a matching EL.
3. Return EH ∪ EL.
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Proof Efficiency and feasibility is obvious. We have to show w(EH ∪ EL) ≥ (1 −
ε)w(O PT ). Let w′

max be the maximum weight of an edge in the reduced problem.
Since, to build the reduced problem, we remove all edges of weight strictly larger then
the smallest weight in EH , we have

w′
max ≤ w(e) ∀e ∈ EH . (11)

Furthermore, let O PT ′ be an optimal solution in the reduced problem. Clearly

w(O PT ) = w(EH ) + w(O PT ′). (12)

Hence,

w(EH ∪ EL) = w(EH ) + w(EL)
Cor. (4.11)≥ w(EH ) + w(O PT ′) − (k + 3)k2

k + 1
w′

max

(11)≥ w(EH ) + w(O PT ′) − εw(EH ) ≥ (1 − ε)(w(EH ) + w(O PT ′))
(12)= (1 − ε)w(O PT ).


�
For completeness, the following section shows how Theorem 4.7 is obtained by

following the proof of Stromquist and Woodall [40, Theorem 1].

4.3.2 A generalization of a theorem by Stromquist and Woodall

To prove Theorem 4.7 we use the same proof technique as [40] with the only difference
that we replace the classical version of the Ham Sandwich Theorem by the following
generalization.

Theorem 4.13 (Generalized Ham Sandwich Theorem) Suppose we are given d signed
measures μ1, . . . , μd on Rd that vanish on any hyperplane, then there exists a (possible
degenerate) halfspace H in Rd such that

μi (H) = 1

2
μi (R

d) ∀i ∈ {1, . . . , d},

where a degenerate halfspace is either ∅ or Rd .

Theorem 4.13 with the additional requirement of the μi being absolutely continu-
ous was proven in [2]. Their proof follows a standard approach used in [41] to show
the classic Ham Sandwich Theorem for (unsigned) measures, which is based on the
Borsuk-Ulam Theorem [3]. However, the proof presented in [2] actually shows Theo-
rem 4.13, and was only stated in a slightly weaker form requiring absolute continuity
of the measures.

For completeness, we replicate the proof of Stromquist and Woodall, in a slightly
generalized version that uses Theorem 4.13, to show Theorem 4.7.
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Proof (of Theorem 4.7, following [40]) We denote by A ⊆ [0, 1] the values of λ ∈
[0, 1] for which the statement is true. We have to show that A = [0, 1]. This will
follow from the following four statements:

(a) 1 ∈ A,
(b) λ ∈ A ⇒ (1 − λ) ∈ A,
(c) λ ∈ A ⇒ 1

2λ ∈ A,
(d) A is closed.

Statement (a) follows by choosing K1 = [0, 1], and (b) by setting K1−λ =
[0, 1]\Kλ. Furthermore,(d) follows by observing that the space of the unions of d − 1
intervals is compact in a suitable topology, hence, for any sequence of λ’s in A, the
corresponding Kλ’s converge. It remains to prove (c).

Fix λ ∈ A and let Kλ ⊆ [0, 1] be a union of d − 1 cyclic intervals of [0, 1] such
that μi (Kλ) = λμi (Rd) for i ∈ {1, . . . , d}. If Kλ �= [0, 1], we can assume that the
origin is not contained in Kλ, for otherwise, we can simply reparameterize the circular
interval [0, 1]. Let f : [0, 1) → Rn be defined by

f (t) = (t, t2, . . . , td).

We will apply the generalized Ham Sandwich Theorem 4.13 to a family of mea-
sures with support included in the image of f . More precisely, we define d measures
ν1, . . . , νd on Rd by

νi (B) = μi ( f −1(B) ∩ Kλ) ∀i ∈ {1, . . . , d}, B ⊆ Rd Borel set.

Notice that νi (R
d) = μi (Kλ) = λμi (R

d), and νi are signed measures. Further-
more, for any hyperplane X in Rd , f −1(X) is a set of size at most d, and since the
measures μi are non-atomic, this implies νi (X) = 0. Hence, we can apply the Gener-
alized Ham Sandwich Theorem 4.13 to obtain that there exists a halfspace H ⊂ Rd

such that νi (H) = λ
2 μi (R

d) for i ∈ {1, . . . , d}. Let X be the hyperplane that is the
boundary of H . Consider the complementary halfspace H of H , i.e, H ∩ H = X .

Since νi (R
d) = λμi (R

d) for i ∈ {1, . . . , d}, we also have νi (H) = λ
2 μi (R

d) for
i ∈ {1, . . . , d}. We will show that one can choose K λ

2
to be either K H := f −1(H)∩Kλ

or K H := f −1(H) ∩ Kλ. Notice that νi (H) = νi (H) = λ
2 μi (R

d) for i ∈ {1, . . . , d}
can be rephrased as

μi (K H ) = μi (K H ) = λ

2
μi (R

d) ∀i ∈ {1, . . . , d}.

Hence, both K H and K H have the desired mass with respect to the measures
μ1, . . . , μd . It remains to show that one of them is a union of at most d intervals.

Since | f −1(X) ∩ Kλ| ≤ d, the ≤ d intervals of Kλ are hit in at most d points
by f −1(X), thus subdividing Kλ into at most 2d + 1 intervals. These intervals are
partitioned by K H and K H . Hence, indeed, either K H or K H is the union of at most
d intervals. 
�
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4.4 Conclusions

We presented approximation algorithm for a variety of multi-budgeted problems. A
main drawback of the procedures presented here is the quite high dependence of
the running time on the (constant) number of budgets. It is an interesting question
whether FPTASs can be designed for problems presented in this paper, as for example
k-budgeted matching. The main reason why the presented procedures do not lead
to FPTASs is the use of guessing steps. This includes the guessing of a number of
element that depends on k, which is a typical preprocessing step in our algorithms.
Furthermore, for the k-budgeted matching problem, we use a further guessing
step in the proof of Theorem 4.9 to find a good set of cyclic intervals. It could be
of independent interest to find a more efficient algorithm that returns the intervals
claimed by Theorem 4.8. This may be approached by seeking a constructive proof of
the Generalized Ham Sandwich Theorem (Theorem 4.13) for the special setting that
we need in the proof of Theorem 4.7.
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