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Abstract

Technology scaling has proceeded into dimensions in which the reliability
of manufactured devices is becoming endangered. The reliability decrease
is a consequence of physical limitations, relative increase of variations, and
decreasing noise margins, among others. A promising solution for bringing
the reliability of circuits back to a desired level is the use of design methods
which introduce tolerance against possible faults in an integrated circuit.

This thesis studies and presents fault tolerance methods for network-on-
chip (NoC) which is a design paradigm targeted for very large systems-on-
chip. In a NoC resources, such as processors and memories, are connected
to a communication network; comparable to the Internet. Fault tolerance
in such a system can be achieved at many abstraction levels.

The thesis studies the origin of faults in modern technologies and ex-
plains the classification to transient, intermittent and permanent faults. A
survey of fault tolerance methods is presented to demonstrate the diversity
of available methods. Networks-on-chip are approached by exploring their
main design choices: the selection of a topology, routing protocol, and flow
control method. Fault tolerance methods for NoCs are studied at different
layers of the OSI reference model.

The data link layer provides a reliable communication link over a phys-
ical channel. Error control coding is an efficient fault tolerance method
especially against transient faults at this abstraction level. Error control
coding methods suitable for on-chip communication are studied and their
implementations presented. Error control coding loses its effectiveness in
the presence of intermittent and permanent faults. Therefore, other solu-
tions against them are presented. The introduction of spare wires and split
transmissions are shown to provide good tolerance against intermittent and
permanent errors and their combination to error control coding is illustrated.

At the network layer positioned above the data link layer, fault tolerance
can be achieved with the design of fault tolerant network topologies and
routing algorithms. Both of these approaches are presented in the thesis
together with realizations in the both categories. The thesis concludes that
an optimal fault tolerance solution contains carefully co-designed elements
from different abstraction levels.
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Chapter 1

Introduction

The ever continuing technology scaling further into the very-deep sub-micron
or nanometer regime in CMOS chips results in increasing number of prob-
lems in the reliability of circuits. The shrinking geometries, smaller transis-
tors, lower supply voltages, higher frequencies and denser integration, among
others, cause faults in a chip. Although most of them can be detected at
the manufacture test, larger and larger proportion of faults will not occur
until at run-time. The only way to cope with run-time faults is to design
the system to tolerate them. Furthermore, fault tolerance structures may
provide better manufacturing yield when some faults can be allowed to exist
in a chip.

Faults can be classified to permanent, intermittent and transient faults
according to their duration [17]. Because there are different types of faults
also the methods for tolerating them are different. In most cases, a single
fault tolerance method is not an optimal solution for all types of faults. This
gives rise to the idea of combining a set of fault tolerance methods which
together can provide the desired fault tolerance. The different fault types
are discussed further in Chapter 2 together with the typical fault sources in
the modern technologies. A survey of available fault tolerance methods and
classification for them is also presented.

Network-on-chip (NoC) is a design paradigm targeted for large systems-
on-chip (SoC). The main principle in the NoC paradigm is to replace buses
with a communication network somewhat similar to the Internet. The re-
sources, processors, Co-processors, memories, etc., are connected via network
interfaces to the communication network created from point-to-point links
and routers. The design of networks-on-chip concerns various aspects, such
as the network topologies, routing protocols, and flow control methods.

When considering fault tolerance of a NoC, the first thing to do is to
separate the communication infrastructure from the resources such as pro-
cessing elements, memories, etc. According to the principles of the NoC



paradigm, the resources can be of a variety of types, which indicates that a
variety of fault tolerance methods could be applied. Indeed, a fault toler-
ance method most feasible for a particular resource type should be selected.
This work focuses on the fault tolerance methods for the communication
infrastructure, although some methods presented in the survey of Chapter 2
can also be applied for the resources in a NoC.

The NoC communication infrastructure is commonly described as a pile
of abstraction layers following the well known OSI reference model [91].
Therefore, it is logical to view also the fault tolerance methods at these
layers. The fault tolerance methods presented in this thesis fall mainly
to the data link and network layers, the second and third lowest layers of
the OSI reference model. Above the mentioned layers are issues such as the
software mapping to the underlying hardware platform, which are out of the
scope of this thesis. On the other hand, below these layers is the physical
layer, which consist of implementation-specific details such as the signaling
method in the links and the selection between synchronous and asynchronous
design style. In asynchronous design the clock signal, which schedules the
system operation, is replaced with handshake signals between components.
The use of an asynchronous design style makes it possible to get rid of the
many clock-related problems present in many large synchronous systems. It
has a positive impact on the robustness and reliability of systems.

The data link layer provides reliable transfer over a physical link. The
error protection of communication channels is commonly achieved by the
utilization of error control coding (ECC). Only a subset of the available
ECC can be used in the error protection of on-chip signaling because of
the strict area, latency and power-efficiency requirements typically set to
the implementations of them. ECC has its strengths in tolerating transient
faults. As already stated above, most of the fault tolerance methods are
not at their best against all types of faults. The same stands for ECC,
its effectiveness against permanent and intermittent faults is not that good
as it is against transient faults. Spare wires and split transmissions are
two methods proposed for the tolerance against intermittent and permanent
faults. These methods are combined with ECC to achieve a system that
tolerates all types of faults.

The links also include the transmitter and receiver circuitry, which in the
presence of an ECC also consist of an encoder and decoder. The reliability
of these circuits should be taken into consideration as it affects the reliability
of the overall link system. In the papers included in this thesis the focus
has been on the link structures and fault tolerance of the transmitter and
receiver circuitry has been omitted. However, the survey of fault tolerance
methods presented in Chapter 2 contains methods that could be used for
this purpose.



Fault tolerance methods at the network layer include the selection of
and possible modifications to a network topology so that it contains redun-
dant routes, which increases the overall reliability. The procedure includes
the identification of vulnerable parts in the topology and introduction of
redundant links and components into such parts. Following the principle
the overall reliability of the topology is increased.

Another network layer fault tolerance method is the development of fault
tolerant routing algorithms. The fault tolerance a routing algorithm pro-
vides is either originated from redundant packets travelling in the network,
i.e. multiple copies of each packet is transmitted, or from the adaptive se-
lection of redundant routes in the topology. The design of fault tolerant
algorithms includes important design choices such as the property to pro-
vide always the shortest route or resiliency against deadlocks, among others.

1.1 Organization

The thesis is divided into two parts. The first part is an introduction to the
topics related to this research field, and the second part contains reprints
of six published research papers related to the topic. The introductory part
gives a motivation for the work and presents related work. It also explains
the research field at a wider perspective which makes it easier to understand
the design choices made in the works presented in the papers included in
the second part of the thesis.

The introduction chapter has given an overview of the thesis. The rest of
the thesis is organized as follows. Chapter 2 classifies the faults and discusses
the most common sources for them in the modern technologies. It further
provides a survey of fault tolerance methods. In Chapter 3 the concept of
Network-on-Chip is introduced and its main design choices are addressed.
At the end of the chapter an overview of fault tolerance in a NoC is given.
Chapter 4 discusses the utilization of error control coding for the error pro-
tection of on-chip signaling. This is followed by an introduction of methods
against permanent faults in Chapter 5. The network-level fault tolerance
methods, topology and routing algorithms, are addressed in Chapter 6. A
summary of the papers included in the second part is found in Chapter 7,
which is followed by concluding remarks and discussion of future work in
Chapter 8. The second part containing the included papers follows after the
bibliography.

Paper I contains an analysis of error control codes suitable for on-chip in-
terconnects. In Paper II error control codes are used for tolerating transient
faults while spare wires and split transmissions are introduced for tackling
intermittent and permanent faults. The paper introduces a self-timed re-
configurable link system and a permanent error detection method based on

3



evaluating consecutive error syndromes. The reconfigurable framework is
further developed in Paper III, which enables the reconfiguration to pro-
ceed without stopping the normal link operation. The paper also introduces
another method for detecting permanent errors, in which rotating tests are
run for each wire in the link. Furthermore, an enhanced detection method
based on evaluating consecutive syndromes is introduced.

Paper IV evaluates the reliability of a NoC at the topology level. The pa-
per introduces additional network interfaces for each resource and presents
modifications to the network structure. A number of approaches are ana-
lyzed in the paper. Papers V and VI introduce distributed fault tolerant
routing algorithms and a comparison of them in the classes of deadlock-free,
minimal and maximal fault tolerance.

1.2 Contributions

The main contributions of this thesis are:
1. Analysis of error control codes suitable for on-chip links in Paper I.

2. Combination of error control coding for tolerating transient faults and
spare wires and split transmissions used to tolerate intermittent and
permanent faults in Paper II.

3. Methods for detecting permanent faults in on-chip interconnects and a
reconfigurable framework to be used with spare wires and split trans-
mission in Papers II and III.

4. Introduction of additional network interfaces per resource in a NoC
and modifications to the network to increase the overall reliability in
Paper IV.

5. Distributed fault tolerant routing algorithms and an analysis of them
in Papers V and VI.



Chapter 2

Faults and Fault Tolerance

A fault is a physical defect, imperfection, or flaw that occurs within some
hardware or software component. A fault may or may not cause an error,
deviation of accuracy or correctness. A failure occurs if the system performs
one of its functions incorrectly due to an error. [39]

In this chapter the fault types are classified and the most common fault
sources are discussed and connected to different fault types. The fault tol-
erance methods are divided into static and dynamic methods addressed at
the end of the chapter.

The chapter provides a thorough view to the available fault tolerance
methods. From this set of methods the suitable ones for network on chip
realizations can be selected as will become evident in the later chapters of
this thesis.

2.1 Fault Types

Faults can be divided into three main groups: permanent, intermittent and
transient faults according to their duration and occurrence. In the following
these main groups are briefly defined. [17]

2.1.1 Permanent Faults

Permanent faults are irreversible physical changes in a chip. The most com-
mon source for this kind of faults is the manufacturing process, but perma-
nent faults also occur during the operation of the circuit, especially when
the circuit is old and starts to wear out. Common to all permanent faults
is that once they have occurred they will not vanish, and therefore the test
to detect them can be easily repeated with the same results.

Manufacture testing is used to detect the permanent faults caused by the
manufacturing processes and dismiss the circuits containing such faults. If a
permanent fault emerges during the operation of the chip which has no fault
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tolerance properties, the faulty circuit needs to be replaced. Fault tolerance
methods can also provide a mean to achieve higher yield by accepting chips
with some faults which are then masked by the fault tolerance properties.

2.1.2 Intermittent Faults

Intermittent faults are occasional fault bursts that usually repeat themselves
every now and then but are not continuous as permanent faults, even though
they may last for several clock cycles. The faults are caused by unstable
hardware which can be operable under some environmental conditions, but
an alteration in those conditions, such as temperature or voltage change,
violates the operation. Intermittent faults often precede the occurrence of a
permanent fault, for instance there may be an increased resistance in a wire
before it totally breaks down creating an open circuit. These types of faults
are commonly observed when a system operates most of the time correctly,
but for some input instance it fails. The reason for this is that some path
in a circuit may be slower than supposed to but not completely broken.

Intermittent faults are very hard to detect because they may occur only
under certain environmental constraints or for some specific input combi-
nation. The way to repair these faults is to replace the faulty circuit or to
bypass the faulty part of the circuit.

2.1.3 Transient Faults

Transient faults are momentary single malfunctions caused by some tem-
porary environmental conditions which can be external phenomena such as
radiation, or noise originating from the other parts of the chip. Transient
faults do not make any permanent damage on the chip and therefore they
are also called soft errors. A common impact of a transient fault is a change
of value in a single bit. Another term single-event upset is used for a soft
error, which describes the fact that malfunctions (upsets) are commonly
caused by single events such as absorbed radiation.

The occurrence of transient faults is commonly random and therefore
difficult to detect. Because of the random nature of these faults, a common
measure for transient faults is the soft error rate (SER), the probability
of error occurrence. This rate describes both the tolerance of the circuit
against variable phenomena causing soft errors and the amount of these in
the environment where the circuit is operating. For example, the SER is
much higher in space, because of the larger amount of background radiation
than for the same chip operating in terrestrial conditions. The SER can be
decreased e.g. by giving special concern to low-noise properties during the
circuit design.



Transient faults are the most common fault type to cause system failures
in nanoscale circuits; up to 80 % of all the system failures are associated
with transient faults [6].

2.2 Fault Sources

Fault sources can be classified according to the phenomenon causing the
fault. Such origins are for instance: manufacturing process, physical changes
during operation, internal noise caused by other parts of the circuit and
external noise originating from the chip’s environment.

2.2.1 Manufacturing Process

Common defects in a chip are spot defects and bridging faults caused by sili-
con impurities, lithography variations and process deviations. These defects
cause permanent faults in a circuit. The probability of these defects is likely
to increase as a greater amount of transistors will be integrated in a single
chip, and at the same time the devices and wires get smaller.

The move towards nanoscale circuits introduces also a set of new prob-
lems originating from the manufacturing process. As the dimensions shrink
the relative extent of deviations becomes larger and their effects more se-
vere. Lithography deviation is the main reason for gate length variations
[26]. Doping profile fluctuations on the other hand cause changes in the
threshold voltage [26, 84]. These together with an increasing number of
resistive vias and contacts result in a large operation speed deviation [33].
At the same time the operation frequencies of the circuits are expected to
increase rapidly. In the worst case scenario, series of “slow” devices may
lead to timing violations and therefore to a malfunction of the circuit. This
is considered an intermittent fault because the circuit might work correctly
for most of the time, which would not be the case with a permanent fault.

Metal slivers are small pieces of metal between two metal wires demon-
strated in Figure 2.1. In normal conditions this metal piece does not touch
the wires but when the temperature increases it could create a short be-
tween wires due to the metal expansion. This is a typical intermittent fault
but a high voltage may also cause the sliver to burn in and hence, lead to a
permanent fault. [33]

The opposite of slivers are cracks in metal wires illustrated as well in
Figure 2.1. They cause open circuits at low temperatures but do not alter
the wire functionality at all or occur as an increased resistance at normal
temperatures. Cracks are another example of intermittent fault sources.
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Figure 2.1: Manufacturing faults in wires.

2.2.2 Physical Changes During Operation

Electromigration means current-induced atom-level transport which is gen-
erated by collisions of electrons with metal atoms [65]. This phenomenon is
especially critical if there are mousebites or hillocks in the metal wires, both
of which are illustrated in Figure 2.1 [5]. In the place of a mousebite the wire
is narrower, which means that the current density is higher and so the elec-
tromigration effect is stronger. Additionally, the wire is already narrower in
that place so the impact of electromigration causes rapidly increasing resis-
tivity and finally an open. In the place of a hillock material is accumulated
and electromigration moves more material to such a place because now the
current density is lower than in other parts of the wire. This can eventually
result in a short to another wire. The electromigration impact is observed
often first as an intermittent error, and later as a permanent error if an open
or short circuit is formed.

Electromigration is becoming a more and more severe problem as the di-
mensions of wires and insulators between wires decrease at the same time as
their relative deviations increase. Also the increasing operation temperature
strengthens the effect of electromigration. One improvement that has re-
duced the electromigration problems has been the replacement of aluminium
with copper in wires due to copper’s higher electromigration threshold than
that of aluminium [84].

The ever thinner gate oxides are prone to current tunneling resulting in
a breakdown which means a permanent fault. On the other hand, a soft
breakdown (SBD) in ultrathin gate oxides slows down transistors causing
intermittent faults in the same way as other device deviations [33]. The
soft breakdown differs from the traditional hard breakdown in that it causes
current fluctuations while the hard breakdown brings about shorts and thus
a measurable current. The SBD effects can be regarded as tiny breakdowns
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that only partially violate the operation of the transistor. The SBD is also
a typical source for an increased power consumption.

2.2.3 Internal Noise

When technology is scaled down also the supply voltages are lowered. In
addition to the lower power consumption the benefit of the voltage scaling
is the better durability of the components and wires. High voltages expose
thin gate oxides for breakdown and high current densities in narrow wires
accelerate electromigration. The drawback is a degraded noise tolerance,
which is illustrated in Figure 2.2. The impact is further amplified by the
large variation of the threshold voltage, which means that for some circuits
or some parts of the circuit the noise margin is negligible. At the same
time the amount of noise is increasing as the relative fluctuations in the
manufacturing processes get larger.

The impact of crosstalk noise between signal lines is increasing because
the height and width of the wires are not scaled by the same factor. The
width of the smallest wires scales with the same factor as the length of the
gate, but the technology scaling factor for the height of the wires is smaller

15— ; ‘ ‘ ]
....... Vdd high performance
Vdd low power

= = = Noise gross margin
----- Total noise

..........

Voltage [V]

[

S -

Noise margin N

D i mm o wmwm

100 80 60 40 20
Technology half pitch [nm]
Figure 2.2: The noise margin decreases as the technology is scaled down

[38]. The gross noise margin is calculated from the low power V;; and the
total noise with independent noise of 50 mV and relative noise of 0.2 [19].



in order to keep the resistance of the wires tolerable. This increases the
capacitive area between adjacent wires. At the same time, the wire spac-
ing and also the distance of adjacent layers get smaller, which additionally
increases the capacitive coupling.

The higher frequency in nanoscale circuits gives rise also to inductance
based noise called the skin effect [19]. When the current changes rapidly it
flows near the wire surface, which means an increase in the resistance. Since
the current flow proximity to surface depends on the frequency of current
changes, also the wire resistance will vary with the frequency.

The timing uncertainty is another type of noise source. As the relative
deviations of components and wires increase it will be impossible to get
a signal to two or more distinct nodes in the circuit exactly at the same
moment. The resistive vias and contacts worsen the situation even further.
The increasing skew and jitter is a problem not only in synchronous systems
but also in asynchronous designs that use delay elements, because the delay
value cannot be set exactly. [19]

The impact of noise can usually be modeled as a transient or sometimes
as an intermittent fault.

2.2.4 External Noise

Radiation has not been regarded as a severe noise source unless the circuit
is to be used in space, aeroplanes, nuclear plant or similar places where
the background radiation is higher than usual terrestrial amounts. As tech-
nology scales down the radiation should be taken into consideration also
in other circuits, because the shrinking dimensions increase the probability
that an a-particle, proton or neutron hitting the chip also causes a change
in a bit value. The occurrence of an upset is more likely since a lower supply
voltage together with smaller transistors mean that the charge the particle
introduces is sufficient to flip a bit. The charge needed to flip a bit and cause
a particle-induced transient is called the critical charge and it is dependent
on the charge a transistor can hold. For instance for a 90 nm CMOS tech-
nology the charge a transistor holds is 1-10 fC, which is less than one tenth
of the charge of over 100 fC delivered by an a-particle hitting the circuit
[40].

Other external noise sources are electromagnetic interference and elec-
trostatic discharge. A common source for the former are other devices espe-
cially those emitting high energy signals, and for the latter the users releasing
static charge accumulated in their clothing. The faults are normally tran-
sient but in principle also permanent faults may result especially from an
electrostatic discharge [17].
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2.3 Fault Tolerance Metrics

Fault tolerance of a system can be described in many metrics. The most com-
mon of these is the reliability R(t) which has been defined as the probability
that a system operates correctly under given set of operating conditions over
a given period of time [to, t], given that the system was performing correctly
at time ¢g. Other metrics include the availability A(t) which is the prob-
ability that a system can perform its task correctly at the instant of time
t, and safety S(t) which is the probability that a system performs its task
correctly or discontinues its operation in a safe manner. Safety is defined
over a period of time [tg,t] corresponding with the definition of reliability.
Dependability is used to indicate all of these properties. [39, 81]

The occurrence of failures can be described with the failure rate A\, which
is the expected number of failures per a given time period. Its reciprocal is
the mean time to failure (MTTF), MTTF = {. The relation of the reliability
and failure rate is R(t) = e~ for a constant \. [39]

2.4 Static Fault Tolerance

A circuit is said to be utilizing static fault tolerance when it is built in
such a way that a fault somewhere in the circuit will not violate the correct
operation of the circuit. The word static stands for the fact that fault
tolerance is built into the system structure and it effectively masks the fault
effects. The method to create such fault masking properties is to use some
kind of redundancy. Static fault tolerance can be categorized to hardware,
information and time redundandy according to the resource that is used to
create the redundancy. Also a combination of these can be used.

2.4.1 Hardware Redundancy

Hardware redundancy generally means making copies of the processing mod-
ule and providing a voting circuit to decide the correct output value based
on the outputs of the module and its copies. A higher reliability is gained be-
cause when a component fails, the voter can decide the correct output based
on the results of the working copies. The method can be used at many differ-
ent abstraction levels, the modules can be as simple as single gates but also
as complex as whole processors or even larger constructs. The voter can be a
simple bitwise hardware implementation or a software algorithm running on
a processor. This versatility makes the method a good candidate for large
systems such as networks-on-chip, where solutions for multiple abstraction
levels is required. Common to all hardware redundancy realizations is the
need for additional area. Therefore the methodology is also called physical,
area or space redundancy.
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Figure 2.3: Triple modular redundancy.

The most common hardware redundancy realization is triple modular
redundancy (TMR) which consists of three redundant modules and a voting
circuit as illustrated in Figure 2.3. The voter normally performs majority
voting, which means that the output is the same as the output of two-
out-of-three of the modules. TMR is capable of masking a single error
in the processing modules. The weak point of the circuit is the voting
circuitry itself where an error can cause the whole system to fail. This
has been tackled by making also three copies of the voter and connecting
the module outputs to each of the three voters [39]. Other possibility is
to modify the voting circuitry in such a way that possible errors can be
detected. Approaches include e.g. a voter that is on-line self-testing for
internal faults [14, 58] and a voter that can be checked based on the quiescent
current (Ippg) [13]. Another important issue to consider is the mismatch
and crosstalk in lines from module outputs to voter inputs, which can cause
severe malfunctions [25]. For this reason synchronization between the voter
inputs may be required. The simplest method for realizing synchronization
is to insert registers to voter inputs [39].

A more generalized hardware redundancy realization is n-modular re-
dundancy (NMR), which means that there are n copies of a module and a
voter. This structure is capable of masking [(n — 1)/2] errors in different
processing modules. The most common structures besides TMR are 5- and
7-modular redundancies capable of masking 2 and 3 errors, respectively.

The voting algorithms can be divided according to their functionality to
generic and hybrid voting algorithms and to purpose-built voters. Generic
voters use only the information of input signals to produce the output while
hybrid voters have also some additional information such as the reliability
of different modules or history of previous votes. The purpose-built voters
are e.g. special microprocessor systems designed for space shuttles [48].

Generic voters produce the output according to the present output val-
ues of the modules. The most common algorithm is the exact majority
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voting, which means that when the majority of the module outputs have the
same value, this value is forwarded to the output. This is easily achieved
in bitwise voting because the only possible values are logic ‘0’ and ‘1°. If
the module outputs are not just one bit wide but for instance integers, then
it is possible that there is no majority agreement. In this case the voter
can have an output “no result”, which is an exception signal. The values
of different modules can be slightly different because of noise or e.g. sensor
elements cannot be physically at the exactly same place. Therefore inexact
majority voting has been introduced, where the output is decided if the ma-
jority of the module outputs lie inside a certain threshold. A “no result”
is output only if majority of the outputs are more than a threshold apart
from each other. The threshold effect can be easily achieved by dropping
a couple of least significant bits from the voting procedure [39]. In plural-
ity voting the majority of the module outputs do not necessarily have the
same value (exact) or values in threshold limits (inexact), only the number
of the same value or values within a threshold is larger than the number of
modules having some other value. For instance, if there are five modules, it
is enough that two of them have the same value if each of the other three
has a different value. In inexact voting the selection of the output value can
be a random selection of one of the majority or plurality output values or it
can be mid-value selection, where the output is calculated as the mid-value
of the majority or plurality outputs. [41, 80]

Another voting scheme is median voting, where the median of all the
module outputs is selected as the voter output. An efficient software real-
ization is to sort the output values and then select [(n+ 1)/2]th value as the
output, where n is the (odd) number of redundant modules. [45]

In weighted average voting a weight is given to each module output and
the output is calculated as the average of the module outputs scaled by
these weights. The output is scaled down by the sum of the weights in
order to produce an output that is at the same scale as the inputs. In
bitwise voting the output is returned to one of the logic states according to
a threshold value which is adjusted to some level between the logic states.

Figure 2.4: Weighted average voting with threshold: y =
S wiri/ > wi, z =1 if y > T and 2z =0 if y < T, where T is
the set threshold.
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The operation is demonstrated in Figure 2.4. The weights are calculated
based on the distance of the output value to the other output values. If
a module’s output value is far away from all the other output values, it is
given a smaller weight than a module whose output is close to many other
module’s output values. Advanced methods to calculate these values have
also been presented. These include e.g. a voter that uses the concept of
the soft threshold for determining the closeness of all voter input pairs and
a tunable roll-off parameter which gives the possibility to adjust the voter
behaviour from a majority voter to an average voter [51], and a fuzzy voter
using fuzzy set theory to adjust the weights [50]. Circuit realizations of
voters include e.g. weighted bit-wise voters with a threshold [15, 64] and an
analog weighted average voter [74] together with a threshold circuit using
capacitive threshold logic [73].

The adjustment of the threshold is an essential task for the operation
of the circuit. Threshold can be static or dynamic. A static threshold can
be based on circuit realization or set after the manufacturing. Dynamic
threshold, in contrast, adapts to the changes in the operation environment.
For instance, the use of an artificial neural network learning algorithm in
adjusting the thresholds has been suggested [72].

The selection of a voting method for a particular application depends on
the required properties. In some applications even a single incorrect data
bit may violate the operation of the whole system whereas for some other
application few corrupted data bits make no harm. For the former ones
high safety is demanded, which means that it is better to indicate even the
small possibility of an incorrect result even though it may decrease the total
number of correct answers. For the latter case the number of correct outputs
is maximized without paying any concern to the potentially incorrect results.

Majority voting is a rather safe voting scheme because it is more likely
to output a "no result” than a faulty result. The weighted average voting
on the contrary gives more correct results but also the amount of incorrect
results increases, thus the safety is not that good [49]. Above mentioned
is true when module outputs are wider than just one bit. However, for
bitwise voting the safety of a majority voter is poor because in the case of
multiple errors the output is likely to be incorrect instead of “no result”.
The weighted average voting for bitwise voters is shown to result in a higher
number of correct results in the presence of multiple defects [75].

Hybrid voters combine the information on present module outputs and
some other information regarding the module circuits or output sequence.
An example of the use of history data together with the information on
present outputs is weighted average voting, where the weights are based on
history records [47]. The voting procedure can be also totally based on the
history, e.g. by choosing for the output of the voter the output of the module
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that has been the best in the history. The best module is the one that has
had output closer than a threshold to majority of the module outputs for
the most times [46]. The use of history values can be also a backup system
if no agreement can be found among the module outputs [46]. In addition
to using the history data to detect the most reliable modules, it can also be
used to predict the next output value. Many system outputs are somehow
dependent on the previous outputs, which gives the justification for this
procedure. One of the simplest ways to predict the value in the case of
a module output disagreement, is to check if any of them is closer than a
threshold to the previous voter output. If such an output is found, the one
closest to the previous value is selected [49].

2.4.2 Time Redundancy

The principle in time redundancy is to use the same resource many times
and compare the results obtained from different rounds of computation. The
method saves area since no copies of the processing module are required.
The drawback is the longer processing time because of the recalculations,
which on the other hand may be acceptable for certain types of applications.
The method of repeating the same calculation many times is effective in
detecting transient errors but permanent and in many cases also intermittent
errors occur at the same place during all calculations and cannot therefore
be detected and corrected. This problem can be overcome by encoding
the operands before processing and decoding afterwards. Commonly the
operation is first performed with the original operand and after that with
the coded ones.

In alternating logic method complementation is the used coding method.
In order to be able to use this coding, the self-duality of the circuit is re-
quired or possibly an additional input is needed. Recomputing with shifted
operands (RESO) means shifting the operands before calculation to left and
back to right after calculation. This method makes arithmetic operations
wider. Alternatively, cyclic shift can be used which in turn means complex
logic for carry signals in adder circuits. One more coding approach is recom-
puting with swapped operands (RESWO), where upper and lower parts of the
operands are swapped before and after the calculation. The method needs
no additional bits, and the logic for handling carry bits in adder circuits is
more straightforward than in RESO. [39]

The error correcting properties are obtained by repeating the operation
at least three times and performing voting for the three results. Different
coding is used at different calculation rounds, e.g. no coding, shift 1 and
shift 2. Bitwise majority voting can be problematic because the arithmetic
operations commonly affect many bits. The different voting approaches were
already discussed in the previous section. [39]
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2.4.3 Information Redundancy

Information redundancy in general means appending additional bits to stored
or transmitted data. Error control codes (ECC) can be used to detect and/or
correct errors in a codeword, the data word into which check bits have been
appended. The application of an ECC to extract the exact location of the
error in order to correct it is called forward error correction (FEC), to distin-
guish it from approaches where a code is used only for detection of an error
in a codeword. The codes can be classified to separable and non-separable
codes according to how the additional information is appended. If the data
is left unchanged and check bits are appended for the correction, the code
is separable. A non-separable code needs a decoding circuit to return the
data to its normal form before further processing. Separable codes are also
called systematic codes and non-separable non-systematic, respectively.

A simple separable ECC is the parity code, which means appending one
bit to every word. The value of this appended bit is adjusted to make the
number of bits with value '1’ odd (odd-parity code) or even (even-parity
code). The parity code itself can be used only for detecting single errors in
a codeword, but when a parity is calculated separately for both rows and
columns for instance in a memory block, the exact location of a single error
can be extracted. [39, 44]

Error control codes are an important tool in designing fault tolerant
signaling also in on-chip communication as well as for other communication.
This usage of ECC will be discussed in detail in Chapter 4 and therefore it
is omitted here.

The redundant residue number system (RRNS) is used for error correc-
tion in arithmetic operations such as addition, subtraction and multiplica-
tion. In residue number system each number is presented as the residues
for a set of relatively prime moduli. For instance, if the moduli set is {3,5}
then a 919 is presented as 04gns because 9 = 0 (mod 3) and 9 =4 (mod 5).
The set {3,5} can be used to present numbers 019 — 1419, which is deter-
mined by multiplying the moduli of the set (3-5 = 15). The operations are
performed bitwise as mod m;, where m; is the moduli used to create the
numbers at this bit location. When additional moduli are inserted to the
set, a redundant residue number system is obtained, which can be used to
detect and correct errors. If r redundant moduli are added, the system can
correct up to |r/2] errors. The use of RRNS has been proposed to be used
e.g. in digital filters and in software-defined radio. [24, 35, 39]

2.5 Dynamic Fault Tolerance

Dynamic fault tolerance is based on active operations as opposite to the
passive nature of static fault tolerance. It can be divided into four phases
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the first of which is fault detection. After the detection of an erroneous
behaviour the next thing to do is to locate the fault. The third phase is fault
containment which means isolating the error source so that no new errors
can occur. The final phase is fault recovery meaning usually reconfiguration
of the system so that the erroneous part has been disabled. [39]

Dynamic fault tolerance typically requires special control circuitry and
elements. Unfortunately, the design of these control parts is not always
straightforward. The benefit of dynamic fault tolerance is better reliability
especially in the occurrence of permanent and multiple errors, and quite
often the reliability increase is obtained with a smaller area overhead than
in the corresponding static fault tolerance approach. Many network-on-chip
implementations contain means for controlling traffic flows and processing
resources. The control required for dynamic fault tolerance could be inte-
grated with such systems, which makes dynamic fault tolerance a promising
method for networks-on-chip.

2.5.1 Fault Detection

The fault detection is an essential part of dynamic fault tolerance. If the
fault is not detected the circuit can produce erroneous outputs and it can
falsely be considered fault-free. The fault detection can be organized as
periodic tests, self-checking circuits or watchdog timers [44].

The principle of the periodic tests is to stop the circuit operation every
now and then and perform a self-test. The method cannot guarantee that
every fault is detected because the test is run only occasionally. Further-
more, the time needed for testing is a drawback of this method.

Watchdog timers are used especially in multi-processor environments. A
control circuit sets a timer when a processor starts to execute a certain task.
At some predefined point of the procedure the processor resets the timer. If
for some reason the processor halts during the operation, the control circuit
detects it by observing the timer value exceeding some limit. To recover from
this situation the control circuit can for instance reset the halted processor
or start a reconfiguration process. [39]

There are numerous ways to create self-checking circuits. The most
straightforward method is duplication with comparison, which means cre-
ating two identical modules and comparing their outputs as illustrated in
Figure 2.5. Sometimes there can be small deviations between the two com-
ponents although they are operating correctly. In these cases the comparison
process can ignore least significant bits. The method can also be extended to
tolerate common mode failures which are failures that affect both the mod-
ules in the same way. One such an enhancement is to replace the duplicate
module with a module that calculates the complement function of the orig-
inal module’s function. The circuit works correctly when the output of the
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original module and the output of the module calculating the complement
function are complements of each other. [39]

Duplication can be done also in time domain. The information is sent
twice and the results are compared. In order to gain better detection abili-
ties, the data can be complemented or swapped at the second iteration and
an inverse transformation is performed at the output. [39]

A number of error control codes can be used to detect errors in data.
Possibly the most common error detecting code is the parity code which is
extensively used e.g. in memory circuits. The code can detect single errors,
but in the presence of multiple errors the parity bit may have a correct
value, and therefore the error is not detected. More sophisticated error
control codes are presented in Chapter 4, where coding for on-chip signaling
is addressed in more detail.

Errors are commonly expected to occur randomly, independently of each
other. This is not a realistic model for all cases. In some situations errors
only in one direction can occur, meaning that ‘0’ can turn to ‘1’ but ‘1’
cannot flip to ‘0’ or vice versa. Errors occurring only in one direction are
called unidirectional and errors that can occur in both directions are bidi-
rectional. Errors can also occur as bursts which are common for instance in
communication signaling, where burst errors originate from disturbances in
the signaling medium. Intermittent faults in the signaling medium typically
cause error bursts.

M-out-of-n codes are able to detect not only single errors but also mul-
tiple unidirectional errors. The basic principle of the code is that every
codeword has m ones and n — m zeros while the length of a codeword is n.
The code is not separable except in some special cases. Such a special case
is k-out-of-2k code where there are two bits per one data bit. The code is
called k-pair two-rail code, when the check bits are bitwise complements of
the information bits [39, 44]. An example of the use of m-out-of-n codes is
an online error detecting adder, where 1-out-of-3 code has been used [82].

The Berger code requires the fewest number of checkbits of the available
separable codes for detecting arbitrary number of unidirectional errors. The
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Figure 2.5: Duplication with comparison.
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code is based on counting the number of ‘1’s in the word and appending a
complement of the count to the word. The number of checkbits is [log,(k +
1)], where k is the number of information bits [39, 44]. If it is not necessary
to detect all the possible unidirectional errors, but only maximum ¢ of them,
then the amount of checkbits can be further decreased. Such codes are
e.g. the modified Berger code, Borden code and Bose-Lin codes [44]. A
set of codes for detecting unidirectional errors and error bursts of length ¢,
the unidirectional burst error detecting codes, includes e.g. codes by Berger,
Bose, and Blaum [44].

One way to detect an error occurred during signal transmission is to cal-
culate a checksum of the data words and transmit it together with the data
words. At the receiving end the checksum is recalculated and compared with
the received one. Examples of checksums are single- and double precision
checksums as well as Honeywell and residue checksums. The length of the
single-precision and residue checksum is the same as the width of the data
words, while the other two have the length of double the width of the data
words. The mentioned checksums are calculated by summing up all the data
words. They differ in the way the data words are organized and carry bits
handled in the addition process [39].

Arithmetic codes are used to detect errors in arithmetic operations. One
example of such a code is the AN code which can be used for addition and
subtraction. Every operand is multiplied by A before the operation and the
result should be evenly dividable by A, otherwise an error has occured. A
commonly used AN code is the 3N code. Other arithmetic codes include
residue and inverse-residue codes. In these codes, the operands are divided
by integer m (e.g. by 3 for mod-3 residue), and the remainder is appended
to the data, thus the code is separable. The arithmetic operation for the
appended remainder is computed modulo m and the result is checked against
the remainder of the operation result divided by m. The procedure is eligible
for addition, multiplication and logical units [44]. Residue number systems,
described in Section 2.4.3 along with their error correcting capabilities, can
also be used for error detection. [39]

Checkers are circuits that are used to determine if an error has occured
or not. A checker commonly compares two values and signals an error if
they differ or are equal, depending on the used method. The robust design
of checkers is very important because an error in the checker circuit may
invalidate the fault tolerance of the whole system.

In the design of checker circuits the concepts of fault-secure and self-
testing design are commonly used. The circuit is fault-secure if every valid
input produces either a correct output or an output which can be easily
observed to be incorrect. This kind of incorrect outputs are called non-
code outputs, which indicates that they do not fulfill the requirements set

19



for the codewords. A self-testing circuit, in turn, is such where for every
fault in some set of faults there is an input combination which produces a
non-code output so that the fault can be observed. The circuit that is both
fault-secure and self-testing is called totally self-checking. [44]

The fault-security in a circuit can be achieved by designing the circuit
in a way that there is separate logic for separate outputs. This ensures that
a single error affects only one output signal. The self-testability is achieved
by non-redundant design.

A common checker is a two-rail checker, which has four inputs and two
outputs. The inputs consist of two input pairs, both of which consist of two
complementary signals. The circuit checks that the signals of an input pair
are indeed complementary. The output signals are complementary when
there are no errors, and in the presence of an error in the input or in the
checker circuit the output signals are the same. A checker for a larger
number of input pairs can be constructed by forming a tree connection
from the two-rail checkers. Totally self-checking two-rail checkers have been
presented, and a combination of these checkers forming a larger checker is
also totally self-checking. [44]

2.5.2 Fault Location

After the detection of a fault situation the fault source has to be located, if
it is not already known based on fault detection information. One way to
accomplish this is to start a specific self-diagnostic procedure after the fault
detection [39]. The self-diagnostics may consume too much time to be used
in some time-critical applications, but for most applications the additional
time is tolerable since it is needed reasonably seldom, i.e. only during a fault
occurrence. Another way to locate a fault is to use two different detection
methods. For example, if both duplication with comparison and parity check
are used, the faulty module can be easily located. [3]

2.5.3 Fault Recovery

There are two common ways to accomplish fault recovery. The transmission
or calculation repetition, automatic repeat query (ARQ), needs additional
time while the use of spare modules and reconfiguration causes area overhead.

ARQ is suitable for recovering from transient and in some cases also from
intermittent errors. However, it cannot be used against permanent errors
since the system will not work regardless of how many times the operation
is repeated. Different approaches to ARQ are introduced at the end of
Chapter 4.

The use of spare modules and reconfiguration is especially suitable for
recovering from permanent and intermittent errors. On the other hand, it
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is not very efficient to discard a whole module and replace it with a spare
one if the error is only temporary. Therefore a combination of ARQ and
reconfiguration might give the best result. The operation is first repeated
and if the error remains, the reconfiguration process is commenced. [44]

The spare modules can be divided into hot and cold spares, depending on
whether the spare modules are immediately ready for use (hot) or do they
need to be initialized before usage (cold). Cold spares are also called standby
spares and the use of hot spares is referred to as reconfigurable duplication.
The standby spare system leads to higher reliability but the reconfigurable
duplication provides higher safety. [39, 44]

Spares have also been combined with N-modular redundancy (NMR). In
these systems N modules are part of the voting procedure and in addition to
them, there are spare modules as illustrated in Figure 2.6. After voting the
output is compared to the output of each individual module and in the case
of a disagreement, the module is replaced with a spare. The combination
leads to a higher reliablity than the normal NMR system. [39, 44|

A self-purging system is an NMR system which in the presence of a
module failure reconfigures itself and the result is an (N-1)MR system. The
isolation of modules is done similarly as in NMR with spares or it can be
based on evaluation of the distances between different module output values.
The method is also called shift-out modular redundancy. In conjunction with
self-purging systems the use of weighted average voting with a dynamically
adjustable threshold has been suggested. [15, 39, 64]

Yet another combination of dynamic redundancy and static NMR is the
triple-duplex architecture presented in Figure 2.7. In this combination every
module is duplicated and in the case of a disagreement the module is isolated

Figure 2.6: N-modular redundancy with k spares.
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from the voting unit. One system therefore consists of six modules and a
voter unit. [39]

The insertion of spare modules to a system causes easily a large area
overhead, because for every kind of module a special spare has to be imple-
mented. If the modules are similar, but not identical, heterogeneous redun-
dancy can be used. Redundant blocks that can be programmed like field-
programmable gate arrays (FPGA) to execute many different functions are
inserted to a circuit. One such reconfigurable module can be used to replace
different types of modules and therefore the overall number of spare modules
can be decreased. The disadvantage is that these programmable modules are
generally slower than fixed-logic blocks and also the reconfiguration takes
more time. [43]

Another way for relaxing the need for additional area, is to take advan-
tage of redundant structures inherently present in a system. For instance,
there are parallel structures in many radio structures, where a single redun-
dant module can act as a spare module for many modules in use [52].
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Figure 2.7: Triple-duplex architecture.
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Chapter 3

Network-on-Chip

Network-on-Chip (NoC) is a communication infrastructure paradigm tar-
geted to large on-chip systems consisting of tens or hundreds of resources
such as processor cores, memories, etc. The idea in NoC is to replace buses
with a communication network consisting of routers or switches and point-
to-point links connecting the resources to routers as well as the routers to
each other to form a network. The generic structure of a NoC is illustrated
in Figure 3.1. NoC realizations borrow ideas from both circuit switching
networks such as the landline phones as well as packet switching networks,
the most known example of which is the Internet. Packet switching pro-
vides flexibility while circuit switching comes with a more predictable per-
formance. Network interfaces (NI) connected between each resource and

Resource
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Figure 3.1: In a NoC resources are connected via network interfaces (NI) to
routers (R). Routers are connected to each other to form a network.

23



the network are used to create and unpack packets or establish a connection
between the source and destination resources. In packet switching network
each packet contains information needed for routing of the packet to the
correct destination.

The motivation for the NoC approach is the poor scalability of buses for
systems consisting of a large number of resources. The longer the bus is the
higher capacitive load it introduces to the drivers connected to it, and there-
fore results in a longer latency and higher power consumption. The same
effect results from the increasing number of devices connected to the bus
emphasized by the effect on the scheduling of the bus: the more resources
connected to the bus, the less time is left for each of them to use the bus.
Furthermore, the arbitration becomes more complex and time-consuming as
the number of devices connected to a bus increases. NoC provides better
scalability because as more resources are introduced to a system, also more
routers and links are introduced to connect them to the network. The addi-
tional links and routers provide the communication capacity needed for the
new resources. Many NoC realizations also inherently contain some redun-
dancy in the communication media, which can be used to provide a higher
reliability and traffic balancing. This is in contrast to bus structures, which
rely on a single communication medium.

The NoC paradigm was first introduced at the beginning of this millen-
nium by multiple independent research groups [6, 20, 31, 34, 76]. After that
a lot of design efforts have been put to the topic, examples include Atheral
[28], MANGO [9], Nostrum [42], SPIN [1], and Xpipes [7]. Some approaches
are already in commercial use, such as Arteris™ [4] and STNoC™ [79].

The main design choices in NoC are the way the routers are connected to
each other, the network topology, the principles how the packets are routed
from a source to a destination, the routing protocol, and the allocation of
network resources to packets travelling in the network, the flow control.
These are discussed in the following subsections. The network components,
the routers, network interfaces and links, implement the topology, routing
protocol, and flow control.

3.1 Topology

The network topology defines the way the routers are connected to each
other to form a network. Most of the proposed topologies for NoC are
borrowed from the world of inter-processor networks in supercomputers and
computer networks.

Probably the most often proposed topology for NoC is the mesh pre-
sented in Figure 3.2. Resources are organized into a two-dimensional array
and each resource is connected to one router assigned to it. Each router is
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Figure 3.2: Mesh network topology.
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Figure 3.3: Torus and folded torus network topologies.

connected to its neighbors in four directions, typically named East, South,
West and North, excluding the ones at the edges of the structure having only
2-3 neighbors. The topology is highly symmetric which makes the address-
ing and routing straightforward. Furthermore, the inherently horizontal and
vertical links organized in an array shape between the resources simplify the
creation of the chip layout.

The torus topology, presented in Figure 3.3(a), fixes one of the drawbacks
of the mesh topology, namely the long distance between opposite edges. In
a torus the routers at the edges are directly connected to the routers at the
opposite edge of the system, thus decreasing the hop count on a route. The
drawback of this approach is the uneven length of links, the edge-to-edge
connections are longer than the links inside the mesh. To overcome this, a
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(a) Binary tree. (b) Fat tree.

Figure 3.4: Binary and fat tree network topologies (the black squares rep-
resent resources).

structure called folded torus has been presented [21]. In a folded torus all
the links are of the same length, illustrated in Figure 3.3(b).

Besides the mesh, most commonly used NoC topologies are variations
from the tree topology, where the resources are the leaves and the routers
form the nodes of the tree. Figure 3.4 presents two tree structures, the binary
tree and fat tree. In the binary tree topology each router is connected to
two resources or routers below it (children, descendants) and to one router
above it (parent, ancestor). Fat tree [53] provides a more balanced capacity
by having more links closer to the root of the tree. When also the number of
routers is increased the fat tree topology provides the possibility to balance
traffic and therefore decrease the possibility for congestion. The drawback
of the fat tree topology is its complexity for on-chip implementation. While
a binary tree can be easily created with an H-structure, the layout of the fat
tree topology is not that obvious.

Other NoC topologies include ring, star and spidergon. The ring and star
are very descriptive names: in a ring topology the routers are connected so
that a ring is formed and in a star topology all routers are connected to one
central router. Spidergon is a modification of the ring with an even number
routers. In addition to the ring connections, each router is connected to its
counterpart at the other side of the ring [18].

The regular structures explained above are suitable for general-purpose
systems. However, they may loose some effectiveness when used with ap-
plication specific systems. For this kind of systems custom topologies have
been presented [7]. Their design starts from a thorough analysis of the traf-
fic between the system components. A custom topology may contain links
of different lengths and widths, odd-sized resources and it may have hybrid
communication media combining buses, point-to-point links and networks.
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3.2 Routing

The routing protocol defines the way a message is transmitted from the
source to the destination. For routing a header is introduced to the packet
at the network interface. The header contains information about the route
to the destination. In source routing this information includes routing direc-
tives for each router in the route, i.e. should the packet be forwarded straight
at the particular router or is a turn required. In this case the network inter-
faces contain a routing table which provides information about every route
in the network. Another approach is to give an address to each router in
the network and include the destination address in the packet header. The
routers then read this address, compare it to their own address and make
the decision about the direction in which to forward the packet. In this
approach the routing tables or decision logic is in the routers.

The selection of the route through the network from a source to a des-
tination is defined by the routing algorithm, which can be either oblivious
or adaptive. Oblivious routing algorithms do not take into consideration
any possible changes in the state of the network. An important subset of
the oblivious routing algorithms are the deterministic routing algorithms,
which always provide the same route through the network. Adaptive rout-
ing algorithms, in contrast to oblivious routing algorithms, change the route
based on the circumstances in the network. For instance a congested part
of the network may be bypassed through other routes, and therefore better
traffic balance may be achieved. The drawback of adaptive routing is the
higher complexity and the possibility that packets arrive at the receiver in
different order than they were sent. In-order delivery is one of the strengths
of deterministic routing algorithms.

The chosen network topology sets guidelines for the routing algorithm.
The simplest deterministic routing algorithm for the mesh topology is di-
mension order routing, better known as XY routing. In XY routing a packet
is first routed along the x-dimension to the correct column and then along
the y-dimension to the correct row. XY routing algorithm is minimal be-
cause it provides the shortest route from the source to the destination. The
minimality is achieved by routing packets only in progressive directions in
each routing stage.

An example of an oblivious routing algorithm which is not deterministic
is the Valiant’s randomized routing algorithm [21]. A packet sent from some
source s to a destination d is first routed to a random intermediate terminal
node x and from there to the destination d. The routing from s to x and
from x to d can be done e.g. using dimension order routing. The algorithm
effectively distributes the traffic in the network, thus minimizing congestion.

Adaptive routing can be minimal or fully adaptive. In minimal adaptive
routing the direction of routing is selected among the possible progressive
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routes. A variant of XY routing called dynamic XY routing [55] is an exam-
ple of minimal adaptive routing. In that algorithm, the progressive direction
with less traffic is selected if there are multiple options. Otherwise the al-
gorithm follows the principles of XY routing.

Fully adaptive routing algorithms do not restrict the packets to the min-
imal routes. Some algorithms even allow U-turns. When using non-minimal
routing algorithms, there is a possibility for a livelock, a situation where
a packet travels in the network without ever reaching the destination. A
livelock can be detected with the inclusion of a hop counter in the message
header. The counter is set to some initial value at the source and in each
router the hop count is decreased by one. If the counter value equals zero be-
fore it reaches the destination, the packet is probably in a livelock, and as a
solution it is dropped from the network. The dropping should be recognized
by the flow control, and a retransmission of the packet commenced.

Besides livelock, other exceptions in the routing include deadlock and
starvation. Deadlock means a situation, where two, or more, messages wait
for a resource reserved by the other, and at the same time reserve a resource
the other one is acquiring. Therefore, neither of these messages cannot
proceed and the network is halted. Deadlock is a severe malfunction which
should be either prohibited in advance (deadlock avoidance) or handled when
it occurs (deadlock recovery). Starvation may occur if packets have different
priorities and a lower priority packet must wait its routing turn forever.

Deadlocks can be prevented at the routing algorithm level by admitting
only such turns and routes that will not lead to a deadlock. Basically this
means the prevention of cyclic dependencies between packets. XY routing
is an example of a deadlock-free routing algorithm, because it admits only
four of the eight possible turns (East-North EN, East-South ES, West-North
WN and West-South WS, see Figure 3.5), which guarantees that no cyclic
dependencies are possible.

For gaining deadlock-freedom it is necessary to prevent only two turns
from the eight possible. This indicates that XY routing wastes some of the
adaptivity. West-first, north-last and negative-first are turn models that
prohibit only the minimum number of turns [27]. The difference in between
them is which turns are not allowed. In west-first turn model the packet is
first routed West if necessary and it cannot be routed West later, thus the
turns NW and SW are not allowed. In north-last turn model the routing to
North is done last if it is required, the turns NW and NE are prohibited.
According to the negative-first turn model the packets are first routed to
West and South if required and after that to East and North. The turns ES
and NW are not allowed. The allowed and prohibited turns are illustrated
in Figure 3.5.

Another, a bit more complex model is the odd-even turn model [16]. In
that model different turns are prohibited in odd and even columns in order
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Figure 3.5: The allowed (solid line) and forbidden (dashed line) turns in
each turn model.

to achieve a more balanced adaptivity. Routers at odd columns cannot make
turns NW and SW, while the turns EN and ES are prohibited from routers
at even columns (see Figure 3.5).

The routing algorithms obeying one of the turn models are deadlock-
free. They are especially useful for creating adaptive deadlock-free algo-
rithms. Their use in designing fault-tolerant routing algorithms is addressed
in Chapter 6 and in Papers V and VI which propose fault tolerant routing
algorithms based on turn models. A survey of routing algorithms proposed
to be used in NoCs is presented in [66].

3.3 Flow Control

Flow control manages the allocation of network resources to packets as they
proceed along their route [21]. If two packets arrive at the same time to
a router and are to be forwarded to a same output, the flow control de-
fines what happens to the other packet that cannot be processed instantly.
In bufferless flow control there is no buffering capacity in the routers and
therefore the other packet must be dropped or misrouted. Routing, where
packets that cannot be forwarded into the desired direction are misrouted
to other directions, is called deflection routing or hot-potato routing.

When there is buffering capacity at each router the flow control, also
called the routing mode, defines how it is used in storing packets. In the
store-and-forward routing mode each packet is completely stored in the
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router’s buffer before it is forwarded. Thus, the buffer size must be at least
of the size of the largest packet. The virtual cut-through routing mode is an
optimization of the store-and-forward routing mode. In virtual cut-through
the forwarding of the packet can be started while still receiving it. In the
wormhole routing mode the packets are divided into equal sized flow control
digits, flits. The first flit is routed similarly as in virtual cut-through and at
the same time the route is reserved for the flits following the first flit. This
reserved route is called a wormhole. After the transmission of the last flit of
the packet, the reservation of the routers is released and the wormhole no
longer exists. The wormhole routing mode requires less buffering than the
other two, because only one flit needs to be stored at a time.

The drawback of wormhole routing is an increased possibility for dead-
locks. Virtual channels [21] are an efficient way to avoid deadlocks besides
the routing algorithm level approaches presented in the previous subsection.
The use of virtual channels means that a physical channel is divided into
multiple virtual channels. Parallel buffers are introduced to the inputs and
outputs of the routers, one for each virtual channel. This makes it possible
that although some traffic is blocked, the other virtual channels can still be
used and the probability for a deadlock is minimized or removed completely
depending on the chosen routing algorithm.

Virtual channels are also an important resource in providing quality of
service, QoS, which in general means the classification of the traffic into best
effort and guaranteed service. Virtual channels are used to separate these
two traffic classes, but they do not alone provide guaranteed services. One
way of actually guaranteeing services such as throughput and latency, is
the use of time division multiplexing, where resources are allocated in space
and time [21, 28]. In addition to the guaranteed throughput and latency,
an important property of a NoC is to provide fairness between traffic flows
inside a traffic class. The packet hop count or live time can be used in
creating fair arbitration, so that the oldest packets are served first [21, 62].

3.4 Fault Tolerant NoC

Fault tolerance issues can be considered in a NoC at many abstraction levels.
The well known network OSI reference model [91], illustrated in Figure 3.6,
has been applied to NoCs as well [22, 59]. The four bottommost layers, the
physical, data link, network and transport layer, are part of the implementa-
tion of the hardware platform. The lowest layer, the physical layer, in NoC
defines the wiring and signaling method. At this level the fault tolerance
means the selection of appropriate signaling methods and fitting them into
the noise margin.
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Figure 3.6: The seven layers OSI architecture [91] and the abstraction levels
of the fault tolerance methods presented in the thesis.

The data link layer provides reliable transfer of information across the
physical link. A number of fault tolerance methods are available to be used
at this level. Common is the introduction of error control coding to the
channel the link implements. Error control coding for on-chip communica-
tion is addressed in Chapter 4. ECC is not an optimal solution for tackling
permanent errors in interconnects. Alternative methods are proposed in
Chapter 5.

The network layer is responsible for providing the delivery of packets
from the source to the destination. This layer includes most of the design
choices of a NoC, containing the topology and routing algorithm. Adaptive
routing algorithms are a way to overcome faults in a NoC. However, they
require redundant routes in the topology. These issues are discussed in
Chapter 6. Also end-to-end error control coding is an approach that can be
considered to be realized at the network layer.

The transport layer handles the establishment of communication, i.e. it
addresses congestion and flow control issues. The fault tolerance realized
at this level is mainly originated from the solutions at the underlying lay-
ers. They just need to be taken into consideration when implementing the
services of this layer.

An optimal fault tolerance solution should include parts from several
abstraction layers. A fault should be tackled at the level where it is most
cost-efficient in terms of power consumption increase and performance de-
cline. A lower layer may handle some faults and inform the upper layer if it
detects more faults than it is capable of correcting. To have an efficient sys-
tem level approach, the methods used in each layer should fit into the whole,
i.e. the methods should provide means for inter-layer information passing.
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Chapter 4

Error Control Coding for
On-chip Signaling

Error control coding (ECC) is a prominent fault tolerance method for on-
chip signaling. In this chapter the terminology and principles of coding are
presented together with promising coding approaches for on-chip signaling.

In error control coding a data word of length k is encoded to form a
codeword of length n > k. The added n — k bits are called check bits and
in a separable, also called systematic, code they are appended to the end
of the data word to form the code word. Separable codes are beneficial to
be used in on-chip signaling, since the data bits are directly accessible in
the code word. In on-chip signaling typically parallel transmissions are used
in contrast to many data networks and wireless transmissions, where the
common form of transmission is serial. In on-chip signaling a set of parallel
wires usually forms a link, thus the check bits mean additional wires. A
codeword at a time is transmitted over the link.

The efficiency of a code can be measured by its error detection and/or
correction capability and the relation of data word and codeword widths,
the code rate R = % Code distance d is the minimum number of distinct
bits in two codewords; to put it in another way, the minimum number of
bits that must be flipped to get another codeword. The code’s error detec-
tion capability can be calculated from the distance by t; = d — 1, and the
correction capability by t. = |(d — 1)/2]. If a single code is used to correct
some number of errors and detect some more errors, the relation to distance
is d = 2t. +t4y+ 1. Because the on-chip links are commonly a set of parallel
wires, the code rate indicates the number of additional wires required. The
lower the code rate the more additional wires are required, which mean area
and power overhead.

Burst errors affect multiple adjacent bits in a codeword. In parallel
transmissions typical to on-chip signaling, a burst error therefore means an
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error affecting two or more adjacent wires. This kind of error situation can
be a result of many phenomena in a chip. For instance different kinds of
couplings between wires are likely to cause burst errors.

Interleaving is an efficient way to cope with burst errors [90]. It means
partitioning the data word into parts and encoding each of them separately.
The final codeword is formed by taking one bit at a time from each en-
coded part. The length of burst errors the code obtained by interleaving
can detect or correct is the number of interleaving section times the de-
tection/correction capability of the code used to encode the sections. For
instance, if we name the inputs as ig_,_1, the check bits as ¢y ,—_r—1 and
there are four interleaving sections, the coding proceeds as follows: the
check bits cg, ¢4, cg, . . . are calculated from inputs 4, i4, i3, . . ., the check bits
c1, 5, Cg, . . . are calculated from inputs i1, 5, 79, . . ., and the other two inter-
leaving sections correspondingly. Since the number of interleaving sections
in this example is four, the obtained code has burst error detection capa-
bility tg“”t = 4t,; and correction capability tlc’“”t = 4t., where t; and t.
are the error detection and correction capabilities of the underlying code,
respectively. Interleaving in parallel transmission links practically means
reordering of the wires, which is very cost-efficient. Therefore, it suits very
well for on-chip realizations.

The interleaving affects mainly the burst error tolerance but it also has an
effect on tolerance against multiple single errors affecting the same codeword.
Multiple single errors can be corrected if they affect separate interleaving
sections. The efficiency of interleaving in tolerating multiple single errors
has been analyzed in Paper L.

4.1 Linear Block Codes

Linear block codes are a well known and widely used set of codes. The
name indicates that a set of bits, a block, data word, is encoded at a time.
A codeword is always a linear combination of the other codewords. The
encoding and decoding of these codes is in most cases straightforward and
fast, which makes them well suited for on-chip realizations.

Linear block codes can be presented by their generator matriz G, which
is of size k x n, where k is the data word length and n the codeword length.
The encoding of a linear block code can be done with matrix multiplication
¢ = dG, where @ is a data word vector of length k, G is the k x n generator
matrix and ¢ is a codeword vector of length n. The code is systematic if the
generator matrix contains an kxk identity matrix, i.e. the codeword includes
the data word unaltered. Hardware realizations of systematic (separable)
code encoders can be simplified, because only n — k codeword symbols have
to be calculated and the rest are just the symbols of the data word. Binary
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matrix multiplication is simply calculating parity bits, which in hardware
means trees of zor gates.

Syndrome decoding is a common technique for decoding linear block
codes. A syndrome can be considered to contain information on the errors
of a transmitted codeword in a compressed form. It is calculated by matrix
multiplication 5= @H”, where @ is a received code word vector of length n
(@ = ¢+ €, where ¢ is a transmitted codeword and € an error vector, both
of length n), H” is the transpose of the (n — k) x n parity check matriz and
§is a syndrome vector of length n — k. The parity check matrix can be
constructed from the generator matrix and vice versa. The syndrome gives
the index to the table of minimum weight error vectors, so the error vector
€ can be easily determined. The correction is done by ¢ = 4+ €, eliminating
the error from the received data word.

4.1.1 Hamming Codes

The most common linear block codes are the Hamming codes. A Hamming
code fulfills the rule 2"% > n + 1, where n — k is the number of check bits
and n is the length of the codeword. The minimum distance of a Hamming
code is 3, so it can correct a single error in each codeword (¢, = 1) or it
can be used to detect double errors (t; = 2). The Hamming code is also
described as using the concept of overlapping parity where there are multiple
parity bits and every data bit is involved in calculating several of them. The
overlapping parity concept is a direct result of the matrix multiplication
encoding presented above. A modified Hamming code for both correcting
single errors and detecting double errors can be achieved by adding one more
check bit, which is used as the parity bit of the whole codeword [39, 44]. The
method of adding one more parity bit to each codeword is called extending
and it can be applied to other linear block codes as well. The opposite to
extending is shortening, where a number of data bits is set always to zero
and therefore can be left out of the codeword. Thus, shortening with a factor
s results in a code which has data word length k£ — s and codeword length
n — s. Shortening decreases the rate since ﬁ:i < %, for s > 0. Shortening is
extensively used in on-chip error control coding because a bus width seldom
directly matches the data word width of the wanted code.

Hamming codes are the most widely used codes in the research on in-
terconnect link error protection [8, 54, 60, 69, 78, 90]. For instance in [54]
parity and Hamming coding have been used in adaptive error detection
system which is built to obtain a more energy efficient design without af-
fecting the error detection capabilities. The system monitors the noise level
of the transmission channel and dynamically changes to a code that has
better error detection capabilities in the case of an increased noise level,
and respectively changes to a weaker code when the noise level is lower. In
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the design, parity, Hamming double error detection and extended Hamming
triple error detection codes are used.

A set of codes similar to Hamming codes are the Hsiao codes. They differ
from Hamming codes in the way the generator and parity check matrices
are constructed. [44]

4.1.2 Cyclic Codes

Cyclic codes are a set of codes where a cyclic shift of a codeword generates
another codeword. Because of this property, efficient realizations of these
codes can be achieved using linear feedback shift registers (LFSR). In the
standard form this creates non-separable codes, but the codes can also be
made separable by small changes in the generation process [39]. Cyclic codes
are normally presented with their generator polynomial g(x) instead of the
generator matrix. The generator polynomial is of degree n — k and the
encoding is proceed by c¢(z) = a(x)g(x), where a(x) is the data word and
¢(z) the codeword, both in their polynomial forms.

A class of cyclic codes, the cyclic redundancy check codes (CRC) are often
used for detecting errors. These codes are able to detect single errors and
adjacent multiple errors, which makes them extremely suitable for detecting
burst errors. The number of adjacent errors that can be detected isn—k—1,
where k is the number of data bits and the coded word contains n bits. A
generator polynomial of degree n — k is used. For instance, CRC-8 (8 for
the degree of the generator polynomial) is used in a self-calibrating design
to detect errors on the transmission channel, where self-calibration means
that the voltage-swing for the transmission channel is scaled dynamically to
obtain minimum energy consumption [85].

4.1.3 BCH Codes

As the probability for multiple errors increases when scaling further into the
nanometer regime, error correcting codes capable of correcting several er-
rors are needed. Popular linear block codes for multiple error correction are
the Bose-Chaudhuri-Hocquenghem (BCH) codes [83], which are also cyclic
codes. They can be easily constructed according to specifications for cor-
recting as many errors as is required. The BCH code is similar to Hamming
code when used as a single error correcting code, actually Hamming codes
are BCH codes with t. = 1, but commonly codes with t. > 2 are called BCH
codes. In on-chip signaling, where only two logic states are possible, only
binary BCH codes are of interest.

The syndrome decoding method explained above is limited by the size
of the minimum error vector table. When the number of check bits n — k
is high the table is impractically large, and therefore alternative decoding
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methods should be used. The decoding of BCH codes can be done using
the Berlekamp-Massey (B-M) algorithm [10]. The algorithm is iterative
requiring 2t. iterations, where t. is the error correction capability of the
code. The calculations are done in Galois Field (GF) 2™, where m depends
on the length of the code (2™ > n). In addition to the actual algorithm
a pre-processing circuit is needed. Using Fourier transform in GF(2™) 2t.
syndromes are calculated. For binary BCH codes, this basically means quite
similar trees of zor gates in hardware as for the syndrome calculation ex-
plained above. The error vector € is extracted by using a method called
Chien search to find the zeros of the error-locator polynomial A(x) obtained
from the B-M algorithm. [10]

4.1.4 Reed-Solomon Codes

The Reed-Solomon codes are other cyclic codes that can be used to correct
multiple errors. The codes are nonbinary, which means that instead of
bits, groups of m bits (e.g. m = 8, a byte) are used as symbols for the
codes. The Reed-Solomon codes are optimal meaning that they provide the
maximum distance at the used number of check symbols. If a word contains
k groups of data and its length is n groups, at most | (n—k)/2] errors can be
corrected. Because on-chip signals are binary, each symbol must be coded
by binary bits. These binary-coded nonbinary codes are especially effective
in correcting burst errors, since the detection and correction is based on
symbols which consist of many adjacent bits. On the other hand, they are
not very effective in single error tolerance because a single bit fault in a
binary-coded symbol takes the whole correction capability of that symbol.
Binary codes, such as binary BCH, provide the same tolerance against single
faults with a lower number of check bits. [10, 44]

Decoding of Reed-Solomon codes is also based on the Berlekamp-Massey
algorithm. The main difference is that in addition to the error vector € also
the error values are needed to perform the error correction. The error vector
€ points the erroneous GF(2™) symbol and the actual correction is done
by adding the error value of that particular symbol and the transmitted
symbol itself. The error values can be extracted using the Forney algorithm
with inputs obtained from the B-M algorithm. Also the Fourier transform
requires slight changes compared to the one used for BCH decoding. In
Reed-Solomon decoding all the calculations are done with GF(2™) symbols
while for binary BCH codes the syndrome calculation is just calculating
parities of different sets of bits. [10]

A special feature of Reed-Solomon decoding is that it can be constructed
so that it provides information on correctness of the decoding. This kind
of information could be very important in safety-critical designs, where it is
better to stop the system than give a false result.
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Paper I presents hardware realizations of encoders and decoders for a set
of Hamming, BCH and Reed-Solomon codes. Syndrome decoding is used
for the simpler codes and the algorithmic approach for the more complex
BCH and Reed-Solomon codes. The paper presents a comparison of the
complexities of the realizations together with an analysis of the differences
in fault tolerance of each code.

4.2 Other Coding Approaches

Besides linear block codes, also other coding approaches have been presented
for on-chip signaling. One example is the Dual rail code (DRC), where every
bit is doubled quite similar to the well-known repetition code. The resulting
code is practically separable because the data word can be found from the
codeword by simply reordering the wires. In addition to the repetition of
bits, a parity bit is introduced, thus the code needs 2k + 1 bits, where k is
the number of information bits [71]. In an extended version of the dual rail
code also the parity bit is doubled so 2(k+1) bits are needed [70]. The DRC
is able to correct single bit errors like the Hamming code but the number of
check bits is much higher. The code rate is less than a half, R = ﬁ < 0.5.
The benefit of the DRC is its ability for crosstalk minimization, which simply
results from the fact that a signal wire and its duplicate always have equal
transactions. The DRC and especially the extended DRC perform better
than the Hamming code when transmission delay or energy consumption is
regarded in the presence of crosstalk noise and when the wires are placed
optimally [70, 71]. In nanoscale circuits crosstalk capacitance is expected to
be dominant compared to other wire capacitance and therefore the benefits
of DRC methods are important.

4.3 Error Recovery Methods

Error control coding can be applied to detect errors in a message transmis-
sion. In general, two recovery techniques are used when an error has been
detected. In automatic repeat query (ARQ) a retransmission is requested,
while in forward error correction (FEC) check bits transmitted together with
the data are used to correct errors without the need for retransmission [89].
Hybrid approaches try to combine the best properties of ARQ and FEC
8, 23, 78].

As explained above, a code’s error detection capability t4 is larger than
its error correction capability .. Thus, the same code’s detection capabilities
can be used for worse error conditions than its correction capabilities if the
same detection/correction rate is targeted. Under uniform noise distribution
the probability of a link error depends on the link voltage. Therefore, a
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lower link voltage can be used to detect errors than is required to correct
them. As a result, error detection combined with ARQ can be more power
efficient than FEC [8], especially when dynamic voltage scaling is applied
[77]. The drawback of ARQ is the retransmission latency. Furthermore, the
number of retransmissions depends on error conditions. In persistent noise
environments, a large number of retransmissions may result, making ARQ
less energy-efficient than FEC. The FEC approach has a fixed, guaranteed
throughput, which is important for many applications.

More importantly, the ARQ method fails in the presence of permanent
errors (retransmission is only useful for avoiding transient errors). FEC
codes can detect and correct permanent errors, but each permanent error
will reduce the code’s capability to tolerate transient or intermittent errors.
FEC codes which can detect and correct multiple errors (e.g. BCH codes)
have large power and area overheads.

The realization of retransmission request and the retransmission has its
overheads. In the stop-and-wait method [89] the receiver informs the trans-
mitter after each transmission about the transmission success and if a re-
transmission is required. This results in latency overhead and throughput
decline. The go-back-N method [89] does not stop after each transmission
but continues until an error is detected. At this point the receiver informs
the transmitter which starts the transmission again from the word where
the error occurred. The overhead of this method is the additional area and
power for storing past data words in the transmitter as well as the latency
and throughput penalty of starting the transmission again. The third ARQ
method is selective repeat [89] which is similar to go-back-N, but now only
the erroneous word is retransmitted. This approach has area and power
overhead for not only storing words at the transmitter but also at the re-
ceiver. On the other hand, the delay and throughput penalties are the lowest
of the ARQ approaches.

ARQ fits well with asynchronous signaling, where handshaking is used
to inform a successful transmission. Since an acknowledgment signal will
in all cases be transmitted from receiver to transmitter, it can be extended
to contain also information about the status of the transmission. This is
achieved for instance by sending either an acknowledgement or a negative
acknowledgement. The former means a correct transmission while the latter
is a request for a retransmission.

The timing signals in asynchronous links are crucial for the correct op-
eration of the link, and therefore they have to be protected against errors.
For this purpose triple modular redundancy (TMR) can be used as pro-
posed in [60]. Furthermore, the three instances of each control signal can be
physically dispersed to maintain the tolerance against burst errors. TMR in
on-chip signaling means actually the utilization of a repetition code, where
the voter is the decoder.
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FEC, on the other hand, suits nicely for synchronous signaling. Both of
them target for a high throughput without any backward signaling. Syn-
chronous signaling is based on tight timing constraints, and the usage of
forward error correction can be sometimes used to loosen these constraints.
The code can correct the errors caused by some signals arriving late in the
worst case conditions for which the clock frequency would need to be oth-
erwise matched.
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Chapter 5

Protection Against

Permanent Faults in On-chip
Links

Error control coding (ECC) is an efficient way of tackling transient errors
in on-chip interconnects. However, its usefulness against permanent faults
is not that obvious. A single permanent fault can drastically reduce or even
eliminate the correction capabilities of the commonly used codes. Codes
with a higher correction capability, on the other hand, are too complex for
on-chip realizations which often have strict performance and cost require-
ments. More importantly, the automatic repeat query (ARQ) method fails
in the presence of permanent errors, since a retransmission is only useful for
avoiding transient errors. Most of the failures (80%) are caused by transient
faults [22]. The other way around, up to one fifth of all the failures are
originating from permanent or intermittent faults. Thus, the fault tolerance
approach must contain elements to not only tolerate the temporary faults
but also the ones of more permanent nature.

The idea presented in Papers II and III is to combine two different fault
tolerance methods to achieve a system that is efficient in tolerating tran-
sient, intermittent and permanent errors. For transient faults error control
coding combined with interleaving is used. In Paper II ARQ is used while
in Paper III the recovery method is forward error correction (FEC). For tol-
erating permanent and intermittent errors two methods are introduced, one
that uses hardware redundancy and the other based on time redundancy. In
the first approach spare wires are introduced together with reconfiguration
circuitry. In the second approach, the data is split into two transmissions
and in both of them the transmitted data is replicated. In the receiver the
fault-free copy is chosen and the data of the two transmissions are again
combined into a complete word.
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Permanent fault correction in on-chip links is a two-step process. First,
the permanent fault must be detected; then, the link must be reconfigured
to avoid transmitting over the faulty wire. The detection of permanent
faults is discussed in Section 5.1 and the spare wire and split transmission
approaches are addressed in Sections 5.2 and 5.3, respectively.

5.1 Permanent Fault Detection

To detect permanent errors in on-chip interconnects, two distinct methods
have been proposed in Papers II and III. In in-line test (ILT) method each
pair of adjacent wires in a link is tested for opens and shorts. These tests can
be run periodically to ensure that each link’s ECC capability is not crippled
by permanent errors. By testing every wire in the link, the ILT method also
recovers resources from intermittent errors that were incorrectly flagged as
permanent.

The syndrome storing-based error detection (SSD) method is based on
evaluation of consecutive error syndromes at the receiver. Syndromes are
calculated during the decoding procedure. They contain information on er-
rors in the received words as was described in the previous chapter. If a
number of consecutive error syndromes are equal, it may indicate a perma-
nent fault in the link.

5.1.1 In-Line Test Method

The in-line test (ILT) method proposed in Paper III sequentially routes data
from each pair of adjacent wires to a set of available spare wires, allowing
each pair to be tested for intermittent and permanent faults. The system
requires a test pattern generator at the transmitter side of the link and a
detection block at the receiver. The wires under test are connected to these
modules.

The test pattern for the ILT test has been derived in Paper III. A test
consisting of bit patterns “01” and “10” is sufficient for finding all shorts and
opens in or in between the wires. The paper presents also test procedures
for situations where only one or no spare wires are available. In these cases
a single wire test or a test only for the wires that are marked erroneous is
run.

The whole test procedure can be run during normal operation, with-
out interrupting data transmission. This is enabled by the reconfiguration
system described in Paper III.

To protect against runtime permanent errors, the ILT is run periodically,
with a period that can be shortened to improve error resilience or increased
for energy efficiency. In addition to this periodic testing, the ILT can be
triggered when an error is detected beyond the error correction capability
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of the code protecting the link. The trigger can use a simple timer or be
adaptively controlled by an upper protocol layer to save energy during idle
periods.

5.1.2 Syndrome Storing-Based Detection Method

The syndrome storing-based detection (SSD) method for detecting perma-
nent faults was first introduced in Paper II and further developed in Pa-
per III. The basic idea behind SSD is that the error syndrome of a linear
block code contains information about the errors in a received codeword.
If the syndromes of a number of consecutively received codewords are the
same, it can be concluded that there is a permanent error in the link (lim-
itations described momentarily). The error location can be extracted from
the syndrome using the normal decoding procedure. The effectiveness of
this approach comes from the fact that it takes advantage of the code and
decoder already present at the system. Hence, the amount of additional
logic can be minimized.

If there are more errors in the link than the error correction code is
capable of handling, the syndrome will be decoded incorrectly, thus giving a
wrong error location or no location at all. For example, shortened codes have
more possible syndromes than there are error patterns in the code. These
remaining syndromes can be set to produce an all-zero error vector, which is
a safe approach, or one of the error vectors having the minimal weight above
the error correction capability is chosen. Since there are typically many error
vectors having the same minimal weight above the error correction capability
there is a possibility that a wrong one is chosen, and thus a chance for a
decoding error. Nevertheless, there is also a possibility to catch an error
pattern beyond the basic error correction capability of the code.

An important design decision for the SSD method is to determine how
many syndromes to consider before deciding that an error is permanent.
This number of cycles is referred as the observation period t,,. If an inter-
mittent error is misdiagnosed as a permanent error, a spare wire is consumed.
In SSD, there is no method for recovering spare wires once they have been
assigned, thus if the error observation period is set too short the result can
be wasted wire resources. On the other hand, too long an observation pe-
riod may result in a large number of cycles before the error is detected or
may even leave errors undetected. This is because the detection of stuck-at
faults is data dependent; in order to be detected, the error must occur in all
datawords during the observation period. For example, a stuck-at-1 fault
can only be detected if all the data bits passing through that wire over t,,
cycles are 0. The upper limit for the number of cycles before the permanent
error should be detected can be derived from the transient bit error rate
(BER). Since a permanent fault in a link may prohibit the detection and
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correction of a transient fault, the number of cycles to detect a permanent
fault should be much smaller than the mean time between transient faults.

In Paper II the observation period t,, was set to three transmissions.
Paper III presents a more detailed analysis of the trade-offs between ¢,, and
reliability, and provide guidelines for selecting t,,. Based on that analysis
top = 9 was found to be optimal for implementation perspective and to allow
the transient BER to be as high as 1076 while ensuring that the probability
of a transient fault occurring before the permanent fault is detected is less
than 1 %.

When combining SSD with forward error correction as done in Paper 111,
the error extraction circuitry already existing in the FEC decoder can be
used. Error extraction is the process of obtaining the error vector é from
the syndrome § explained in the previous chapter. The error extraction
circuit only needs to be expanded to extract also possible check bit errors.
Certainly, if there is a permanent error in a wire used for a check bit, it should
be corrected as well, since it affects the overall error correction capability
of the code. This is generally not implemented in FEC decoders, since only
the data bits are part of the output of the link. In Paper II the SSD is
combined with a system using ARQ, which means that the error extraction
has to be completely implemented in the SSD unit.

5.2 Spare Wires

The use of spare modules to replace erroneous ones, especially in array
structures, is a long known fault tolerance approach [39]. Spare cells and
wires have been used in field programmable gate arrays (FPGA) to bypass
defective components [32, 86]. Refan, et al. use spare wires to recover from
a switch failure by connecting each processing element to two switches in
a network-on-chip (NoC) [67]; if a permanent fault occurs in one switch,
processing elements share the working switch, and the system reroutes its
data accordingly. Grecu, et al. have analyzed the use of spare wires in
NoCs [29] to increase manufacture yield; reconfiguration of the links utilized
crossbar switches with redundant channels. Unfortunately, the authors did
not discuss the error detection procedure. In another work, Grecu, et al.
presented a built-in self-test methodology for NoC interconnects [30] and
thoroughly discussed manufacture testing methods for NoCs, but they did
not address runtime failures. Reick, et al. discuss dynamic I/O bitline repair
using spare wires [68], but their detection and correction processes are not
specified.

Spare wires to tackle permanent faults in on-chip links are introduced in
Papers II and III. The number of spare wires to be inserted into the sys-
tem depends on the probability of a permanent error in a wire, the number
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Figure 5.1: The effect of number of spare wires s on the probability of
incorrect link operation.

of wires and the desired probability for correct operation of the link. As-
suming that permanent errors are independent and that the detection and
reconfiguration can be done in all cases, this relation can be described by

S
Prorrect = Y (n :r 3) (1—pe)"**~'pl (5.1)
i=0

where Pp.yprect 18 the probability for correct link operation, n is the number
of wires in a link, s is the number of spare wires and p, is the probability of
a permanent error in a wire. The probability of an incorrect link operation,
1—P.orrect, 18 shown in Figure 5.1 as a function of p, for 0 to 4 spare wires and
two different values of n. Figure 5.1 can be used to determine the required
number of spare wires to meet the reliability target given the estimated value
of p.. For example, if the probability of incorrect link operation must be
less than 107!° and the probability of a permanent error in a wire is 1072,
three spare wires are needed if n = 128 while two spare wires are enough for
n = 64. Interconnect error probability has been analyzed in [57].

The number of spare wires s has an effect not only on the permanent
fault tolerance but also on the complexity of the reconfiguration units. Each
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additional spare wire adds certain amount of logic. The amount of additional
logic can be decreased if the usage of spares is restricted to only some parts
of the link. In Paper II interleaving is used as part of the underlying cod-
ing approach and the utilization of spares is connected to the interleaving
sections: one spare for each of the four interleaving sections. This has a re-
markable effect on the complexity of the reconfiguration logic as compared
to the approach in Paper III, where there is no limitations for the utilization
of spare wires. Naturally, restrictions in the spare wire utilization have an
influence to the overall reliability of the link.

The spare wires have also another purpose besides replacing faulty wires
when ILT detection method is used. In ILT the spare wires are used to tem-
porarily replace in-use wires to allow them to be tested, or to enable further
testing of wires that have been declared erroneous and therefore already
bypassed. The retest property allows bypassed wires to be restored if their
errors turn out to be intermittent rather than permanent. Both properties
are incorporated in the ILT detection method presented in Paper II1.

The introduction of spare wires requires reconfiguration control and logic
for bypassing erroneous wires, and a protocol for synchronizing information
between receiver and transmitter. The reconfiguration procedure can be
done by stopping the normal operation of the link or without interrupting
the data flow. An example of the former is proposed in Paper II while the
latter is used in Paper III.

5.2.1 Reconfiguration Control and Logic

The reconfiguration unit routes the data around the erroneous wires or wires
under test. To balance the delay within routed wires, the reconfiguration
ripples through the bus instead of rerouting erroneous wires to a bank of
spare wires. The alternative method would require a large selection logic
for spare wires as well as longer wires, both of which produce large delays,
potentially causing timing errors.

The error detection circuits using either ILT or SSD method provide the
location of the erroneous wire, which then should be bypassed. The reconfig-
uration units at each end of the link are used to transmit the reconfiguration
information from the receiver to the transmitter, as well as synchronize the
reconfiguration procedure so that both the transmitter and receiver do the
reconfiguration in the same cycle. The transmission protocol is presented in
the following section.

The reconfiguration itself is accomplished with a number of multiplexers
connected to each wire. The state of these multiplexers is stored in a bank
of control registers which are updated after the reconfiguration information
transmission. Depending on the approach chosen for the utilization of spare
wires, the control registers can simply store the location of the error when
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only one spare wire for each section is introduced, or it can have separate
control signals for each wire to indicate the number of bypassed wires at that
current location. The former approach is explained in detail in Paper II and
the latter in Paper III.

The reconfiguration control unit has two modes of operation. It can mark
a wire erroneous, or remove the mark from a wire. The latter is needed for
periodic testing or reallocating a wire to normal operation if the error on it
turns out to be intermittent instead of permanent. For systems where an
error mark cannot be removed (e.g. when using the SSD method), only the
first mode is needed.

5.2.2 Transmission of the Reconfiguration Information

To minimize the link area and energy, the transmission of control data from
receiver to transmitter is serial, using only a one-bit signal. Another sig-
nal is required for synchronization and to initialize the transaction. Both
of these signals can be protected with TMR and spatial separation. If the
link is asynchronous it already has a feedback channel for acknowledging the
arrival of each message. This channel can be also used to transmit the recon-
figuration data if the link operation is stopped during the reconfiguration.
This approach is presented in Paper II.

The transmission protocol can be divided into three phases: (1) The
initialization of a transmission, (2) the transmission of the error location
one bit at a time, and (3) the end of the transmission. The reconfiguration
procedure follows immediately after the transmission. Papers II and III
propose two transmissions protocols. The main differences between them are
that the one presented in Paper II is asynchronous while the one proposed in
Paper III is synchronous. Also the reconfiguration information transmitted
differ between these two approaches because of the different utilization of
the spares (restrictions or not) and the fault detection method.

5.3 Split Transmissions

In the split transmission approach proposed in Paper II two transmissions
are used to transmit one data word. The data word is split into two parts,
and two copies of the same half is transmitted in each of the two trans-
missions. The approach gives tolerance against single permanent faults,
and against multiple faults if they affect only one of the copies. The split
transmission approach is also extended to take into account links that use
interleaving for providing tolerance against permanent faults occurring as
bursts.

The drawback of the split transmission approach is a significant impact
on the latency and throughput. Its use can be motivated by considering a
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typical NoC system. An erroneous link could be bypassed through neigh-
boring routers, which would increase traffic in other links and may cause
congestion. The total latency of links and routers on a bypassing route set
an objective to the split transmission link design.

The split transmission system is combined with SSD method in Paper II.
The required SSD implementation is a simplification of the one required for
the spare wire approach since for the split transmission there is no need for
extracting the exact error location. Also the transmission protocol simplifies
to only synchronizing the change of operation modes between normal and
split transmissions. The reconfiguration logic at the transmitter and receiver
consist mainly of registers to store the halved data words and multiplexers
selecting between them.
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Chapter 6

Network-level Fault
Tolerance in NoCs

The principle in network-level fault tolerance is that a packet can have mul-
tiple alternative routes from a source to a destination. To accomplish this,
the topology must provide alternative routes and the routing algorithm must
have adaptivity to choose between those alternative routes. These two as-
pects are addressed in the following subsections.

6.1 Fault Tolerant NoC Topology

A NoC topology provides fault tolerance if it has an alternative route or
routes to bypass erroneous links and/or routers. Some topologies such as
the star and binary tree do not have such properties while many others,
including e.g. mesh and fat tree have inherently redundant routes. Refer to
the figures in Chapter 3 to easily verify this.

The fault tolerance a topology provides can be further increased by a
careful analysis and by inserting additional network components and links
to selected positions. Paper IV presents modifications to increase the fault
tolerance of the mesh topology repeated in Figure 6.1a. The weak point
of the mesh topology is the connection to a resource. Kach resource has
only one network interface, which is connected via one link to one router.
From that router on there are multiple connections, but a fault in a network
interface, in a link connecting a network interface to a router, or in a router
will always lead to a disconnected resource.

Paper IV suggests the addition of more network interfaces to each re-
source and modifications to the interconnection structure correspondingly.
The most obvious way to do this is to increase the number of ports in routers.
In Figure 6.1b a structure is presented where there are two network inter-
faces in each resource and the routers have six ports. A structure having
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four network interfaces in a resource and eight ports in each router is shown

in Figure 6.1c.

The larger the area of a circuit the greater is the probability of faults
in it. Therefore also structures with minimum size routers, i.e. routers with
3 ports, are presented in Figure 6.1d—f for one, two, and four network in-
terfaces per resource, correspondingly. All six different architectures have
been analyzed in Paper IV for their overall reliability and compared in area,
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throughput and latency. In the analysis the impact of port count to the
router performance and area is evaluated. For this purpose a scalable ex-
ample router architecture is proposed and its realizations with three, five,
six, and eight ports are analyzed.

The additional resources increase also the power consumption of the sys-
tem. Therefore, a lot of design effort should be given to the power optimiza-
tion of these circuits. One possibility is to use asynchronous design style
because of its many advantages in distributed environments and with re-
dundant components [56]. Asynchronous routers consume power only when
data is transferred over the ports of it. Furthermore, if only some of the
ports are needed for a transaction, the other ports will remain inactive and
hence do not consume power. In a large NoC, there may be parts that are
not used at all for a while, or only few packets traverse through that part,
and therefore the reduction in power consumption can be remarkable. Ob-
viously, one could build different clock gating mechanisms to reduce power
consumption in a synchronous router, but it increases complexity and could
be impractical, if the inactive periods occur often and their duration is short.
The mentioned power reduction is further amplified when the system con-
tains redundant routers which are implemented to increase reliability. As
long as these asynchronous routers are not needed, they do not consume
any power. Hence, the asynchronous redundant routers can be seen as cold
spares [39]. Paper IV presents asynchronous realizations of routers and a
network interface.

Reliability R(t) is used as a measure in the fault tolerance analysis. It
was introduced as one of the fault tolerance metrics in Section 2.3. In
Paper IV a method for comparing analytically reliability of systems under
uniform fault distribution is presented. The systems can consist of different-
sized components, i.e. routers with varying number of ports. The topologies
shown in Figure 6.1 are compared using the method, showing the reliability
increase when the number of network interfaces per resource is increased.

6.2 Fault Tolerant Routing

The fault tolerance a routing algorithm introduces is originated either from
redundant packets in the network or redundant routes in the network topol-
ogy that are used to form a route for a single packet. Algorithms based
on multiple copies of each packet include flooding, gossip, stochastic com-
munication [12], N-random walk [63], and multi-path routing with in-order
delivery [61].

In flooding the packet is sent to all possible directions from the source
router and each router receiving the packet forwards it to all neighbors. The
packet eventually reaches the destination after which the redundant copies
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can be removed from the network. Probabilistic flooding [63] is a variant
of flooding where only some of the routers forward received packets to all
neighbors. In gossip algorithms the packet is forwarded to only a subset of
the neighbors mimicking the behaviour of rumour spreading, the rumours are
not necessarily shared with every neighbor. The selection in which directions
to forward the packet can be randomized or based on an algorithm such as
in directed flooding [63], where a higher probability is given to directions
that move the packet towards the destination at the beginning of routing
and more dispersion is allowed when the destination gets closer. Stochastic
communication [12] is an implementation of a randomized gossip algorithm.

N-random walk decreases the number of copies of a packet in the network
by sending only a fixed number N copies to the network. Each of these
copies of a packet travels through different routes towards the destination.
The algorithm for selecting these routes borrows principles from directed
flooding. Multi-path routing with in-order delivery also operates with a
fixed number of copies of a packet, but in this approach the routes are
pre-calculated to find the optimal ones and preserving the in-order delivery.

Algorithms based on multiple copies of each packet generally provide
shortest routes and good tolerance against faults. However, they do this
with an extensive power consumption and a low resiliency to congestion.
The power consumption can be lowered by decreasing the number of copies
of a packet in the network. The drawback is the more complex routing
algorithm, and thus a larger hardware-realization, or the demand for pre-
calculated routes, i.e. large routing tables. Furthermore, the fault tolerance
properties and ability to provide the shortest possible route may suffer from
the decreased number of copies of a packet.

Algorithms taking advantage of redundant routes in a topology, but op-
erating with only a single packet, can be divided into those that require
knowledge about the state of the network and to the ones that use com-
pletely distributed control. Using global control provides means for finding
the optimal route, but it introduces another aspect of complexity in realiz-
ing the control. Typically it means separate control channels or packets and
routing tables in routers and/or network interfaces. All this increases area
and power consumption. Examples of routing algorithms using global or
partly global control include distance vector routing, link state routing [2],
DyNoC' [11] and reconfigurable routing based on DSPIN [87].

In distance vector routing each router maintains a routing table which
contains information on directions which provide the shortest route to each
destination. The route length is defined as the number of hops to the desti-
nation. Routers share this information with each others in a flooding manner
so that each router can update its table and in case of changes in the network,
such as faulty links and routers, the new shortest route is found. In link
state routing each router finds out the state or speed of each link connected
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to it with a special handshaking protocol. It then broadcasts this informa-
tion to the rest of the network. Based on this information, each router can
calculate the shortest route to each destination using e.g. Dijkstra’s shortest
path first algorithm [2].

Both DyNoC and reconfigurable routing based on DSPIN provide a way
to bypass obstacles or erroneous regions in a NoC. In DyNoC each router
next to an obstacle is provided with an information about into which direc-
tion the packets should be forwarded so that the obstacle is bypassed along
a minimum length route. In DSPIN-based approach, on the other hand,
each router has information on its neighboring routers’ states as well as the
state of the routers at the corner positions to it. Based on the states of these
eight routers, each router chooses one of its nine possible routing algorithms,
providing a deadlock-free way of bypassing the faulty region.

In completely distributed control the routers make the decision in which
direction the packet should be routed without any knowledge of the state of
the network outside the links connected directly to the router. The routing
decision is therefore based only on the location of the router in the network
and the destination address of the packet. Distributed control is ideal from
scaling perspective. The routing decisions are very simple, thus the realiza-
tions are small and power-efficient. The drawback is that the routes are not
always optimal.

The most known distributed routing algorithm is dimension order rout-
ing, better known as XY routing (see Chapter 3). An extension to XY
routing, called dynamic zy routing is presented in [55]. According to the
algorithm packets are routed into a progressive x or y-direction, whichever
has the smaller amount of other traffic. The algorithm is minimal, since
only progressive routes are used. A similar approach is presented in [36],
where also non-progressive routes are allowed.

Turn models are proposed for creating deadlock-free distributed routing
algorithms [16, 27]. Performance of these algorithms has been primarily
analyzed in the sense of handling congestion, but in that context the fault
tolerance properties have been partially addressed. In [37] a method com-
bining a deterministic and an adaptive routing algorithm based on odd-even
turn model has been presented. The performance is once again analyzed
mainly for handling congestion. Zhu et al. present a fault tolerant routing
algorithm based on the negative-first turn model in [88], where the algorithm
has been compared to XY routing and N-random walk.

Papers V and VI contain an analysis and comparison of the fault toler-
ance properties of distributed routing algorithms for a mesh NoC. Faults in
a NoC communication infrastructure are modelled as faulty links, which can
be done without any loss of generality since a faulty component, a router or
a network interface, can be modelled by a set of faulty links. The number of
erroneous links is altered and the location of errors is randomized in the sim-
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each turn model.

ulations to obtain probabilities for correct transmission under different error
scenarios. Furthermore, the changes in average hop count are monitored.

The analysis consist of classes of algorithms: minimal, deadlock-free,
and non-deadlock-free. From the distributed algorithms mentioned above
XY routing falls into minimal and deadlock-free classes and dynamic XY
routing into minimal and non-deadlock-free algorithms. Obeying the turn
models, four minimal and deadlock-free algorithms are constructed.

Paper V proposes a fully adaptive routing algorithm which targets for
the maximal tolerance against link errors. The algorithm consists of a list
of choices, in each of which a routing direction is selected. If a direction
does not exist (first and last row and column) or the link is broken, the
next choice in the list is tried. If no possible route is found, the packet is
dropped. To achieve the best possible fault tolerance the requirement for
minimal routing is relaxed.

The presented algorithm is modified to follow the turn models to pro-
duce fault tolerant deadlock-free algorithms. The algorithm cannot be al-
ways followed as such because of the special features of the turn models.
The modifications are explained in detail in Paper VI. When non-minimal
routes are considered also a U-turn is possible in some cases. In Figure 6.2
the allowed and forbidden turns of each turn model are repeated accompa-
nied by the U-turns allowed in each turn model. Based on the proposed
fully adaptive algorithm and respecting a turn model, four different routing
algorithms were realized. Each of them maintains deadlock-freedom while
striving for maximal fault tolerance.

None of the algorithms analyzed in Papers V and VI is superior in all
properties. It is a matter of setting priorities to different aspects. While

54



the fully adaptive algorithm provides the best fault tolerance it does it
with an increased hop count and without a guarantee for deadlock-freedom.
Deadlock-free and minimal algorithms, on the other hand, fall behind in the
fault tolerance. A good approach might be to handle some errors at the
link level so that the requirements for fault tolerance at the network level
can be relaxed. The fact that the link errors have to be somehow detected
might guide the designer to this direction, since the same error control cod-
ing may be used for both link level protection and signaling to the network
level about a faulty link. The deadlock avoidance or recovery methods be-
sides turn models require buffering capacity and control structures. Both
of them mean area and power overhead. The overheads introduced by the
link level error protection may be smaller, which would justify the usage of
deadlock-free algorithms instead of the others. Minimal routing algorithms
are the only way to guarantee certain maximum hop-count. However, they
need some additional fault tolerance structures for achieving acceptable re-
liability.
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Chapter 7

Summary of Papers

7.1 Paper I: Analysis of Forward Error Correction
Methods for Nanoscale Networks-on-Chip

The paper analyzes eight forward error correction approaches selected ac-
cording to a set of requirements. The requirements include minimum error
correction capability of two single errors and burst errors of length three,
and a limit for the code rate to two thirds. Furthermore, all approaches must
be suitable for an efficient on-chip realization. The analyzed approaches are
based on Hamming, BCH, and Reed-Solomon codes and some of them also
utilize interleaving. The approaches are implemented with VHDL, synthe-
sized, and simulated to get performance values. Implementation details are
included in the paper.

The analysis contains comparison of the coding approaches based on
their error correction capability against multiple independent errors, burst
errors, and combinations of them. The areas of the implementations are
presented as well as the throughput and latency values for each approach.
The combination of error correction capability and throughput, the effec-
tive throughput, reveals interesting details about the approaches, especially
when scaled to a speculative nanoscale technology.

The power consumption values presented in the paper for the realizations
are too optimistic because of an error in the used tool, which was noticed
after the publication of the paper. However, the power values in the paper do
not take into consideration the power consumed in signaling itself, so their
usefulness in comparisons is anyway limited. This limitation has already
been discussed in the paper.
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7.2 Paper II: Online Reconfigurable Self-Timed
Links for Fault Tolerant NoC

The paper proposes the utilization of spare wires and split transmissions for
tackling intermittent and permanent faults in NoC links. These methods are
further combined to error control coding which provides tolerance against
transient faults. The error control coding approach is based on Hamming
coding and ARQ. The detection of permanent faults by comparing consec-
utive error syndromes is proposed in this paper accompanied by a detailed
description of its implementation. Furthermore, implementations of recon-
figuration circuitry as well as a procedure for changing information between
the receiver and transmitter is presented.

Asynchronous design style has been used in the realizations. Two-phase
bundled data signaling is used in the link while the transmitter and receiver
circuits are realized using a four-phase design style. The paper presents
protocol converters to connect the link to the transmitter and receiver. In
addition, it is shown how the transmission of reconfiguration information
can be carried out delay-insensitively and by re-using the handshake signals
already present in the system.

The spare wire and split transmission approaches are compared to two
reference structures in a case study. One of the references does not have any
fault tolerance properties while the other uses Hamming coding with ARQ.
Comparisons are made in area, latency, throughput and power consumption.

The paper introduces also an enhanced fault model for links containing
burst errors as well as intermittent and permanents errors in addition to
single transient errors the earlier models were limited to. The implemented
systems are compared using this fault model to find out their effectiveness
against different types of errors.

Figure 5 at the fifth page of the paper has a small error. A corrected
figure is included at the errata page found right after the paper in the second
part of the thesis.

7.3 Paper III: Self-Adaptive System for Address-
ing Permanent Errors in On-Chip Intercon-
nects

An adaptive system for detecting and bypassing permanent errors in on-chip
interconnects is presented in the paper. The tolerance against permanent
errors is achieved by introducing spare wires. Two alternative methods for
detecting permanent errors are presented and analyzed. In the in-line test
method periodic tests are run for each wire in a link. The paper derives
the required test set and a look-up table for making a decision about the
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faultiness of a wire based on the test results. The other detection method is
the syndrome storing-based detection method, where the detection is based
on the evaluation of consecutive error syndromes at the receiver. A math-
ematical method for finding the necessary design parameters for an imple-
mentation of syndrome storing-based detection is presented in the paper.

The paper proposes a link system that is capable of reconfiguring it-
self without stopping the normal operation of the link. Details about the
reconfiguration logic, the reconfiguration control and the protocol for trans-
mitting reconfiguration data between receiver and transmitter as well as
synchronizing the reconfiguration are presented.

A case study analyzes the detection methods and two reference designs,
one based on Hamming coding and the other on BCH coding. The paper
presents comparisons in area, throughput, latency, power consumption and
reliability. The research shows that protection against permanent errors
can be achieved using spare wires with smaller penalties than using complex
coding schemes.

7.4 Paper IV: Fault Tolerance Analysis of NoC
Architectures

The paper explores the possibility to increase reliability by modifying the
network topology. The number of network interfaces per resource is in-
creased from one to two or four in a mesh topology, and the network is
modified correspondingly. The modifications to the network are done in two
distinct ways: by increasing the number of ports in each router and by utiliz-
ing minimum-size routers but increasing their number in the network. The
modifications lead to total of six different mesh structures that are analyzed
and compared.

The analysis is accomplished by counting the number of correctly operat-
ing cases of all the possible combinations with different number of erroneous
components in a test structure consisting of two resources and the network
around them. The reliability of different-sized components is normalized to
the one of a minimum-size router by using an equation derived in the paper.
Example routers with different number of ports and a network interface are
implemented for obtaining the required area values. Asynchronous design
style is used in the realizations.

The results of the analysis are further generalized to a larger NoC. Ac-
cording to the conclusions, the insertion of another network interface for
each router increases significantly the reliability with a reasonable overhead.
Incrementing the number of network interfaces further does not seem ratio-
nal due to the small increase in reliability in contrast to large overheads. The
structures created from minimum-size routers provide better performance.
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7.5 Paper V: Fault Tolerant Distributed Algo-
rithms for Mesh Networks-on-Chip

A fully adaptive routing algorithm for mesh NoCs is presented in the paper.
The routing decisions following the proposed algorithm are based only on the
location of the router in the network, the destination address of a packet, and
the states of the links connected directly to the router. Thus, the algorithm
is completely distributed.

In addition to the presented fully adaptive algorithm, ten other dis-
tributed algorithms are analyzed in fault tolerance and in hop count which
gives an estimate about the latency. For the analysis a dedicated in-house
simulator FANSI is used. The simulator was developed specifically for this
purpose. The analyzed algorithms are divided to minimal and non-minimal
as well as to deadlock-free and non-deadlock-free algorithms.

The paper concludes that only the presented fully adaptive algorithm
performs acceptably when more than just a few faults occur in the system.
The drawback is the larger hop count as the number of faults increases.

7.6 Paper VI: Analysis of Fault Tolerant Deadlock-
free Routing Algorithms for Mesh NoCs

The paper presents four fault-tolerant deadlock-free routing algorithms with
completely distributed control. A fully adaptive routing algorithm is com-
bined with turn models to achieve the deadlock-freedom. Details of this
combination with west-first, north-last, negative-first, and odd-even turn
models are explained.

The developed algorithms are presented in a table form which can be
directly used for hardware implementations. The analysis of the algorithms
reveals that they provide clearly higher fault tolerance than XY routing
which is used as a reference. The algorithm that uses north-last turn model
achieves the best fault tolerance from the four developed fault tolerant
deadlock-free algorithms.
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Chapter 8

Conclusions

This thesis described fault tolerance methods for networks-on-chip. Pre-
sented methods include error control coding for on-chip signaling and so-
lutions for tackling permanent and intermittent errors by the utilization
of spare wires and split transmissions. Furthermore, fault tolerant network
topologies and routing algorithms were studied. As background information,
fault sources, fault classification and survey of fault tolerance methods were
presented, along with the main points in the design of networks-on-chip.

Fault tolerance in a network-on-chip can be achieved via several methods
at different abstraction levels or layers of the OSI reference model. Although
a solution at some layer is designed to work with no restrictions to other
layers, a good co-operation between layers may enhance the overall result.
More importantly, a better overall solution can be achieved when the fault
tolerance tasks are distributed among different layers.

Error control coding is an efficient fault tolerance method at the data link
layer. An error control coding solution can utilize one of the two possible
fault recovery methods: automatic repeat query or forward error correction.
The selection between these two should be made with a careful understand-
ing of the design choices made at the underlying physical layer. An impor-
tant decision made at the physical layer is the selection between synchronous
and asynchronous design styles. The asynchronous design style is motivated
by its robustness mainly due to the lack of problems related to clock distribu-
tion. However, it may have a negative impact to throughput because every
message needs to be acknowledged; a signal travels through a link twice per
each message. Automatic repeat query requires an acknowledgement chan-
nel as does the asynchronous design style, and therefore combining those
two is beneficial. Correspondingly, forward error correction suits well for
the synchronous design style because neither of them requires backwards
signaling. It is evident, that if the solution at the data link layer was se-
lected without any consideration about the physical layer design choices,
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the overall performance could be remarkably lower than achievable with a
careful co-design of these two layers.

The data link layer fault tolerance solutions presented in this thesis com-
bine multiple methods to achieve tolerance against all types of faults. Error
control coding is proposed for tolerating transient faults, and two alternative
methods, spare wires and split transmissions, are introduced for tackling the
permanent and intermittent faults. The effectiveness of these approaches has
been shown in the papers included in the thesis. However, as the number
of simultaneous faults increases, the overhead in terms of area and power
consumption becomes notable. This stands for both the coding approach as
well as the reconfiguration circuitry complexity as the number of spare wires
increases. This indicates that there is a limit of how much fault tolerance is
efficient to accomplish at the data link layer before turning into the solutions
available at the network layer.

Network layer solutions, on the other hand, are not efficient if the number
of faults is high as was concluded in the papers included in the thesis. At
the network layer larger parts of the NoC communication infrastructure are
considered faulty at a time, hence a large number of such parts means that
the overall performance of the system is endangered. This motivates the
co-operation of the approaches at the data link and network layers. When
most of the faults are handled at the data link layer, only few faults are left
to be tolerated at the network layer. However, these faults are such that
tolerance against them at the data link layer would be overly expensive.

Considering the presented approaches and facing the conclusions drawn
above, there are a number of design choices that become evident. The
fault detection required for the network layer approaches is provided by the
solutions at the data link layer. Furthermore, the approaches at the network
layer can be designed to tolerate a small number of errors. This enables
e.g. the utilization of deadlock-free routing algorithms, and thus savings in
the area of the router implementations.

Methods based on the modification of the network topology can also
benefit from co-design of data link and network layer approaches. Some of
the vulnerabilities of a topology can be hardened with the help of data link
layer methods instead of inserting redundant parts to the topology. E.g. a
stronger code and more spare wires could be used in the links connecting
network interfaces to routers in a mesh topology if the introduction of re-
dundant links is considered unpractical.

To summarize, an optimal fault tolerance solution is a carefully selected
set of individual methods. The set consists of methods from different layers
and methods targeted for all fault types. Furthermore, the selection of the
methods is influenced by other design choices besides the reliability issues.

62



8.1 Future Work

As it is evident from the conclusions above, seamless co-operation of the
fault tolerance methods introduced at different abstraction levels is essential
for achieving the best performance for the overall system. Continuing the
efforts on fitting together the approaches presented in the papers included
in this thesis and the implementation details of such an overall system is an
interesting topic for future work. Challenges include the trade-offs between
reliability, performance, and power consumption. These requirements also
vary greatly between applications.

The approaches presented in the included papers mostly omit the relia-
bility of the circuitry introduced to accomplish the desired properties. As the
technology scaling proceeds even further into the nanometer regime, these
circuits can no longer be assumed fault-free. Therefore, solutions for the
fault tolerance of encoders and decoders as well as controllers and routers
are needed. This is another future work topic. The fault tolerance method
chosen for these circuits should be optimally fitted to the fault tolerance
approach the circuit is used for. An interesting aspect is for instance the
possibility to use the same code that is used for the link error protection to
the fault detection at the decoder as well.
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