
University of Richmond
UR Scholarship Repository

Math and Computer Science Technical Report
Series Math and Computer Science

5-2009

Pairing Software-Managed Caching with Decay
Techniques to Balance Reliability and Static Power
in Next-Generation Caches
Kelly Shaw
University of Richmond, kshaw@richmond.edu

Margaret Martonosi

Follow this and additional works at: http://scholarship.richmond.edu/mathcs-reports

Part of the Computer Sciences Commons

This Technical Report is brought to you for free and open access by the Math and Computer Science at UR Scholarship Repository. It has been
accepted for inclusion in Math and Computer Science Technical Report Series by an authorized administrator of UR Scholarship Repository. For more
information, please contact scholarshiprepository@richmond.edu.

Recommended Citation
Shaw, Kelly and Margaret Martonosi. Pairing Software-Managed Caching with Decay Techniques to Balance Reliability and Static Power in
Next-Generation Caches. Technical paper (TR-09-01). Math and Computer Science Technical Report Series. Richmond, Virginia:
Department of Mathematics and Computer Science, University of Richmond, May, 2009.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Richmond

https://core.ac.uk/display/232767224?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://as.richmond.edu/?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/mathcs-reports?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fmathcs-reports%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu


University of Richmond Math and Computer Science Technical Report TR-09-01

Pairing Software-Managed Caching with Decay Techniques to
Balance Reliability and Static Power in Next-Generation Caches

Kelly A. Shaw
Dept. of Math and Computer Science

University of Richmond
kshaw@richmond.edu

Margaret Martonosi
Dept. of Electrical Engineering

Princeton University
mrm@princeton.edu

Abstract

Since array structures represent well over half the area and transistors on-chip, maintaining their
ability to scale is crucial for overall technology scaling. Shrinking transistor sizes are resulting in in-
creased probabilities of single events causing single- and multi-bit upsets which require adoption of
more complex and power hungry error detection and correction codes (ECC) in hardware. At the same
time, SRAM leakage energy is increasing partly due to technology trends and partly due to the increasing
number of transistors present.

This paper proposes and evaluates methods of reducing the static power requirements of caches,
while also maintaining high reliability. In particular, we propose methods of applying reduced ECC
techniques to data that has been identified (by programmer or compiler) as error-tolerant. This segre-
gation, in turn, makes both the default data and the error-tolerant data more amenable to decay-based
techniques for leakage control. We examine the potential of this split memory hierarchy along several
dimensions. In particular, we consider the power and reliability issues inherent in the approach. Overall,
we show that our approach allows the ECC requirements of future applications and caches to be met
while also reducing leakage energy.

1 Introduction
Maintaining progress on semiconductor fabrication scaling has become increasingly difficult. Challenges
have arisen both due to chip-wide power and thermal constraints, as well as due to difficulties in fabricating
reliable transistors with predictable and dependable behaviors. Since array structures represent well over half
the area and transistors on-chip, maintaining cache scaling trends is crucial for overall technology scaling.

One pressing hurdle for cache scaling is reliability. The shrinking size of transistors is resulting in
increased probability of single- and multi-bit error upsets which require adoption of more complex and
power-hungry error detection and correction codes in hardware.

Simultaneously, another pressing hurdle for caches is the large amount of aggregate leakage power they
dissipate. Schemes for improving cache reliability using error-correcting codes (ECC) exacerbate leakage
problems by increasing transistor counts.

This paper explores the two challenges of cache reliability and cache leakage in a unified manner. In
particular, we explore methods for implementing cache regions with either no ECC or less complex ECC in
order to reduce power and area. We also explore hardware/software techniques to route data to these regions
in order to maintain application performance and reliability. Finally, we also demonstrate that these caching



approaches considerably improve leakage energy. Not only do they reduce transistor counts (and therefore
reduce leakage energy directly) but they also have the side benefit of separating data storage in a manner
that makes other leakage-control techniques like cache decay more beneficial.

This paper explores the potential of these memory hierarchy optimizations along several dimensions. In
particular, we consider the power, reliability, and usability issues inherent in the approach. Our approach
offers a modest area benefit of roughly 7% for future last-level caches, while maintaining equivalent real-
system reliability. Beyond this, however, its real strength emerges when paired with cache decay. By
tailoring decay intervals to the distinct reference patterns for each cache partition, leakage energy can be cut
in half compared to implementing cache decay on a traditional last-level cache.

Overall, we show that by viewing reliability and leakage energy as an intertwined pair of challenges,
novel and highly-effective solutions can be developed to address them both.

The remainder of this paper is structured as follows. Section 2 gives an overview of the problem and our
approach. Section 3 discusses our approach in more detail. Section 4 describes our experimental methodol-
ogy and benchmarks. Section 5 presents our results regarding the design space for the lightweight cache, the
interplay of the lightweight cache with cache decay, and compares our approach to adaptive cache decay.
In Section 6 we discuss some issues that arise when using lightweight caches. Section 7 discusses related
work, and we conclude in Section 8.

(a) Area Overhead (b) Leakage Energy Overhead

Figure 1: Area (a) and leakage energy (b) for a 4MB cache with 128 byte lines and 16-way associativity as
the ECC varies, normalized to values for an equivalent cache with no ECC.

2 Problem overview

2.1 Hardware Error Correction: Background and Overhead

As process technology scales down towards the nanometer domain and many more SRAM cells fit on a
chip, the likelihood of reliability events in caches increases. There are several causes for these reliability
issues, ranging from variations and instability in the SRAM cell itself [9] to soft errors from alpha particle
or cosmic ray strikes.

ECC has emerged as a major strategy for improving cache reliability. Implementation of ECC codes
in hardware enable dynamic correction of bit flips with the penalty of increased area overhead and power

2



consumption, both of which grow as the ECC complexity increases.
Figures 1(a) and 1(b) illustrate different possible levels of ECC and the area and leakage energy over-

heads they incur for a 4MB level-two cache with 16-way set associativity. (We compute these using tools
and methodologies described in more detail in Section 4.) Depending on the level of ECC implemented,
both area and leakage energy exhibit overheads of 3-37%. While ECC offering single-error-correction and
double-error detection (SECDED) is currently most common, increasing error rates are leading manufactur-
ers to consider other more aggressive (and therefore higher overhead) approaches for the future.

2.2 Our Work

Given the significant overheads associated with ECC, it is natural to consider whether there are judicious
alternatives to its widespread use throughout the cache hierarchy. In particular, our work explores a design
space in which the level-2 (last-level cache or LLC) is partitioned into two regions each of which can employ
different ECC approaches and different leakage control methods. For example, we explore design options in
which roughly one-fourth of the LLC is implemented with only SECDED or no ECC, while the remainder
of the LLC is devoted to more aggressive and more reliable ECC.

Our approach assumes that, when present in the cache at all, a memory line will be stored in either one
region or another, but never both at the same time. In subsequent sections, we discuss the design issues for
this approach in greater detail, including both the hardware issues of how best to build such a cache, as well
as the policy issues involved in determining which data to store in each of its two regions.

2.3 Potential benefits

Before going into details about implementation issues, we first establish the potential benefits possible for
such an approach. At first glance, the benefits include the area, power, and latency benefits accrued from
treating the LLC as two smaller caches, and from the fact that one of these smaller caches employs little or
no ECC circuitry for checking and correcting errors. Indirectly, additional benefits stem from the fact that
splitting the cache into two independent regions allows each region to employ separate policies for what to
store and when to evict it. Optimizing these separate policies to different data types allows our approach to
offer both performance and leakage energy advantages in some cases.

For example, in Figure 2, we show the total leakage energy for combinations of traditional and lightweight
caches with different ECC levels normalized to the total leakage energy of a single cache with equal data
storage capacity and no error correction. In Figure 2(a), the lightweight cache does not implement any ECC
while in Figure 2(b) it implements SECDED.

3 Design Details
Having established some of the potential benefits of our splitLLC approach, this section now treats the major
design issues in more detail.

3.1 SplitLLC: Hardware Design

3.1.1 SplitLLC Size and Organization

The size and organization of the LC is obviously variable. For our examination, we choose to have two
parallel caches as shown in Figure 3. In Section 5.1, we examine the benefits of using a range of cache sizes
for our lightweight cache.

3



(a) LC: No ECC (b) LC: SECDED

Figure 2: Leakage energy for different configurations of traditional and lightweight caches, varying the
ECC. The lightweight cache implements no error correction in (a) and SECDED in (b).

Our approach assumes that a memory request will be directed either to the L2 cache or the LC, but not
both at the same time. We have modeled blocking caches which effectively keeps the number of ports to the
next memory level constant between the two cache organizations.

Although the LC cache is likely smaller than its corresponding L2 cache and implements a lower level
of ECC, we model its access latency to be the same as the L2 cache.

3.1.2 Routing References to the LC

Memory requests that do not hit in the level one cache are routed to either the L2 or lightweight cache. Data
that has been designated as amenable to the LC will be mapped into particular address ranges. The hardware
then shuttles accesses to these addresses to the LC. A variety of mechanisms could be used for this routing
including using hardware registers to specify address ranges mapped to the LC, using techniques similar to
way prediction [14], or doing parallel lookups in both caches.

3.1.3 Coherence Issues

Coherence will be maintained between the LC and other levels of the memory hierarchy via a standard
coherence protocol. Because data is either annotated as LC or not, it cannot live in both the L2 cache and
LC simultaneously. As a result, there is no consistency issue to maintain between these two caches.

3.2 Hardware/Software Interface Issues

A significant design issue for our splitLLC approach is that we want to be able to separate the data that is
best suited for one partition versus the other. In general, our strategy follows from the following observation.
While some types of data require complete correctness, many applications, especially those with streaming
data accesses, contain data that can either tolerate occasional errors or that can have correct versions easily
retrieved from lower levels of the memory hierarchy.

Error-tolerant data comes in several forms. In some cases, high-level application characteristics make
them resilient to modest data error rates. These include image, video, and voice processing applications

4



Figure 3: Both the LLC and LC have 128 byte cache lines. The LLC implements an OECNED (8-bit error
correction, 9-bit error detection) ECC while the LC implements a SECDED (single-bit error correction,
double-bit error detection) ECC.

where a single error in the data stream is unlikely to be detectable by the application’s users. In other cases,
data errors are masked by the fact that they occur in data after its last read (i.e. dead values).

Our work exploits this error tolerance by directing error tolerant data to a cache that implements no or
lower levels of error correction than the primary cache. In this paper, we evaluate the potential of such hier-
archies based on a suite of hand-annotated applications, but Section 6 also explores automatic, transparent
techniques for either the compiler or hardware to identify such data.

4 Methodology

4.1 Area and Power Estimates

We use CACTI 6.0 [12] to estimate area and leakage energy for different cache sizes and ECC levels. To
estimate the impact of ECC on leakage energy, we increase the capacity of a cache and the cache line size
to accomodate the necessary ECC bits. The quantity of error correction bits needed for each ECC is based
on the standard BCH codes described in [10], using 256 bit words.

4.2 Simulator

We use the Intel Pin system [11] to dynamically generate instruction traces. Pin performs run-time binary
instrumentation of applications, enabling execution information to be analyzed by routines referred to as
Pintools. Our Pintool models multiple levels of configurable data caches. Table 1 shows the primary config-
urations used in our experiments; in Section 5.1, we vary the capacity of the L2 and lightweight caches. For
the purposes of this study, we are only modeling uniprocessor systems with two levels of cache, but our sys-
tem can be easily extended to study multiprocessor systems and/or more levels of cache. Our experiments
are run on systems with Intel Xeon processors, running Red Hat Enterprise Linux 4.6.

5



Instruction cache Not modeled
L1 data cache 32KB, 64B line size, 8-way

set associative, LRU replace-
ment, 1 cycle latency

L2 data cache 3/4MB, 128B line size, 16-
way set associative, LRU re-
placement, 10 cycle latency

Lightweight cache 1MB, 128B line size, 16-way
set associative, LRU replace-
ment, 10 cycle latency

Memory 100 cycle latency

Table 1: Memory system parameters

Our Pintool counts all instructions and forwards memory requests to the routines modeling our memory
system. Although Pin does not instrument the operating system, it provides information about system calls
and their associated parameters; we use this information about read and write system calls to keep track of
the infrequent operating system calls accessing application data.

Rather than mapping data amenable to the lightweight cache into specific memory address ranges, the
Pintool identifies this data via instruction addresses used to allocate and/or initialize this data and then
subsequently directs accesses to this data to the LC. Accesses to all other data are handled by the L2 cache.

4.3 Benchmarks

We evaluate our approach using four applications, three from the MineBench [13] data mining benchmark
suite and one from the PARSEC [3] benchmark suite. The three data mining applications, Apriori, SVM-
RFE, and Utility-mine, and the H.264/AVC video encoder application x264 are all computation and memory
intensive. According to [15], the three data mining applications exhibit data access patterns that resemble
streaming in which read accesses dominate, making these applications good candidates for our technique.
x264 clearly deals with video data, making it a candidate for reduced ECC on its video data. Table 2
describes general application statistics regarding instruction count, memory access frequency, and memory
footprint size as well as the quantity of the data mapped to the LC.

Data considered to be amenable to the LC was determined by examining each application for streaming,
predominantly read only data accesses and/or data that can tolerate some level of noise. Structures that
store data read in from input files are likely candidates. After initialization, these data structures become
predominantly read-only; the applications create other data structures to store results during processing. As
an example, for the SVM-RFE benchmark, we annotated the svm problem structure which contains a
two dimensional array of svm nodes, each containing values read in from the input file. For the x264
application, we chose the buffers into which the input picture data is stored as well as the frames where
image data remains buffered during processing.

6



Apriori SVM-RFE x264 Utility
Instructions (Bil.) 1.886 75.864 10.147 19.368
Memory Footprint(MB) 100.4 45.1 15.0 503.0
Accesses (Bil.) 0.68 17.54 1.58 4.29

Amenable to Lightweight Cache
Memory Footprint(MB) 53.7 43.9 13.3 496.4
% of Accesses 34 94 39 33

Table 2: Application data characteristics

5 Results

5.1 Basic design issues

Our first objective is to determine an appropriate LC size. Because directing large numbers of data accesses
to a small, parallel cache may result in changes in lower level misses which impact total system power, we
evaluate the impact of using different sizes of lightweight caches by examining changes in both execution
time and total number of lower level misses. Figure 4 shows these results for configurations in which the L2
and lightweight caches have a combined capacity of 4MB of data storage.

(a) Execution Time (b) Lower Level Misses

Figure 4: Normalized execution times (a) and lower level misses (b) as the size (in MB) of the LC is varied
while keeping total combined cache capacity constant at 4MB.

Despite the large memory footprints of the data mapped to the LC, ranging between 13 and 496MB as
shown in Table 2, a LC of 1MB appears sufficient for these applications. Apriori begins to suffer increased
execution time and lower level misses when the capacity of the LC is 2MB or more. We conclude that
Apriori needs to keep the LC capacity below 2MB in order to satisfy the capacity needs of non-LC data.
x264 experiences a jump in lower level misses, although not execution time, when the LC is 0.5MB. This
increase in misses quickly recedes as the LC capacity increases. Thus, x264 needs its LC to have more than
0.5MB but less than 2MB of data capacity.

Assuming a partitioning of the lower level cache capacity such that we have a 1 MB LC, we can save up

7



to 7% of the leakage energy increase experienced when error correction codes are added to a 4MB cache
with no error correction.

5.2 A look at reliability

Reducing the level of ECC in the LC brings into question the issue of reliability. How can you insure the
integrity of data in the LC? In choosing data to map into the LC, we have carefully chosen data that will
be more amenable to reduced ECC. For example, image processing data is naturally error-tolerant; it has
to handle noise introduced into images. Consequently, applications with this type of data will be able to
tolerate an accidental bit flip.

The other data we selected is predominantly read-only data. For this data, a lower level of ECC such as
SECDED (1 bit error correction and two bit error detection) may be sufficient to handle errors as data will
not be lost if a cache line must be retrieved from a lower level of memory due to an error. The stream-like
nature of the data we have selected also makes it unlikely to be retained in the LC for long periods of time,
reducing the time during which errors can accumulate.

We can further harness this use of time to reduce the accumulation of errors, and consequently improve
reliability, by actively removing data from the LC through cache decay. Partitioning the cache into a LLC
and a LC enables us to institute more aggressive decay strategies than could be used in a single LLC without
performance penalties. The cache decay intervals being used in the LC are on a much smaller scale than
expected FIT estimates.

However, it is important to note that cache decay does not provide a strict guarantee on how long data
will be retained in the LC depending on coherence and inclusion issues. For example, data in the LC could
be actively used in a higher, inclusive cache, extending how long it remains in the LC beyond the LC’s cache
decay interval. To address this issue, we note that not all caches implement inclusion any more.

One alternative to cache decay that would counteract these issues would be to use a strict expiration time
that invalidates data in the LC after some predefined time. However, expiring the data in the LC even though
it is being actively used can have a negative performance impact if some data remains actively used longer
than most data in the LC. For our four applications, we found that expiration times of 1 million cycles could
increase the number of lower levels misses 1 to 45% compared to using cache decay with the same interval.
Because of this sensitivity to data usage, we have chosen to explore the possibilities of cache decay instead
of strict expiration. To maintain reliability in the rare cases when data persists beyond the duration of the
decay interval, one could implement a very long expiration interval in the LC. This would enable you to get
better performance from using cache decay than a strict expiration policy without sacrificing reliability.

5.3 Leakage benefits of decay-based LC approaches

We now examine the impact of cache decay on these applications when only a L2 cache is used. Figure 5
shows the execution time and static power dissipation for our four applications when cache decay intervals
of 10 and 1 million cycles are applied, normalized to values for a L2 cache with no decay. Figure 5(a) shows
that a more aggressive decay strategy can negatively impact the execution times of three of the applications
despite providing larger reductions in static power dissipation as seen in Figure 5(b). If the data mapped to
the LC has characteristics consistent with these applications’ overall data, it would be impossible to use a
more aggressive decay interval to improve reliability in the LC and reduce static power dissipation without
performance suffering.

Table 3 shows characteristics of the data considered amenable to lightweight caches and of all remaining
data, including stack data. We define an active interval to be a period of time during which data is used
repeatedly; active intervals are separated from other active intervals by a period of time lasting at least one

8



(a) Execution time (b) Static power dissipation

Figure 5: Execution times (a) and static power dissipation (b) as the cache decay interval in the L2 cache
varies, normalized to values for a L2 cache with no cache decay. The static power dissipation values assume
OECNED ECC in the L2 cache.

million instructions in which the data is not accessed. If the median active interval is relatively short, it
means that data is used briefly and then goes idle for at least one million cycles. The number of idle periods
is the number of times a given piece of data remains idle for more than one million consecutive instructions.

The data targeted as amenable to a lightweight cache has shorter active intervals than the rest of the data
in these applications according to the characteristics presented in Table 3; for SVM-RFE, we see that data
targeted for the LC can be used for as little as 182 consecutive instructions before going unused for more
than one million cycles. Additionally, the number of times this data is reused differs from the remaining
data. For example, in Utility-mine, the median number of active intervals and idle periods are both greater
for non-lightweight cache data than for the lightweight cache data. Thus, the data targeted as amenable to the
LC can be viewed as having different characteristics than the other data in the applications. Consequently,
it may be possible to improve reliability by aggressively decaying data and obtain larger reductions in static
power dissipation without sacrificing performance by mapping this data to the LC.

Apriori SVM-RFE x264 Utility
Amenable to Lightweight Cache

Median Active Interval Duration (Instr.) 1,668 182 252,755 1
Median Number of Idle Periods 2 2,146 6 1

All Remaining Data
Median Active Interval Duration (Instr.) 412,706 340,250 811,540 362,215
Median Number of Idle Periods 2 31 4 2

Table 3: Usage characteristics of LC vs. non-LC data

Figure 6 shows the execution times and static power dissipation for these applications when we apply
more aggressive decay intervals in the LC than in the L2 cache. The decay intervals are annotated as L2
decay interval / LC decay interval; 10/1 means a decay interval of 10 million cycles was used in the L2 cache

9



and a decay interval of 1 million cycles was used in the lightweight cache. Execution times are normalized
to the use of only a L2 cache with no decay while static power dissipation is normalized to the values for a
L2 cache using a 10 million cycle decay interval.

The execution times of all of the applications are only slightly worse (0-1%) than the execution times
when a decay interval of 10 million cycles was used solely in the L2 cache and better than when the more
aggressive 1 million cycle decay interval was used in the L2 cache. A major contributor to the difference in
execution time between our multi-decay approach and using a single more aggressive decay approach is the
reduction in lower level misses. For example, the number of lower level misses increases in Apriori only
11% when our mixed decay approach is used compared to a more than 700% increase when a one million
cycle decay interval is applied to the entire cache. x264 and Utility-mine experience smaller but significant
reductions as well.

At the same time, Figure 6(b) shows that the use of the more aggressive decay interval in the LC al-
lows us to obtain larger static power dissipation reductions than was possible with the less aggressive 10
million cycle decay interval. Using a combination of 10/1 enables a reduction of approximately 20% of
the remaining static power dissipation for Apriori, 85% for SVM-RFE, 60% for x264, and 40% for Utility.
These results also suggest that our goal of aggressively decaying data in order to prevent the accumulation
of errors in the LC is feasible.

(a) Execution time (b) Static power dissipation

Figure 6: Normalized execution times (a) and static power dissipation (b) as the cache decay interval in the
L2 and lightweight caches vary. Execution times are normalized to using a L2 cache with no decay. Static
power dissipation is normalized to use of only a L2 cache with a 10 million cycle decay interval.

5.4 Comparison to adaptive cache decay

Given that the use of the lightweight cache enables us to tailor our cache decay strategy to specific types
of data, we also compare the use of a lightweight cache to the effects of using adaptive cache decay [5].
The adaptive cache decay approach proposed in [5] provides a set of decay intervals; a cache line’s given
decay interval changes based on whether or not decayed cache lines stay powered off (meaning the decay
was considered successful) for some fraction of the current cache decay interval.

Figure 7 shows execution times and lower level misses for these applications when adaptive cache decay
(AD) is introduced to the traditional L2 cache. Overall, we see that the use of adaptive cache decay can

10



(a) Execution Time (b) Lower Level Misses

Figure 7: Execution times (a) and lower level misses (b) for different cache configurations with different
adaptive cache decay techniques.

increase both the execution times and lower level misses compared to using a lightweight cache. These
differences can be small, as is the case when the the decay intervals are 10 and 1 million in the L2 and LC
respectively, but they can become more substantial when the decay intervals are too aggressive.

Figure 8 shows the change in static power dissipation assuming the L2 cache implements OECNED
ECC and the LC implements SECDED ECC. For x264 and Utility, the differences in power dissipation are
small. Adaptive cache decay is able to achieve better reductions in static power dissipation for Apriori at the
cost of slightly increased execution time and lower level misses.

Thus, our LC approach has the ability to achieve similar static power dissipation reductions as adaptive
cache decay. However, adaptive cache decay has the potential of creating much larger performance penalties
than we have observed with the LC approach when the decay intervals are chosen to be too aggressive.

Implementing adaptive cache decay in a multi-way associative cache may also have some challenges. In
[5], adaptive cache decay was implemented in a direct-mapped cache. In order to determine whether or not
the decay of a cache line was considered a mistake or not, the authors needed to keep tags active for decayed
cache lines. Rather than keeping tags active, the work chose to create a heuristic in which the turning on
of a decayed cache line before the appropriate timeout signified a mistake regardless of whether or not the
data being brought into the decayed line was the same data that was decayed in the line. In a cache with
set-associativity, it becomes more difficult to correlate decay mistakes with specific cache lines in order to
update the decay interval for each line without maintaining tags. The need to maintain tags, however, would
reduce the power savings. This complexity can be avoided by using our LC approach.

6 Discussion

6.1 LC Capacity Issues

One current limitation of our approach is the finite capacity of the lightweight cache. When the LC working
set size is larger than the LC’s capacity, applications will suffer capacity misses even though there may
be space available in the main LLC. This potential performance penalty may inhibit software’s desire to
annotate data as appropriate for the LC.

11



Figure 8: Comparison of LC and adaptive cache decay assuming a L2 cache that implements OECNED
ECC and a 1MB LC implementing SECDED ECC.

Future implementations of our proposal can be more adaptive in determining where to place data anno-
tated as being appropriate for the LC. For example, LC data should be placed in the LLC if it can be deduced
that LC demand exceeds capacity but there is capacity available in the LLC. One possibility is to discern
such situations using cache decay. For example, from the cache decay counters, it may be possible to detect
the LC has reached capacity (no decayed lines) and the LLC has available capacity (multiple decayed lines)
to hold overflow LC data. To enable this functionality, the mechanism for routing accesses to either the LC
or LLC must support lookups in both portions of splitLLC.

6.2 Automating data annotation

Our work has shown the potential of SplitLLC approaches for a suite of applications in which the error-
tolerant data has been hand-annotated. This subsection sketches out possible approaches for automating
these annotations.

We have used several characteristics for determining which data to map to the LC via hand annotations.
First, we considered data accessed in a streaming fashion. This implies there is a large set of data that is
accessed for brief periods of time. We also required data to be error tolerant, like image and audio data, or
to be predominantly read-only.

While it may be difficult to assume the data is resistant to the introduction of noise via bit flips, a
single flag could be added to indicate this situation to the compiler. The compiler could then identify large
contiguous allocations of array like structures accessed in a semi-regular (loop-based) fashion. In cases
where data was not error tolerant, the compiler would need to determine whether this data was predominantly
read-only by examining the types of accesses made to this data in conjunction with a call graph. Data written
early in the call graph (during initialization) but then later accessed only via reads could be considered
candidates for the LC.

A prediction scheme could be created in hardware which determines contiguous address ranges of data
to map to the LC. Relatively large address ranges containing cache lines that were rarely written and were
quickly decayed could be used to indicate data that could be sent to the lightweight cache. Memory addresses
contiguous to existing ranges could be predicted as LC candidates. Subsequent writes to this data could
result in reevaluation of these predictions.

12



7 Related Work
Because this work jointly considers issues from both reliabilty and power-efficiency areas, we discuss here
some of the most pertinent work from each domain.

Considerable work recently has focused on more effective reliability for memory hierarchies. Some
work has focused on particular error types and microarchitectural or cache management approaches for
reducing their prevalence [1, 16]. In some cases, research has focused on methods particularly aimed at soft
error reduction [17]. Other work has focused on aggressive methods for scaling SRAM cells and for using
these scaled designs [9]. Such work, however, typically does not simultaneously consider ECC issues.

Another body of recent work has re-examined ECC methods in the face of their increased on-chip use
for improving error tolerance in future generation caches [6, 7]. This work primarily looks at making ECC
techniques more effective against multiple errors that are bursty in space or time. Our work is largely
orthogonal to such efforts.

Our work particularly aims to balance the three concerns of performance, reliability, and leakage power.
Some prior work has specifically focused on joint optimization of performance and reliability [2]. Other
prior work has, like ours, jointly considered reliability and leakage concerns [8, 4]. We know of no other
work, however, that considers the impact of splitting the LLC into more- and less-reliable components, both
for reliability and leakage management.

8 Conclusions
This paper explores ways to reduce leakage energy associated with error correction codes implemented
in lower level caches (LLC) while maintaining reliability. In particular, we introduce the concept of a
SplitLLC where a region of the lower-level cache, called the lightweight cache, implements a less complex
error correction code, reducing leakage energy.

We map application data that is error tolerant to this reduced ECC cache area. Examples of data
amenable to this lightweight cache are streaming data which naturally includes noise, such as image and
audio data, and which are predominantly read-only, such as file input data used in data mining applications.
Despite applications mapping tens to hundreds of MBs of data to this reserved area, we find that 1MB is
typically a sufficient capacity for this lightweight cache.

In addition to the basic SplitLLC proposal, our paper also explores the addition of cache decay tech-
niques to both the lightweight cache and its full-ECC counterpart. First, we note that cache decay can
intelligently limit data lifetimes in the lightweight cache, which increases the likelihood of its removal be-
fore it accumulates multiple errors. Furthermore, we also find that cache decay is effective in both regions
of the SplitLLC, because the segregation of data between the two cache structures enables designers to tailor
cache decay for each type of data. Specifically, we find that more aggressive decay intervals can be applied
to the streaming data in the lightweight cache. This approach has the added benefit of improving the overall
reductions in static power dissipation gained via cache decay. Overall, these techniques cut leakage energy
in half compared to implementing cache decay on a traditional last-level cache. Our SplitLLC approach rep-
resents one step towards leakage and reliability management for large last-level caches, and is particularly
promising for the growing number of image and video processing and data mining applications that access
data in a streaming fashion.

13



References
[1] J. Abella, X. Vera, O. Unsal, and A. Gonzalez. Nbti-resilient memory cells with nand gates for

highly-ported structures. Presentation slides from WDSN 2007 Workshop on Dependable and Secure
Nanocomputing (in conjunction with DSN’07).

[2] G.-H. Asadi, V. S. Mehdi, B. Tahoori, and D. Kaeli. Balancing performance and reliability in the
memory hierarchy. In Proc. of Intl. Symp. on Performance Analysis of Systems and Software, pages
269–279, 2005.

[3] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: Characterization and archi-
tectural implications. In Princeton University Dept. of Computer Science Technical Report, 2008.

[4] V. Degalahal, Lin Li, V. Narayanan, M. Kandemir, and M.J. Irwin. Soft errors issues in low-power
caches. IEEE Trans. on Very Large Scale Integration (VLSI) Systems, pages 1157–1166, October 2005.

[5] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploiting generational behavior to reduce cache
leakage power. In Proc. of Intl. Symp. on Computer Architecture, pages 240–251, 2001.

[6] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe. Multi-bit error tolerant caches using two-
dimensional error coding. In Proc. of Intl. Symp. on Microarchitecture, pages 197–209, 2007.

[7] S. Kim and A. K. Somani. Area efficient architectures for information integrity in cache memories. In
Proc. of Intl. Symp. on Computer Architecture, pages 246–255, 1999.

[8] L. Li, V. S. Degalahal, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. Soft error and energy con-
sumption interactions: A data cache perspective. In Proc. of Intl. Symp. on Low Power Electronics and
Design, August 2004.

[9] X. Liang, R. Canal, G. Wei, and D. Brooks. Process variation tolerant 3t1d-based cache architectures.
In Proc. of Intl. Symp. on Microarchitecture, pages 15–26, 2007.

[10] S. Lin and D. J. Costello. Error Control Coding: Fundamentals and Applications. Prentice Hall, 1983.

[11] C. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney, S. Wallace, V. J. Reddi, and K. M.
Hazelwood. Pin: building customized program analysis tools with dynamic instrumentation. In Proc.
of Conf. on Programming Language Design and Implementation, pages 190–200, 2005.

[12] N. Muralimanohar, R. Balasubramonian, and N. Jouppi. Optimizing nuca organizations and wiring
alternatives for large caches with cacti 6.0. In Proc. of Annual Intl. Symp. on Microarchitecture, pages
3–14, 2007.

[13] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and A. N. Choudhary. Minebench: A bench-
mark suite for data mining workloads. In IISWC, pages 182–188, 2006.

[14] M. D. Powell, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K. Roy. Reducing set-associative cache
energy via way-prediction and selective direct-mapping. In Proc. of Intl. Symp. on Microarchitecture,
pages 54–65, 2001.

[15] K. A. Shaw. Understanding the working sets of data mining applications. In Eleventh Workshop on
Computer Architecture Evaluation using Commercial Workloads (CAECW-11), 2008.

14



[16] J. Shin, V. Zyuban, P. Bose, and T. M. Pinkston. A proactive wearout recovery approach for exploiting
microarchitectural redundancy to extend cache sram lifetime. In Proc. of Intl. Symp. on Computer
Architecture, pages 353–362, 2008.

[17] V. Sridharan, H. Asadi, M. B. Tahoori, and D. Kaeli. Reducing data cache susceptibility to soft errors.
IEEE TRans. on Dependable and Secure Computing, 3:353–364, Oct 2006.

[18] X. Vera, J. Abella, A. Gonzalez, and R. Ronen. Reducing soft error vulnerability of data caches. In
SELSE 2007 3rd Workshop on Silicon Errors in Logic - System Effects, 2007.

15


	University of Richmond
	UR Scholarship Repository
	5-2009

	Pairing Software-Managed Caching with Decay Techniques to Balance Reliability and Static Power in Next-Generation Caches
	Kelly Shaw
	Margaret Martonosi
	Recommended Citation


	tr_2009_01_hpca_Shaw_Martonosi.pdf

