256 research outputs found

    On Fault Resilient Network-on-Chip for Many Core Systems

    Get PDF
    Rapid scaling of transistor gate sizes has increased the density of on-chip integration and paved the way for heterogeneous many-core systems-on-chip, significantly improving the speed of on-chip processing. The design of the interconnection network of these complex systems is a challenging one and the network-on-chip (NoC) is now the accepted scalable and bandwidth efficient interconnect for multi-processor systems on-chip (MPSoCs). However, the performance enhancements of technology scaling come at the cost of reliability as on-chip components particularly the network-on-chip become increasingly prone to faults. In this thesis, we focus on approaches to deal with the errors caused by such faults. The results of these approaches are obtained not only via time-consuming cycle-accurate simulations but also by analytical approaches, allowing for faster and accurate evaluations, especially for larger networks. Redundancy is the general approach to deal with faults, the mode of which varies according to the type of fault. For the NoC, there exists a classification of faults into transient, intermittent and permanent faults. Transient faults appear randomly for a few cycles and may be caused by the radiation of particles. Intermittent faults are similar to transient faults, however, differing in the fact that they occur repeatedly at the same location, eventually leading to a permanent fault. Permanent faults by definition are caused by wires and transistors being permanently short or open. Generally, spatial redundancy or the use of redundant components is used for dealing with permanent faults. Temporal redundancy deals with failures by re-execution or by retransmission of data while information redundancy adds redundant information to the data packets allowing for error detection and correction. Temporal and information redundancy methods are useful when dealing with transient and intermittent faults. In this dissertation, we begin with permanent faults in NoC in the form of faulty links and routers. Our approach for spatial redundancy adds redundant links in the diagonal direction to the standard rectangular mesh topology resulting in the hexagonal and octagonal NoCs. In addition to redundant links, adaptive routing must be used to bypass faulty components. We develop novel fault-tolerant deadlock-free adaptive routing algorithms for these topologies based on the turn model without the use of virtual channels. Our results show that the hexagonal and octagonal NoCs can tolerate all 2-router and 3-router faults, respectively, while the mesh has been shown to tolerate all 1-router faults. To simplify the restricted-turn selection process for achieving deadlock freedom, we devised an approach based on the channel dependency matrix instead of the state-of-the-art Duato's method of observing the channel dependency graph for cycles. The approach is general and can be used for the turn selection process for any regular topology. We further use algebraic manipulations of the channel dependency matrix to analytically assess the fault resilience of the adaptive routing algorithms when affected by permanent faults. We present and validate this method for the 2D mesh and hexagonal NoC topologies achieving very high accuracy with a maximum error of 1%. The approach is very general and allows for faster evaluations as compared to the generally used cycle-accurate simulations. In comparison, existing works usually assume a limited number of faults to be able to analytically assess the network reliability. We apply the approach to evaluate the fault resilience of larger NoCs demonstrating the usefulness of the approach especially compared to cycle-accurate simulations. Finally, we concentrate on temporal and information redundancy techniques to deal with transient and intermittent faults in the router resulting in the dropping and hence loss of packets. Temporal redundancy is applied in the form of ARQ and retransmission of lost packets. Information redundancy is applied by the generation and transmission of redundant linear combinations of packets known as random linear network coding. We develop an analytic model for flexible evaluation of these approaches to determine the network performance parameters such as residual error rates and increased network load. The analytic model allows to evaluate larger NoCs and different topologies and to investigate the advantage of network coding compared to uncoded transmissions. We further extend the work with a small insight to the problem of secure communication over the NoC. Assuming large heterogeneous MPSoCs with components from third parties, the communication is subject to active attacks in the form of packet modification and drops in the NoC routers. Devising approaches to resolve these issues, we again formulate analytic models for their flexible and accurate evaluations, with a maximum estimation error of 7%

    Transient and Permanent Error Control for High-End Multiprocessor Systems-on-Chip

    Get PDF
    High-end MPSoC systems with built-in high-radix topologies achieve good performance because of the improved connectivity and the reduced network diameter. In high-end MPSoC systems, fault tolerance support is becoming a compulsory feature. In this work, we propose a combined method to address permanent and transient link and router failures in those systems. The LBDRhr mechanism is proposed to tolerate permanent link failures in some popular high-radix topologies. The increased router complexity may lead to more transient router errors than routers using simple XY routing algorithm. We exploit the inherent information redundancy (IIR) in LBDRhr logic to manage transient errors in the network routers. Thorough analyses are provided to discover the appropriate internal nodes and the forbidden signal patterns for transient error detection. Simulation results show that LBDRhr logic can tolerate all of the permanent failure combinations of long-range links and 80% of links failures at short-range links. Case studies show that the error detection method based on the new IIR extraction method reduces the power consumption and the residual error rate by 33% and up to two orders of magnitude, respectively, compared to triple modular redundancy. The impact of network topologies on the efficiency of the detection mechanism has been examined in this work, as well

    Network-on-Chip

    Get PDF
    Addresses the Challenges Associated with System-on-Chip Integration Network-on-Chip: The Next Generation of System-on-Chip Integration examines the current issues restricting chip-on-chip communication efficiency, and explores Network-on-chip (NoC), a promising alternative that equips designers with the capability to produce a scalable, reusable, and high-performance communication backbone by allowing for the integration of a large number of cores on a single system-on-chip (SoC). This book provides a basic overview of topics associated with NoC-based design: communication infrastructure design, communication methodology, evaluation framework, and mapping of applications onto NoC. It details the design and evaluation of different proposed NoC structures, low-power techniques, signal integrity and reliability issues, application mapping, testing, and future trends. Utilizing examples of chips that have been implemented in industry and academia, this text presents the full architectural design of components verified through implementation in industrial CAD tools. It describes NoC research and developments, incorporates theoretical proofs strengthening the analysis procedures, and includes algorithms used in NoC design and synthesis. In addition, it considers other upcoming NoC issues, such as low-power NoC design, signal integrity issues, NoC testing, reconfiguration, synthesis, and 3-D NoC design. This text comprises 12 chapters and covers: The evolution of NoC from SoC—its research and developmental challenges NoC protocols, elaborating flow control, available network topologies, routing mechanisms, fault tolerance, quality-of-service support, and the design of network interfaces The router design strategies followed in NoCs The evaluation mechanism of NoC architectures The application mapping strategies followed in NoCs Low-power design techniques specifically followed in NoCs The signal integrity and reliability issues of NoC The details of NoC testing strategies reported so far The problem of synthesizing application-specific NoCs Reconfigurable NoC design issues Direction of future research and development in the field of NoC Network-on-Chip: The Next Generation of System-on-Chip Integration covers the basic topics, technology, and future trends relevant to NoC-based design, and can be used by engineers, students, and researchers and other industry professionals interested in computer architecture, embedded systems, and parallel/distributed systems

    Reliability-aware and energy-efficient system level design for networks-on-chip

    Get PDF
    2015 Spring.Includes bibliographical references.With CMOS technology aggressively scaling into the ultra-deep sub-micron (UDSM) regime and application complexity growing rapidly in recent years, processors today are being driven to integrate multiple cores on a chip. Such chip multiprocessor (CMP) architectures offer unprecedented levels of computing performance for highly parallel emerging applications in the era of digital convergence. However, a major challenge facing the designers of these emerging multicore architectures is the increased likelihood of failure due to the rise in transient, permanent, and intermittent faults caused by a variety of factors that are becoming more and more prevalent with technology scaling. On-chip interconnect architectures are particularly susceptible to faults that can corrupt transmitted data or prevent it from reaching its destination. Reliability concerns in UDSM nodes have in part contributed to the shift from traditional bus-based communication fabrics to network-on-chip (NoC) architectures that provide better scalability, performance, and utilization than buses. In this thesis, to overcome potential faults in NoCs, my research began by exploring fault-tolerant routing algorithms. Under the constraint of deadlock freedom, we make use of the inherent redundancy in NoCs due to multiple paths between packet sources and sinks and propose different fault-tolerant routing schemes to achieve much better fault tolerance capabilities than possible with traditional routing schemes. The proposed schemes also use replication opportunistically to optimize the balance between energy overhead and arrival rate. As 3D integrated circuit (3D-IC) technology with wafer-to-wafer bonding has been recently proposed as a promising candidate for future CMPs, we also propose a fault-tolerant routing scheme for 3D NoCs which outperforms the existing popular routing schemes in terms of energy consumption, performance and reliability. To quantify reliability and provide different levels of intelligent protection, for the first time, we propose the network vulnerability factor (NVF) metric to characterize the vulnerability of NoC components to faults. NVF determines the probabilities that faults in NoC components manifest as errors in the final program output of the CMP system. With NVF aware partial protection for NoC components, almost 50% energy cost can be saved compared to the traditional approach of comprehensively protecting all NoC components. Lastly, we focus on the problem of fault-tolerant NoC design, that involves many NP-hard sub-problems such as core mapping, fault-tolerant routing, and fault-tolerant router configuration. We propose a novel design-time (RESYN) and a hybrid design and runtime (HEFT) synthesis framework to trade-off energy consumption and reliability in the NoC fabric at the system level for CMPs. Together, our research in fault-tolerant NoC routing, reliability modeling, and reliability aware NoC synthesis substantially enhances NoC reliability and energy-efficiency beyond what is possible with traditional approaches and state-of-the-art strategies from prior work

    On Fault Tolerance Methods for Networks-on-Chip

    Get PDF
    Technology scaling has proceeded into dimensions in which the reliability of manufactured devices is becoming endangered. The reliability decrease is a consequence of physical limitations, relative increase of variations, and decreasing noise margins, among others. A promising solution for bringing the reliability of circuits back to a desired level is the use of design methods which introduce tolerance against possible faults in an integrated circuit. This thesis studies and presents fault tolerance methods for network-onchip (NoC) which is a design paradigm targeted for very large systems-onchip. In a NoC resources, such as processors and memories, are connected to a communication network; comparable to the Internet. Fault tolerance in such a system can be achieved at many abstraction levels. The thesis studies the origin of faults in modern technologies and explains the classification to transient, intermittent and permanent faults. A survey of fault tolerance methods is presented to demonstrate the diversity of available methods. Networks-on-chip are approached by exploring their main design choices: the selection of a topology, routing protocol, and flow control method. Fault tolerance methods for NoCs are studied at different layers of the OSI reference model. The data link layer provides a reliable communication link over a physical channel. Error control coding is an efficient fault tolerance method especially against transient faults at this abstraction level. Error control coding methods suitable for on-chip communication are studied and their implementations presented. Error control coding loses its effectiveness in the presence of intermittent and permanent faults. Therefore, other solutions against them are presented. The introduction of spare wires and split transmissions are shown to provide good tolerance against intermittent and permanent errors and their combination to error control coding is illustrated. At the network layer positioned above the data link layer, fault tolerance can be achieved with the design of fault tolerant network topologies and routing algorithms. Both of these approaches are presented in the thesis together with realizations in the both categories. The thesis concludes that an optimal fault tolerance solution contains carefully co-designed elements from different abstraction levelsSiirretty Doriast

    2D Parity Product Code for TSV online fault correction and detection

    Get PDF
    Through-Silicon-Via (TSV) is one of the most promising technologies to realize 3D Integrated Circuits (3D-ICs).  However, the reliability issues due to the low yield rates and the sensitivity to thermal hotspots and stress issues are preventing TSV-based 3D-ICs from being widely and efficiently used. To enhance the reliability of TSV connections, using error correction code to detect and correct faults automatically has been demonstrated as a viable solution.This paper presents a 2D Parity Product Code (2D-PPC) for TSV fault-tolerance with the ability to correct one fault and detect, at least, two faults.  In an implementation of 64-bit data and 81-bit codeword, 2D-PPC can detect over 71 faults, on average. Its encoder and decoder decrease the overall latency by 38.33% when compared to the Single Error Correction Double Error Detection code.  In addition to the high detection rates, the encoder can detect 100% of its gate failures, and the decoder can detect and correct around 40% of its individual gate failures. The squared 2D-PPC could be extended using orthogonal Latin square to support extra bit correction

    Network-on-Chip

    Get PDF
    Limitations of bus-based interconnections related to scalability, latency, bandwidth, and power consumption for supporting the related huge number of on-chip resources result in a communication bottleneck. These challenges can be efficiently addressed with the implementation of a network-on-chip (NoC) system. This book gives a detailed analysis of various on-chip communication architectures and covers different areas of NoCs such as potentials, architecture, technical challenges, optimization, design explorations, and research directions. In addition, it discusses current and future trends that could make an impactful and meaningful contribution to the research and design of on-chip communications and NoC systems

    Network-on-Chip -based Multi-Processor System-on-Chip: Towards Mixed-Criticality System Certification

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Design Space Exploration for MPSoC Architectures

    Get PDF
    Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.Siirretty Doriast

    Développement d'architectures HW/SW tolérantes aux fautes et auto-calibrantes pour les technologies Intégrées 3D

    Get PDF
    Malgré les avantages de l'intégration 3D, le test, le rendement et la fiabilité des Through-Silicon-Vias (TSVs) restent parmi les plus grands défis pour les systèmes 3D à base de Réseaux-sur-Puce (Network-on-Chip - NoC). Dans cette thèse, une stratégie de test hors-ligne a été proposé pour les interconnections TSV des liens inter-die des NoCs 3D. Pour le TSV Interconnect Built-In Self-Test (TSV-IBIST) on propose une nouvelle stratégie pour générer des vecteurs de test qui permet la détection des fautes structuraux (open et short) et paramétriques (fautes de délaye). Des stratégies de correction des fautes transitoires et permanents sur les TSV sont aussi proposées aux plusieurs niveaux d'abstraction: data link et network. Au niveau data link, des techniques qui utilisent des codes de correction (ECC) et retransmission sont utilisées pour protégé les liens verticales. Des codes de correction sont aussi utilisés pour la protection au niveau network. Les défauts de fabrication ou vieillissement des TSVs sont réparé au niveau data link avec des stratégies à base de redondance et sérialisation. Dans le réseau, les liens inter-die défaillante ne sont pas utilisables et un algorithme de routage tolérant aux fautes est proposé. On peut implémenter des techniques de tolérance aux fautes sur plusieurs niveaux. Les résultats ont montré qu'une stratégie multi-level atteint des très hauts niveaux de fiabilité avec un cout plus bas. Malheureusement, il n'y as pas une solution unique et chaque stratégie a ses avantages et limitations. C'est très difficile d'évaluer tôt dans le design flow les couts et l'impact sur la performance. Donc, une méthodologie d'exploration de la résilience aux fautes est proposée pour les NoC 3D mesh.3D technology promises energy-efficient heterogeneous integrated systems, which may open the way to thousands cores chips. Silicon dies containing processing elements are stacked and connected by vertical wires called Through-Silicon-Vias. In 3D chips, interconnecting an increasing number of processing elements requires a scalable high-performance interconnect solution: the 3D Network-on-Chip. Despite the advantages of 3D integration, testing, reliability and yield remain the major challenges for 3D NoC-based systems. In this thesis, the TSV interconnect test issue is addressed by an off-line Interconnect Built-In Self-Test (IBIST) strategy that detects both structural (i.e. opens, shorts) and parametric faults (i.e. delays and delay due to crosstalk). The IBIST circuitry implements a novel algorithm based on the aggressor-victim scenario and alleviates limitations of existing strategies. The proposed Kth-aggressor fault (KAF) model assumes that the aggressors of a victim TSV are neighboring wires within a distance given by the aggressor order K. Using this model, TSV interconnect tests of inter-die 3D NoC links may be performed for different aggressor order, reducing test times and circuitry complexity. In 3D NoCs, TSV permanent and transient faults can be mitigated at different abstraction levels. In this thesis, several error resilience schemes are proposed at data link and network levels. For transient faults, 3D NoC links can be protected using error correction codes (ECC) and retransmission schemes using error detection (Automatic Retransmission Query) and correction codes (i.e. Hybrid error correction and retransmission).For transients along a source-destination path, ECC codes can be implemented at network level (i.e. Network-level Forward Error Correction). Data link solutions also include TSV repair schemes for faults due to fabrication processes (i.e. TSV-Spare-and-Replace and Configurable Serial Links) and aging (i.e. Interconnect Built-In Self-Repair and Adaptive Serialization) defects. At network-level, the faulty inter-die links of 3D mesh NoCs are repaired by implementing a TSV fault-tolerant routing algorithm. Although single-level solutions can achieve the desired yield / reliability targets, error mitigation can be realized by a combination of approaches at several abstraction levels. To this end, multi-level error resilience strategies have been proposed. Experimental results show that there are cases where this multi-layer strategy pays-off both in terms of cost and performance. Unfortunately, one-fits-all solution does not exist, as each strategy has its advantages and limitations. For system designers, it is very difficult to assess early in the design stages the costs and the impact on performance of error resilience. Therefore, an error resilience exploration (ERX) methodology is proposed for 3D NoCs.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    • …
    corecore