9,651 research outputs found

    Immersive and non immersive 3D virtual city: decision support tool for urban sustainability

    Get PDF
    Sustainable urban planning decisions must not only consider the physical structure of the urban development but the economic, social and environmental factors. Due to the prolonged times scales of major urban development projects the current and future impacts of any decision made must be fully understood. Many key project decisions are made early in the decision making process with decision makers later seeking agreement for proposals once the key decisions have already been made, leaving many stakeholders, especially the general public, feeling marginalised by the process. Many decision support tools have been developed to aid in the decision making process, however many of these are expert orientated, fail to fully address spatial and temporal issues and do not reflect the interconnectivity of the separate domains and their indicators. This paper outlines a platform that combines computer game techniques, modelling of economic, social and environmental indicators to provide an interface that presents a 3D interactive virtual city with sustainability information overlain. Creating a virtual 3D urban area using the latest video game techniques ensures: real-time rendering of the 3D graphics; exploitation of novel techniques of how complex multivariate data is presented to the user; immersion in the 3D urban development, via first person navigation, exploration and manipulation of the environment with consequences updated in real-time. The use of visualisation techniques begins to remove sustainability assessment’s reliance on the existing expert systems which are largely inaccessible to many of the stakeholder groups, especially the general public

    Virtual environment trajectory analysis:a basis for navigational assistance and scene adaptivity

    Get PDF
    This paper describes the analysis and clustering of motion trajectories obtained while users navigate within a virtual environment (VE). It presents a neural network simulation that produces a set of five clusters which help to differentiate users on the basis of efficient and inefficient navigational strategies. The accuracy of classification carried out with a self-organising map algorithm was tested and improved to in excess of 85% by using learning vector quantisation. This paper considers how such user classifications could be utilised in the delivery of intelligent navigational support and the dynamic reconfiguration of scenes within such VEs. We explore how such intelligent assistance and system adaptivity could be delivered within a Multi-Agent Systems (MAS) context

    Engineering simulations for cancer systems biology

    Get PDF
    Computer simulation can be used to inform in vivo and in vitro experimentation, enabling rapid, low-cost hypothesis generation and directing experimental design in order to test those hypotheses. In this way, in silico models become a scientific instrument for investigation, and so should be developed to high standards, be carefully calibrated and their findings presented in such that they may be reproduced. Here, we outline a framework that supports developing simulations as scientific instruments, and we select cancer systems biology as an exemplar domain, with a particular focus on cellular signalling models. We consider the challenges of lack of data, incomplete knowledge and modelling in the context of a rapidly changing knowledge base. Our framework comprises a process to clearly separate scientific and engineering concerns in model and simulation development, and an argumentation approach to documenting models for rigorous way of recording assumptions and knowledge gaps. We propose interactive, dynamic visualisation tools to enable the biological community to interact with cellular signalling models directly for experimental design. There is a mismatch in scale between these cellular models and tissue structures that are affected by tumours, and bridging this gap requires substantial computational resource. We present concurrent programming as a technology to link scales without losing important details through model simplification. We discuss the value of combining this technology, interactive visualisation, argumentation and model separation to support development of multi-scale models that represent biologically plausible cells arranged in biologically plausible structures that model cell behaviour, interactions and response to therapeutic interventions

    CORBYS cognitive control architecture for robotic follower

    Get PDF
    In this paper the novel generic cognitive robot control architecture CORBYS is presented. The objective of the CORBYS architecture is the integration of high-level cognitive modules to support robot functioning in dynamic environments including interacting with humans. This paper presents the preliminary integration of the CORBYS architecture to support a robotic follower. Experimental results on high-level empowerment-based trajectory planning have demonstrated the effectiveness of ROS-based communication between distributed modules developed in a multi-site research environment as typical for distributed collaborative projects such as CORBYS

    Visualisation of Large-Scale Call-Centre Data

    Get PDF
    The contact centre industry employs 4% of the entire United King-dom and United States’ working population and generates gigabytes of operational data that require analysis, to provide insight and to improve efficiency. This thesis is the result of a collaboration with QPC Limited who provide data collection and analysis products for call centres. They provided a large data-set featuring almost 5 million calls to be analysed. This thesis utilises novel visualisation techniques to create tools for the exploration of the large, complex call centre data-set and to facilitate unique observations into the data.A survey of information visualisation books is presented, provid-ing a thorough background of the field. Following this, a feature-rich application that visualises large call centre data sets using scatterplots that support millions of points is presented. The application utilises both the CPU and GPU acceleration for processing and filtering and is exhibited with millions of call events.This is expanded upon with the use of glyphs to depict agent behaviour in a call centre. A technique is developed to cluster over-lapping glyphs into a single parent glyph dependant on zoom level and a customizable distance metric. This hierarchical glyph repre-sents the mean value of all child agent glyphs, removing overlap and reducing visual clutter. A novel technique for visualising individually tailored glyphs using a Graphics Processing Unit is also presented, and demonstrated rendering over 100,000 glyphs at interactive frame rates. An open-source code example is provided for reproducibility.Finally, a novel interaction and layout method is introduced for improving the scalability of chord diagrams to visualise call transfers. An exploration of sketch-based methods for showing multiple links and direction is made, and a sketch-based brushing technique for filtering is proposed. Feedback from domain experts in the call centre industry is reported for all applications developed

    MyHealthAvatar and CARRE: case studies of interactive visualisation for Internet-enabled sensor-assisted health monitoring and risk analysis

    Get PDF
    With the progress of wearable sensor technologies, more wearable health sensors have been made available on the market, which enables not only people to monitor their health and lifestyle in a continuous way but also doctors to utilise them to make better diagnoses. Continuous measurement from a variety of wearable sensors implies that a huge amount of data needs to be collected, stored, processed and presented, which cannot be achieved by traditional data processing methods. Visualisation is designed to promote knowledge discovery and utilisation via mature visual paradigms with well-designed user interactions and has become indispensable in data analysis. In this paper we introduce the role of visualisation in wearable sensor-assisted health analysis platforms by case studies of two projects funded by the European Commission: MyHealthAvatar and CARRE. The former focuses on health sensor data collection and lifestyle tracking while the latter aims to provide innovative means for the management of cardiorenal diseases with the assistance of wearable sensors. The roles of visualisation components including timeline, parallel coordinates, map, node-link diagrams, Sankey diagrams, etc. are introduced and discussed
    • …
    corecore