110,534 research outputs found

    Logic-based Technologies for Multi-agent Systems: A Systematic Literature Review

    Get PDF
    Precisely when the success of artiïŹcial intelligence (AI) sub-symbolic techniques makes them be identiïŹed with the whole AI by many non-computerscientists and non-technical media, symbolic approaches are getting more and more attention as those that could make AI amenable to human understanding. Given the recurring cycles in the AI history, we expect that a revamp of technologies often tagged as “classical AI” – in particular, logic-based ones will take place in the next few years. On the other hand, agents and multi-agent systems (MAS) have been at the core of the design of intelligent systems since their very beginning, and their long-term connection with logic-based technologies, which characterised their early days, might open new ways to engineer explainable intelligent systems. This is why understanding the current status of logic-based technologies for MAS is nowadays of paramount importance. Accordingly, this paper aims at providing a comprehensive view of those technologies by making them the subject of a systematic literature review (SLR). The resulting technologies are discussed and evaluated from two different perspectives: the MAS and the logic-based ones

    A Gentle Introduction to Epistemic Planning: The DEL Approach

    Get PDF
    Epistemic planning can be used for decision making in multi-agent situations with distributed knowledge and capabilities. Dynamic Epistemic Logic (DEL) has been shown to provide a very natural and expressive framework for epistemic planning. In this paper, we aim to give an accessible introduction to DEL-based epistemic planning. The paper starts with the most classical framework for planning, STRIPS, and then moves towards epistemic planning in a number of smaller steps, where each step is motivated by the need to be able to model more complex planning scenarios.Comment: In Proceedings M4M9 2017, arXiv:1703.0173

    Inadequacy of Modal Logic in Quantum Settings

    Full text link
    We test the principles of classical modal logic in fully quantum settings. Modal logic models our reasoning in multi-agent problems, and allows us to solve puzzles like the muddy children paradox. The Frauchiger-Renner thought experiment highlighted fundamental problems in applying classical reasoning when quantum agents are involved; we take it as a guiding example to test the axioms of classical modal logic. In doing so, we find a problem in the original formulation of the Frauchiger-Renner theorem: a missing assumption about unitarity of evolution is necessary to derive a contradiction and prove the theorem. Adding this assumption clarifies how different interpretations of quantum theory fit in, i.e., which properties they violate. Finally, we show how most of the axioms of classical modal logic break down in quantum settings, and attempt to generalize them. Namely, we introduce constructions of trust and context, which highlight the importance of an exact structure of trust relations between agents. We propose a challenge to the community: to find conditions for the validity of trust relations, strong enough to exorcise the paradox and weak enough to still recover classical logic.Comment: In Proceedings QPL 2018, arXiv:1901.0947

    Modal Linear Logic in Higher Order Logic, an experiment in Coq

    No full text
    The sequent calculus of classical modal linear logic KDT 4lin is coded in the higher order logic using the proof assistant COQ. The encoding has been done using two-level meta reasoning in Coq. KDT 4lin has been encoded as an object logic by inductively defining the set of modal linear logic formulas, the sequent relation on lists of these formulas, and some lemmas to work with lists.This modal linear logic has been argued to be a good candidate for epistemic applications. As examples some epistemic problems have been coded and proven in our encoding in Coq::the problem of logical omniscience and an epistemic puzzle: ’King, three wise men and five hats’

    Non-normal modalities in variants of Linear Logic

    Get PDF
    This article presents modal versions of resource-conscious logics. We concentrate on extensions of variants of Linear Logic with one minimal non-normal modality. In earlier work, where we investigated agency in multi-agent systems, we have shown that the results scale up to logics with multiple non-minimal modalities. Here, we start with the language of propositional intuitionistic Linear Logic without the additive disjunction, to which we add a modality. We provide an interpretation of this language on a class of Kripke resource models extended with a neighbourhood function: modal Kripke resource models. We propose a Hilbert-style axiomatization and a Gentzen-style sequent calculus. We show that the proof theories are sound and complete with respect to the class of modal Kripke resource models. We show that the sequent calculus admits cut elimination and that proof-search is in PSPACE. We then show how to extend the results when non-commutative connectives are added to the language. Finally, we put the logical framework to use by instantiating it as logics of agency. In particular, we propose a logic to reason about the resource-sensitive use of artefacts and illustrate it with a variety of examples

    Logic of Negation-Complete Interactive Proofs (Formal Theory of Epistemic Deciders)

    Get PDF
    We produce a decidable classical normal modal logic of internalised negation-complete and thus disjunctive non-monotonic interactive proofs (LDiiP) from an existing logical counterpart of non-monotonic or instant interactive proofs (LiiP). LDiiP internalises agent-centric proof theories that are negation-complete (maximal) and consistent (and hence strictly weaker than, for example, Peano Arithmetic) and enjoy the disjunction property (like Intuitionistic Logic). In other words, internalised proof theories are ultrafilters and all internalised proof goals are definite in the sense of being either provable or disprovable to an agent by means of disjunctive internalised proofs (thus also called epistemic deciders). Still, LDiiP itself is classical (monotonic, non-constructive), negation-incomplete, and does not have the disjunction property. The price to pay for the negation completeness of our interactive proofs is their non-monotonicity and non-communality (for singleton agent communities only). As a normal modal logic, LDiiP enjoys a standard Kripke-semantics, which we justify by invoking the Axiom of Choice on LiiP's and then construct in terms of a concrete oracle-computable function. LDiiP's agent-centric internalised notion of proof can also be viewed as a negation-complete disjunctive explicit refinement of standard KD45-belief, and yields a disjunctive but negation-incomplete explicit refinement of S4-provability.Comment: Expanded Introduction. Added Footnote 4. Corrected Corollary 3 and 4. Continuation of arXiv:1208.184

    Automated Verification of Quantum Protocols using MCMAS

    Full text link
    We present a methodology for the automated verification of quantum protocols using MCMAS, a symbolic model checker for multi-agent systems The method is based on the logical framework developed by D'Hondt and Panangaden for investigating epistemic and temporal properties, built on the model for Distributed Measurement-based Quantum Computation (DMC), an extension of the Measurement Calculus to distributed quantum systems. We describe the translation map from DMC to interpreted systems, the typical formalism for reasoning about time and knowledge in multi-agent systems. Then, we introduce dmc2ispl, a compiler into the input language of the MCMAS model checker. We demonstrate the technique by verifying the Quantum Teleportation Protocol, and discuss the performance of the tool.Comment: In Proceedings QAPL 2012, arXiv:1207.055
    • 

    corecore