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Abstract In the resource constrained shortest path problem we are given a
directed graph along with a source node and a destination node, and each arc
has a cost and a vector of weights specifying its requirements from a set of
resources with finite budget limits. A minimum cost source-destination path
is sought such that the total consumption of the arcs from each resource does
not exceed its budget limit. In the case of constant number of weight functions
we give a fully polynomial time multi-criteria approximation scheme for the
problem which returns a source-destination path of cost at most the optimum,
however, the path may slightly violate the budget limits. On the negative side,
we show that there does not exist a polynomial time multi-criteria approxi-
mation scheme for the problem if the number of weight functions is not a
constant. The latter result applies to a broad class of problems as well, inclu-
ding the multi-dimensional knapsack, the multi-budgeted spanning tree, the
multi-budgeted matroid basis and the multi-budgeted bipartite perfect mat-
ching problems.
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2 Markó Horváth, Tamás Kis

1 Introduction

The resource constrained shortest path problem (RCSPP) is an ex-
tension of the familiar shortest path problem. Briefly stated, we are given a
directed graph, where each arc has a cost, and specifies its requirements from
a set of resources with finite budget limits. The goal is to find a minimum
cost directed path from a specified source node to a specified destination node
such that the total consumption of the arcs from each resource type does not
exceed the budget limit of the resource. This problem is NP-hard [4].

In this paper we investigate multi-criteria approximation schemes for the
RCSPP, where the budget limits can be slightly violated. The motivation for
our study is the recent paper by Grandoni et al. [6] in which the budgeted
version of a number of combinatorial optimization problems are discussed.
The budgeted version of a combinatorial optimization problem min{c(S) :
S ∈ S} (or max{c(S) : S ∈ S}) — where S ⊆ 2U is the set of feasible
solutions for a given universe U , and c : U → Q is the objective function
with c(S) =

∑
u∈S c(u) for each S ∈ S — has an additional set of k weight

functions, that is, a vector w : U → Qk
≥0 on the elements of U , and for each

S ∈ S, w(S) =
∑

u∈S w(u). Further on, there is a limit L ∈ Qk
>0 on the total

budget allowed. The k-budgeted optimization problem can then be formulated
as

min/max c(S) subject to S ∈ S and wi(S) ≤ Li for all 1 ≤ i ≤ k. (1)

The RCSPP corresponds to the minimization version of the k-budgeted s–t
path problem where S = Pst, i.e., the set of all s–t paths of a directed graph
D = (V,U) with specified nodes s, t ∈ V . Note that a path is a sequence of
directed arcs which do not visit the same node twice. If S is the set of bases
of a given matroid with ground set U , we have the k-budgeted matroid
basis problem; specially, if S is the set of spanning trees of a given undirected
graph G = (V,U), we have the k-budgeted spanning tree problem. In
the case of k-budgeted (bipartite) (perfect) matching problem the
solution set S consists of the (perfect) matchings of an undirected (bipartite)
graph G = (V,U).

An α-approximation algorithm, α ≥ 1, for an optimization problem Π is a
polynomial time algorithm which finds an α-approximate solution S for Π,
that is, c(S) ≥ c(SOPT )/α if Π is a maximization problem, and c(S) ≤
αc(SOPT ) if Π is a minimization one, where SOPT is an optimal solution for Π.
A polynomial time approximation scheme (PTAS) for an optimization problem
Π is a family of approximation algorithms {Aε}ε>0 such that Aε is an (1 + ε)-
approximation algorithm for Π for any ε > 0. A fully polynomial time approx-
imation scheme (FPTAS) for Π is a PTAS with {Aε}ε>0 such that Aε runs in
polynomial time in 1/ε as well. A multi-criteria (α0;α1, . . . , αk)-approximation
algorithm, αi ≥ 1, for a k-budgeted optimization problem (1) is an algorithm
which finds an α0-approximate solution S such that wi(S) ≤ αiLi for all
1 ≤ i ≤ k. We emphasize that S can violate the budget limit Li within the
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given factor αi, 1 ≤ i ≤ k, however, its cost c(S) guaranteed to be within α0

of the cost of the optimal solution of (1) which satisfies the budget limits. A
multi-criteria approximation scheme for a k-budgeted optimization problem
Π contains a (1 + ε; 1 + ε, . . . , 1 + ε)-approximation algorithm for Π for any
ε > 0. Furthermore, if the approximation scheme consists of (1; 1+ε, . . . , 1+ε)-
approximation algorithms (the solution found must be super optimal), then it
will be denoted by (1; 1 + ε, . . . , 1 + ε)-PTAS or -FPTAS.

The multi-constrained path (MCP) problem can be considered as the
decision version of the RCSPP, i.e., the objective function can be omitted,
and the question is whether there exists an s–t path that satisfies the budget
limits. An ε-approximation algorithm, 0 < ε < 1, for the k-MCP problem is
a polynomial time algorithm which returns an s–t path P with wi(P ) ≤ Li,
1 ≤ i ≤ k, whenever there is an s–t path P ′ such that wi(P

′) ≤ (1 − ε)Li,
1 ≤ i ≤ k [11].

Related work In the case of a single budget (k = 1), Hassin [7] proposed
the first (1 + ε; 1)-FPTAS for the RCSPP on acyclic graphs with time com-
plexity O(m(n2/ε) log(n/ε)), where m and n denote the number of arcs and
nodes of the given directed graph, respectively. Ergun et al. [2] gave another
(1+ε; 1)-FPTAS with improved running time of O(mn/ε). For general graphs
Lorenz and Raz [9] proposed an (1 + ε; 1)-FPTAS with time complexity of
O(mn(log log n+ 1/ε)). Goel et al. [5] gave an (1; 1 + ε)-FPTAS with running
time O((m+ n log n)n/ε).

In the case of 2 ≤ k = O(1), one can obtain a multi-criteria (1 + ε; 1 +
ε, . . . , 1+ε)-FPTAS for the k-budgeted s–t path (including the RCSPP) and
the k-budgeted spanning tree problem based on the general technique of
Papadimitriou and Yannakakis [10], however, there exists no (α0;α1, . . . , αk)-
approximation algorithm with two or more αi’s equal to 1 for these problems,
unless P = NP (see Grandoni et al. [6]). Further on, Grandoni et al. [6]
describe (1; 1 + ε, . . . , 1 + ε)-PTASs for the k-budgeted spanning tree and
the k-budgeted matroid basis problems, however, they do not provide such
an algorithm for the RCSPP, which is one of the motivations for our work. They
also provide a (1 + ε; 1 + ε, . . . , 1 + ε)-PTAS for the k-budgeted bipartite
matching problem. Another motivation is that the method of Papadimitriou
and Yannakakis [10], and the results of Grandoni et al. [6] work only if the
number of weight functions, k, is a constant.

Song and Sahni [11] describe ε-approximation algorithms for the k-MCP
problem. For an overview of exact and approximation algorithms for the k-
MCP and its variants we refer to [3].

Our results Firstly, we show that the RCSPP admits no multi-criteria PTAS if
the number of weight functions, k, is part of the input (not a constant), unless
P = NP . This statement is also true for some other k-budgeted optimization
problems (Theorem 1). On the positive side, we provide a (1; 1 + ε, . . . , 1 + ε)-
FPTAS for the case of k = O(1) (Theorem 2). Notice that a direct applica-
tion of the method of Papadimitriou and Yannakakis [10] would give only an
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(1 + ε; 1 + ε, . . . , 1 + ε)-FPTAS. Our multi-criteria FPTAS is a dynamic pro-
gramming algorithm, similar to the SPPP algorithm of Lorenz and Raz [9],
with a combination of the rounding technique of Song and Sahni [11]. The time
complexity of our multi-criteria approximation scheme is O(m(n/ε)k), which
for k = 1 matches that of Ergun et al. [2], who provided an (1 + ε; 1)-FPTAS
for the RCSPP restricted to acyclic graphs.

Theorem 1 If P 6= NP , and the number of weight functions, k, is part of
the input (not a constant), then there exists no polynomial time multi-criteria
approximation scheme for the minimization, nor for the maximization ver-
sion of the k-budgeted s–t path, the k-budgeted spanning tree, the
k-budgeted matroid basis, and the k-budgeted bipartite perfect ma-
tching problems.

Theorem 2 If the number of weight functions, k, is a constant then there
exists a fully polynomial time (1; 1 + ε, . . . , 1 + ε)-approximation scheme for
the RCSPP.

We emphasize that our result is valid for general graphs with non-negative
weights and arbitrary costs, however, cycles with negative total cost are not
allowed.

2 Proof of Theorem 1

In this section we assume that the number of weight functions, k, is part of
the input (not a constant). First, we prove that unless P = NP , there ex-
ists no polynomial time multi-criteria approximation scheme for the RCSPP
(Theorem 3). Based on the proof, it is a routine to show that there exists no
multi-criteria PTAS for the minimization version of the k-budgeted span-
ning tree (thus for the k-budgeted matroid basis) and the k-budgeted
bipartite perfect matching problems.

Theorem 3 If P 6= NP , and the number of weight functions, k, is part of
the input (not a constant), then there exists no polynomial time multi-criteria
approximation scheme for the RCSPP.

Proof We give a PTAS-preserving reduction from the Vertex cover (VC)
problem to the RCSPP to show that there is no polynomial time (1 + ε; 2 −
ε, . . . , 2 − ε)-approximation algorithm for the RCSPP with 0 < ε < 0.3606,
unless P = NP . An instance of VC is given by an undirected graph G, and
a minimum size subset of nodes C ⊆ V (G) is sought such that for each edge
(u, v) ∈ E(G), 1 ≤ |{u, v}∩C|. Given a VC instance, we create an instance of
the RCSPP with k = |E(G)| and with directed graph D as follows. For each
node vi ∈ V (G), 1 ≤ i ≤ n, we add two distinct nodes xi and yi, and also
node xn+1 to V (D), and three arcs (xi, xi+1), (xi, yi) and (yi, xi+1) to A(D).
Let s = x1, t = xn+1. We create a cost function c : A(D) → Q≥0 such that
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c(xi, xi+1) = 1 and c(xi, yi) = c(yi, xi+1) = 0 for all 1 ≤ i ≤ n. We create

weights w : A(D)→ Q|E(G)|
≥0 such that

wi,j(a) =

{
1, if a = (xi, yi) or a = (xj , yj),
0, otherwise

for each (vi, vj) ∈ E(G). We set the corresponding budget limit Li,j to 1.
Consider the one-to-one correspondence between the node sets of G and the

s–t paths in D, such that to a node set C ⊆ V (G) we assign the s–t path P [C]
in D consisting of arcs {(xi, xi+1) : vi ∈ C} ∪ {(xi, yi), (yi, xi+1) : vi /∈ C}.
It is clear that for a node set C ⊆ V (G) and the corresponding path P [C],
c(P [C]) = |C|, moreover, we claim that C is a vertex cover if and only if
P [C] satisfies the budget limits. If C is a vertex cover, then for each edge
(vi, vj) ∈ E(G) we have 1 ≤ |{vi, vj}∩C|, thus |{(xi, yi), (xj , yj)}∩P [C]| ≤ 1,
therefore wi,j(P [C]) ≤ Li,j . The opposite direction can be shown similarly.

Assume that we have an (1 + ε; 2− ε, . . . , 2− ε)-approximation algorithm
for the RCSPP with 0 < ε < 0.3606. Applying this algorithm for the RCSPP
instance, we can find in polynomial time an s–t path P such that c(P ) ≤
(1+ε)c(POPT ) and wi,j(P ) ≤ (2−ε)Li,j , for all (vi, vj) ∈ E(G), where POPT is
an optimal solution for the RCSPP. On the one hand, c(P ) ≤ (1+ε)c(POPT ) =
(1 + ε)|COPT |, where COPT is an optimal solution for the VC. On the other
hand, wi,j(P ) ≤ 2 − ε < 2, i.e., wi,j(P ) ≤ 1 holds for all (vi, vj) ∈ E(G),
thus the set C ⊆ V (G) corresponding to P is a vertex cover. To sum up, by
applying the approximation algorithm for the RCSPP instance, we can find in
polynomial time a vertex cover C in G such that |C| ≤ (1 + ε)|COPT | which
is impossible for ε < 0.3606, unless P = NP (see Dinur and Safra [1]). ut

Now, we prove that the multi-dimensional knapsack problem (MDKP)
[12] does not admit a polynomial time multi-criteria approximation scheme if
the number of dimensions, k, is part of the input (Theorem 4). Recall that an
instance of the MDKP is given by a set of items U , where each item u ∈ U has
a cost c(u), and a weight w(u) ∈ Qk

≥0, and there is a weight limit L ∈ Qk
≥0. A

subset of items S ⊆ U of maximum c(S) value is sought such that w(S) ≤ L.
Apparently, it is the budgeted version of a trivial maximization problem over
all subsets of U .

By using similar techniques it is easy to prove that there exists no multi-
criteria PTAS for the maximization version of the k-budgeted s–t path,
k-budgeted spanning tree, the k-budgeted matroid basis and the k-
budgeted bipartite perfect matching problems, if the number of weight
functions, k, is part of the input (not a constant), unless P = NP .

Theorem 4 If P 6= NP , and if the dimension k of the MDKP is part of
the input (not a constant), then there does not exist a polynomial time multi-
criteria approximation scheme for the MDKP.

Proof We give a PTAS-preserving reduction from the Independent set (IS)
problem to the MDKP. An instance of IS is given by an undirected graph
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G = (V,E), and a maximum size subset of nodes S ⊆ V is sought such that
for each edge (u, v) ∈ E, |{u, v} ∩ S| ≤ 1. Given an IS instance, we create
an instance of the MDKP with k = |E| as follows. We create a set of items
U = {u1, . . . , un} where item ui corresponds to node vi ∈ V and it has a cost

c(ui) = 1. We create weights wi,j : U → Q|E|≥0 such that

wi,j(u) =

{
1, if u corresponds to vi or vj ,
0, otherwise

for each (vi, vj) ∈ E. We set the corresponding budget limit Li,j to 1.
Consider a node set I = {vi1 , . . . , vip} ⊆ V and the corresponding set of

items S = {ui1 , . . . , uip}. If I is independent, then for each edge (vi, vj) ∈ E
we have |{vi, vj}∩I| ≤ 1, thus |{ui, uj}∩S| ≤ 1, therefore wi,j(S) ≤ Li,j , that
is, S satisfies the budget limits, moreover c(S) = |I|. The opposite direction
(that is, the node set corresponding to a set of items that satisfies the budget
limits is independent) can be shown similarly.

Similarly to the previous proof, if we had a (1+ε; 2−ε, . . . , 2−ε)-approxima-
tion algorithm for the MDKP with 0 < ε < 1, we could find in polynomial time
an independent set I in G such that |I| ≥ |IOPT |/(1 + ε) which is impossible,
unless P = NP (see Hastad [8]). ut

3 Proof of Theorem 2

We give a (1; 1 + ε, . . . , 1 + ε)-FPTAS for the RCSPP, where the number of
weight functions, k, is a constant. Recall, that this problem can be formulated
as

min
P∈Pst

{c(P ) : wi(P ) ≤ Li, i = 1, . . . , k} . (2)

For a given an ε > 0 we scale and round the weights, that is, we define
a scale vector ∆ ∈ Qk

>0 and scaled weights w̄ ∈ Qk
>0 as follows: for all i =

1, . . . , k let ∆i := εLi/(n − 1), and for each arc a ∈ A let w̄i(a) := di(a)∆i,
where di(a) = 1 if wi(a) = 0, otherwise di(a) is a positive integer such that
(di(a) − 1)∆i < wi(a) ≤ di(a)∆i holds. Note that 0 < w̄i(a) holds for each
arc a and i = 1, . . . , k. Consider the following, scaled problem:

min
P∈Pst

{c(P ) : w̄i(P ) ≤ (1 + ε)Li, i = 1, . . . , k} . (3)

For any s–t path P and i = 1, . . . , k we have

w̄i(P ) =
∑
a∈P

w̄i(a) ≤
∑
a∈P

(wi(a)+∆i) ≤
∑
a∈P

wi(a)+(n−1)∆i = wi(P )+εLi,

since P consists of at most n − 1 arcs. Thus, if P is a feasible solution for
the original problem (2), i.e., wi(P ) ≤ Li holds for all i = 1, . . . , k, we have
w̄i(P ) ≤ (1 + ε)Li, 1 ≤ i ≤ k, i.e., P is feasible for the scaled problem (3)
as well. Moreover, since by definition wi(a) ≤ w̄i(a) holds for all arcs a and
i = 1, . . . , k, thus for each feasible solution P for the scaled problem (3) we
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have wi(P ) ≤ w̄i(P ) ≤ (1 + ε)Li, 1 ≤ i ≤ k. These imply the following
proposition.

Proposition 1 If problem (2) has a feasible solution, then any optimal solu-
tion for problem (3) is a (1; 1 + ε, . . . , 1 + ε)-approximate solution for (2).

3.1 Dynamic programming algorithm

In the following we use element-wise operations for vectors. That is, the Hada-
mard product of vectors a, b ∈ Qk is the vector a◦b ∈ Qk with (a◦b)i = aibi,
1 ≤ i ≤ k. The inverse of vector a ∈ Qk

>0 is the vector a−1 ∈ Qk
>0 with

(a−1)i = 1/ai, 1 ≤ i ≤ k. For k-dimension vectors a and b we write a ≤ b
(a < b) if ai ≤ bi (ai < bi) holds for all i = 1, . . . , k.

A pattern is a vector η = (η1, . . . ,ηk) where ηi (i = 1, . . . , k) is a nonne-
gative integer. Note, that for any path P , there is a pattern η with nonzero
elements such that w̄(P ) = η ◦∆. A pattern η is feasible, if η ◦∆ ≤ (1 + ε)L
holds.

Proposition 2 The number of feasible patterns is O((n/ε)k).

Proof For any feasible pattern η, 0 ≤ ηi ≤ (1 + ε)Li/∆i = (n − 1)(1 + 1/ε)
holds for all i = 1, . . . , k, thus the number of feasible patterns is at most
((n− 1)(1 + 1/ε) + 1)k = O((n/ε)k). ut

For a node v and pattern η let χ(v,η) denote the cost of the minimum cost
s–v path P such that w̄(P ) ≤ η ◦∆, if any. By this, χ(t, b(1 + ε)L ◦∆−1c) is
the optimal solution value of (3). Let H = (η1,η2, . . . ,η|H|) denote the set of
the feasible patterns, where patterns are partially ordered by the element-wise
comparison, that is, if ηp ≤ ηq holds for patterns ηp and ηq, then p ≤ q.
Clearly η1 = (0, . . . , 0).

The sketch of the algorithm can be seen in Algorithm 1. In the initialization
phase for each pattern η we set χ(s,η) to zero and χ(v,η) to infinity (v 6=
s). We iterate over the partially ordered set of feasible patterns (note that
according to the initialization, we can skip pattern η1 = (0, . . . , 0)), and in
each iteration we visit each node in the graph. For a given pattern η and
node v we examine the incoming arcs of v. Let (u, v) be an impending arc.
If w̄i(u, v) > ηi∆i holds for some 1 ≤ i ≤ k, then there is no s–v path
containing arc (u, v) such that w̄(P ) ≤ η ◦∆, thus we cannot update χ(v,η).
Otherwise w̄(u, v) ◦ ∆−1 ≤ η, and by definition 0 < w̄(u, v) ◦ ∆−1, thus
0 ≤ η−w̄(u, v)◦∆−1 < η, i.e., pattern η−w̄(u, v)◦∆−1 was already examined
in a former iteration, that is, χ(u,η−w̄(u, v)◦∆−1) is already computed (and
valid), so we can update χ(v,η). Finally, we return χ(t, b(1+ε)L◦∆−1c) which
is the optimal solution value of (3).

In Theorem 5 we prove the correctness of the algorithm.

Theorem 5 After Algorithm 1 terminates, for each node v ∈ V and for each
pattern η, χ(v,η) is equal to the cost of the minimum cost s–v path P such
that w̄(P ) ≤ η ◦∆.
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Algorithm 1 Dynamic programming algorithm for (3)

1: χ(s,η)← 0 (η ∈ H)
2: χ(v,η)←∞ (v 6= s, η ∈ H)
3: for η = η2,η3, . . . ,η|H| do
4: for v ∈ V do
5: for a ∈ {(u, v) ∈ A : w̄(u, v) ≤ η ◦∆} do
6: χ(v,η)← min{χ(v,η), χ(u,η − w̄(a) ◦∆−1) + c(a)}
7: end for
8: end for
9: end for

10: return χ(t, (b(n− 1)(1 + 1/ε)c, . . . , b(n− 1)(1 + 1/ε)c))

Proof Basically, we prove that after the algorithm terminates χ(v,η) is equal
to the cost of the minimum cost s–v walk P (i.e., vertices may be repeated)
such that w̄(P ) ≤ η◦∆. However, according to our assumptions the graph does
not contain cycles with negative total cost or negative total weight, therefore
a minimum cost s–t walk always comprises an s–t path of the same cost. To
prove the former statement, it is sufficient to show that after a pattern η is
examined (i.e., the corresponding iteration is performed):

a) for each node v, if χ(v,η) is not infinity, then it is equal to the cost of an
s–v walk P such that w̄(P ) ≤ η ◦∆.

b) for each node v, if there is an s–v walk with w̄(P ) ≤ η ◦∆, then χ(v,η) ≤
c(P ) holds.

We prove these statements by induction. Clearly, statements a) and b) are
satisfied before the first iteration is performed (i.e., after the initialization).

To prove statement a) consider a moment when χ(v,η) is updated (line 6),
that is χ(v,η) = χ(η − w̄(u, v) ◦ ∆−1) + c(u, v) for some (u, v) ∈ A with
w̄(u, v) ≤ η ◦∆. Since 0 < w̄(u, v) holds by definition, thus 0 ≤ η− w̄(u, v) ◦
∆−1 < η, i.e., pattern η − w̄(u, v) ◦∆−1 was already examined in a former
iteration, that is, χ(u,η − w̄(u, v) ◦∆−1) is already computed. By inductive
assumption, χ(u,η − w̄(u, v) ◦∆−1) is equal to the cost of an s–u walk P
with w̄(P ) ≤ η ◦∆ − w̄(u, v), thus χ(v,η) is equal to the cost of the walk
P ′ = P ∪ {(u, v)} with w̄(P ′) ≤ η ◦∆.

To prove statement b) consider the shortest s–v path P such that w̄(P ) ≤
η ◦ ∆ holds, and let (u, v) be its last arc, i.e., P = P ′ ∪ (u, v) for an s–
u path P ′. Clearly, P ′ is the minimum cost s–u walk such that w̄(P ′) ≤
η ◦∆ − w̄(u, v) holds. On the one hand, by inductive assumption, we have
χ(v,η − w̄(u, v) ◦∆−1) ≤ c(P ′), and on the other hand we compared χ(v,η)
and χ(u,η − w̄(u, v) ◦∆−1) + c(u, v) in the iteration of pattern η (line 6),
therefore we have χ(v,η) ≤ χ(u,η−w̄(u, v)◦∆−1)+c(u, v) ≤ c(P ′)+c(u, v) =
c(P ). ut

According to Proposition 2 we have at most O((n/ε)k) iterations, and in each
iteration each arc is examined once, thus the running time of the algorithm is
O(m(n/ε)k).
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4 Final remarks

Our positive and negative results, along with the observations of Grandoni
et al. [6] give a complete picture on the approximability of the RCSPP in
terms of approximation schemes. However, a major open question is whether
a (1; 1 + ε, . . . , 1 + ε)-FPTAS exists for spanning trees in the case of constant
number of weight functions.
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