848 research outputs found

    Evaluating application vulnerability to soft errors in multi-level cache hierarchy

    Get PDF
    As the capacity of cache increases dramatically with new processors, soft errors originating in cache has become a major reliability concern for high performance processors. This paper presents application specific soft error vulnerability analysis in order to understand an application's responses to soft errors from different levels of caches. Based on a high-performance processor simulator called Graphite, we have implemented a fault injection framework that can selectively inject bit flips to different levels of caches. We simulated a wide range of relevant bit error patterns and measured the applications' vulnerabilities to bit errors. Our experimental results have shown the various vulnerabilities of applications to bit errors from different levels of caches; the results have also indicated the probabilities of different behaviors from the applications

    Two-Layer Error Control Codes Combining Rectangular and Hamming Product Codes for Cache Error

    Get PDF
    We propose a novel two-layer error control code, combining error detection capability of rectangular codes and error correction capability of Hamming product codes in an efficient way, in order to increase cache error resilience for many core systems, while maintaining low power, area and latency overhead. Based on the fact of low latency and overhead of rectangular codes and high error control capability of Hamming product codes, two-layer error control codes employ simple rectangular codes for each cache line to detect cache errors, while loading the extra Hamming product code checks bits in the case of error detection; thus enabling reliable large-scale cache operations. Analysis and experiments are conducted to evaluate the cache fault-tolerant capability of various existing solutions and the proposed approach. The results show that the proposed approach can significantly increase Mean-Error-To-Failure (METF) and Mean-Time-To-failure (MTTF) up to 2.8Ă—, reduce storage overhead by over 57%, and increase instruction per-cycle (IPC) up to 7%, compared to complex four-way 4EC5ED; and it increases METF and MTTF up to 133Ă—, reduces storage overhead by over 11%, and achieves a similar IPC compared to simple eight-way single-error correcting double-error detecting (SECDED). The cost of the proposed approach is no more than 4% external memory access overhead

    Pairing Software-Managed Caching with Decay Techniques to Balance Reliability and Static Power in Next-Generation Caches

    Get PDF
    Since array structures represent well over half the area and transistors on-chip, maintaining their ability to scale is crucial for overall technology scaling. Shrinking transistor sizes are resulting in increased probabilities of single events causing single- and multi-bit upsets which require adoption of more complex and power hungry error detection and correction codes (ECC) in hardware. At the same time, SRAM leakage energy is increasing partly due to technology trends and partly due to the increasing number of transistors present. This paper proposes and evaluates methods of reducing the static power requirements of caches, while also maintaining high reliability. In particular, we propose methods of applying reduced ECC techniques to data that has been identified (by programmer or compiler) as error-tolerant. This segregation, in turn, makes both the default data and the error-tolerant data more amenable to decay-based techniques for leakage control. We examine the potential of this split memory hierarchy along several dimensions. In particular, we consider the power and reliability issues inherent in the approach. Overall, we show that our approach allows the ECC requirements of future applications and caches to be met while also reducing leakage energy

    Self-Healing Cellular Automata to Correct Soft Errors in Defective Embedded Program Memories

    Get PDF
    Static Random Access Memory (SRAM) cells in ultra-low power Integrated Circuits (ICs) based on nanoscale Complementary Metal Oxide Semiconductor (CMOS) devices are likely to be the most vulnerable to large-scale soft errors. Conventional error correction circuits may not be able to handle the distributed nature of such errors and are susceptible to soft errors themselves. In this thesis, a distributed error correction circuit called Self-Healing Cellular Automata (SHCA) that can repair itself is presented. A possible way to deploy a SHCA in a system of SRAM-based embedded program memories (ePM) for one type of chip multi-processors is also discussed. The SHCA is compared with conventional error correction approaches and its strengths and limitations are analyzed

    Soft-error resilient on-chip memory structures

    Get PDF
    Soft errors induced by energetic particle strikes in on-chip memory structures, such as L1 data/instruction caches and register files, have become an increasing challenge in designing new generation reliable microprocessors. Due to their transient/random nature, soft errors cannot be captured by traditional verification and testing process due to the irrelevancy to the correctness of the logic. This dissertation is thus focusing on the reliability characterization and cost-effective reliable design of on-chip memories against soft errors. Due to various performance, area/size, and energy constraints in various target systems, many existing unoptimized protection schemes on cache memories may eventually prove significantly inadequate and ineffective. This work develops new lifetime models for data and tag arrays residing in both the data and instruction caches. These models facilitate the characterization of cache vulnerability of the stored items at various lifetime phases. The design methodology is further exemplified by the proposed reliability schemes targeting at specific vulnerable phases. Benchmarking is carried out to showcase the effectiveness of these approaches. The tag array demands high reliability against soft errors while the data array is fully protected in on-chip caches, because of its crucial importance to the correctness of cache accesses. Exploiting the address locality of memory accesses, this work proposes a Tag Replication Buffer (TRB) to protect information integrity of the tag array in the data cache with low performance, energy and area overheads. To provide a comprehensive evaluation of the tag array reliability, this work also proposes a refined evaluation metric, detected-without-replica-TVF (DOR-TVF), which combines the TVF and access-with-replica (AWR) analysis. Based on the DOR-TVF analysis, a TRB scheme with early write-back (TRB-EWB) is proposed, which achieves a zero DOR-TVF at a negligible performance overhead. Recent research, as well as the proposed optimization schemes in this cache vulnerability study, have focused on the design of cost-effective reliable data caches in terms of performance, energy, and area overheads based on the assumption of fixed error rates. However, for systems in operating environments that vary with time or location, those schemes will be either insufficient or over-designed for the changing error rates. This work explores the design of a self-adaptive reliable data cache that dynamically adapts its employed reliability schemes to the changing operating environments in order to maintain a target reliability. The experimental evaluation shows that the self-adaptive data cache achieves similar reliability to a cache protected by the most reliable scheme, while simultaneously minimizing the performance and power overheads. Besides the data/instruction caches, protecting the register file and its data buses is crucial to reliable computing in high-performance microprocessors. Since the register file is in the critical path of the processor pipeline, any reliable design that increases either the pressure on the register file or the register file access latency is not desirable. This work proposes to exploit narrow-width register values, which represent the majority of generated values, for making the duplicates within the same register data item. A detailed architectural vulnerability factor (AVF) analysis shows that this in-register duplication (IRD) scheme significantly reduces the AVF in the register file compared to the conventional design. The experimental evaluation also shows that IRD provides superior read-with-duplicate (RWD) and error detection/recovery rates under heavy error injection as compared to previous reliability schemes, while only incurring a small power overhead. By integrating the proposed reliable designs in data/instruction caches and register files, the vulnerability of the entire microprocessor is dramatically reduced. The new lifetime model, the self-adaptive design and the narrow-width value duplication scheme proposed in this work can also provide guidance to architects toward highly efficient reliable system design

    Fault- and Yield-Aware On-Chip Memory Design and Management

    Get PDF
    Ever decreasing device size causes more frequent hard faults, which becomes a serious burden to processor design and yield management. This problem is particularly pronounced in the on-chip memory which consumes up to 70% of a processor' s total chip area. Traditional circuit-level techniques, such as redundancy and error correction code, become less effective in error-prevalent environments because of their large area overhead. In this work, we suggest an architectural solution to building reliable on-chip memory in the future processor environment. Our approaches have two parts, a design framework and architectural techniques for on-chip memory structures. Our design framework provides important architectural evaluation metrics such as yield, area, and performance based on low level defects and process variations parameters. Processor architects can quickly evaluate their designs' characteristics in terms of yield, area, and performance. With the framework, we develop architectural yield enhancement solutions for on-chip memory structures including L1 cache, L2 cache and directory memory. Our proposed solutions greatly improve yield with negligible area and performance overhead. Furthermore, we develop a decoupled yield model of compute cores and L2 caches in CMPs, which show that there will be many more L2 caches than compute cores in a chip. We propose efficient utilization techniques for excess caches. Evaluation results show that excess caches significantly improve overall performance of CMPs

    Performance-effective operation below Vcc-min

    Get PDF
    Continuous circuit miniaturization and increased process variability point to a future with diminishing returns from dynamic voltage scaling. Operation below Vcc-min has been proposed recently as a mean to reverse this trend. The goal of this paper is to minimize the performance loss due to reduced cache capacity when operating below Vcc-min. A simple method is proposed: disable faulty blocks at low voltage. The method is based on observations regarding the distributions of faults in an array according to probability theory. The key lesson, from the probability analysis, is that as the number of uniformly distributed random faulty cells in an array increases the faults increasingly occur in already faulty blocks. The probability analysis is also shown to be useful for obtaining insight about the reliability implications of other cache techniques. For one configuration used in this paper, block disabling is shown to have on the average 6.6% and up to 29% better performance than a previously proposed scheme for low voltage cache operation. Furthermore, block-disabling is simple and less costly to implement and does not degrade performance at or above Vcc-min operation. Finally, it is shown that a victim-cache enables higher and more deterministic performance for a block-disabled cache

    Fault and Defect Tolerant Computer Architectures: Reliable Computing With Unreliable Devices

    Get PDF
    This research addresses design of a reliable computer from unreliable device technologies. A system architecture is developed for a fault and defect tolerant (FDT) computer. Trade-offs between different techniques are studied and yield and hardware cost models are developed. Fault and defect tolerant designs are created for the processor and the cache memory. Simulation results for the content-addressable memory (CAM)-based cache show 90% yield with device failure probabilities of 3 x 10(-6), three orders of magnitude better than non fault tolerant caches of the same size. The entire processor achieves 70% yield with device failure probabilities exceeding 10(-6). The required hardware redundancy is approximately 15 times that of a non-fault tolerant design. While larger than current FT designs, this architecture allows the use of devices much more likely to fail than silicon CMOS. As part of model development, an improved model is derived for NAND Multiplexing. The model is the first accurate model for small and medium amounts of redundancy. Previous models are extended to account for dependence between the inputs and produce more accurate results

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints
    • …
    corecore