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Virtual environment trajectory analysis: a basis for
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Abstract

This paper describes the analysis and clustering of motion trajectories obtained while users navigate within a virtual environ-
ment (VE). It presents a neural network simulation that produces a set of five clusters which help to differentiate users on the
basis of efficient and inefficient navigational strategies. The accuracy of classification carried out with a self-organising map
algorithm was tested and improved to in excess of 85% by using learning vector quantisation. This paper considers how such
user classifications could be utilised in the delivery of intelligent navigational support and the dynamic reconfiguration of scenes
within such VEs. We explore how such intelligent assistance and system adaptivity could be delivered within a Multi-Agent
Systems (MAS) context.
© 2004 Elsevier B.V. All rights reserved.
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. Introduction

This study investigates how the analysis of users’
ovement patterns, in particular trajectory classifica-

ion, can be harnessed for designing adaptive VEs. Such
Es are designed to provide intelligent navigational
upport, particularly to low spatial users. The motion
rajectories were recorded while a set of subjects car-
ied out spatial tasks within a VE.

Prior studies in the area of spatial cognition were
oncerned with testing hypotheses concerning the im-
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pact of a variety of factors on spatial knowledge
quisition [5]. However, none of these tried to inv
tigate holistically the motion trajectories themselv
Trajectory analysis can support the extraction of v
able information concerning those navigational r
which users employ in accomplishing spatial ta
In addition, when this analysis is performed in
light of some performance criterion (e.g., time
quired to perform a search task) it could prov
valuable insights into discriminating efficient and
efficient navigational strategies and clustering u
accordingly.

Attempts to cluster trajectories have been car
out primarily in the area of visual surveillance, es
cially novelty detection, with the purpose of identifyi
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suspicious behaviour of pedestrians within an outdoor
open area[7,20]. This goal is directly linked to the idea
of automatic surveillance, which would allow the re-
placement of the human operator. In their study, Owens
and Hunter have shown that the Self-Organising fea-
ture Map (SOM) neural network could successfully be
employed to perform trajectory analysis by both iden-
tifying the characteristics of normal trajectories and
detecting novel trajectories[20].

However, trajectory analysis performed on a spatial
cognition task represents a novel approach. The ob-
jective of this study involves identifying the efficient
and inefficient movement trajectories and their associ-
ated characteristics. Efficient versus inefficient is de-
termined in the light of users’ performances.

Without underestimating the role of traditional clus-
tering methods, we propose the use of Artificial Neural
Networks (ANN) as an alternative tool for trajectory
classification. Neural networks provide a very powerful
toolbox for modelling complex non-linear processes in
high dimensionalities[14]. ANNs have many advan-
tages over traditional representational models, partic-
ularly given their distributed representations, parallel
processing, robustness to noise or degradation and bio-
logical plausibility[9]. We consider that at least part of
these strengths can be harnessed to model user’s navi-
gational behaviour.

The paper is organised as follows. The next sec-
tion introduces both self-organising maps and Learning
Vector Quantisation (LVQ), and advocates using them
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rangement of homogeneous subgroups. A significant
outcome is reduced complexity with a minimal loss of
information, which fosters a better understanding of the
analysed data[15]. An important aspect of any cluster-
ing method is the minimisation of classification errors.
As Kaski [10] pointed out, one problem usually asso-
ciated with clustering methods is the interpretation of
clusters. Due to their ability to extract patterns and to
visualise complex data in a two-dimensional form[10],
SOM is used to perform the trajectory cluster analysis.
Like many other clustering techniques, SOM reduces
representations to the most relevant facts, with mini-
mum loss of knowledge about their interrelationships
[10].

The SOM is a neural network algorithm, which ex-
hibits several distinct advantages over other clustering
techniques[10,20]. The mapping from a high dimen-
sional data space onto a two-dimensional output map is
effectively used to visualise ordering relations of input
data. Reducing the amount of data allows comprehensi-
ble cluster identification and interpretation, which is an
inherently difficult task in the case of traditional clus-
tering methods[10]. As with any other ANNs, SOM
has considerable potential to generalise. Thus once it is
trained, a SOM is able to classify new data against the
set of clusters previously identified. All these features
highly commend SOM as a basis for on-line automatic
extraction of trajectory clusters.

In addition to the basic features of SOM we outline
SOM and learning vector quantisation as unsupervised
a ively.
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o perform clustering analysis. This is followed b
ection describing the study design, in terms of a
atus, procedure, sample and data collection. We s
uently present, a detailed description of data ana
nd study results which led to five trajectory clust
aving successfully identified these clusters, the
equent section tries to exploit this classification, a

nitial step in providing intelligent navigational supp
ithin VEs. Finally, the benefits of the study outcom
re summarised, and some promising research t
re suggested.

. Cluster analysis performed by artificial
eural networks

The main goal of cluster analysis is data reduct
y subdividing a set of objects into a hierarchical
nd supervised learning processes, respect
VQ constitutes a supervised learning algorit
elated to SOM. The SOM and LVQ algorithms w
eveloped by Kohonen et al. and implemented
is team from Helsinki University of Technology,

he form of SOMpak [12] and LVQ pak [13]. These
omprehensive software package are available o
nd were used within this study. SOM is based
n unsupervised learning process, allowing both
luster identification within the input data and
apping of an unknown—not previously seen—d

ector with one of the clusters. This process is car
ut without any prior knowledge regarding num
nd content of the clusters to be obtained[10]. When

set of already clustered input data is availa
supervised learning process can be employe

dentify to which class an unknown data vec
elongs.



C. Sas et al. / Future Generation Computer Systems 21 (2005) 1157–1166 1159

2.1. Self-organising maps

A basic SOM consists of an input layer, an output
map and a matrix of connections between each output
unit and all the input units. The input is usually
represented by a multidimensional vector with each
unit coding the value from one dimension. Every node
from the two-dimensional output layer is associated
with a so-called reference vector (mi), which consists
of a set of weights from each input node to the specified
output node. Each input vector is compared with all
the reference vectors and the location of the best
match according to some metric, usually the smallest
of the Euclidean distances, is defined as the winner.
Around the maximally responding unit, a topological
neighbourhood is defined and the weights of all units
included in this neighbourhood are adjusted, according
to Eq.(1), wheremi is the weight at time (t+ 1) andη

the learning rate:

mi(t + 1) = mi(t) + η[x(t) − mi(t)]. (1)

The topological neighbourhood should be initially
quite large, enabling a global order of the map, while
in the subsequent stages its values are decreased as a
function of time. Accordingly, the learning rate varies
in time from an initial value close to unity, to small
values over a long time interval. Training is performed
during two phases: an ordering phase during which
the reference vectors of the map units are ordered
( to
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vectors. As a result of these antagonistic tendencies,
the distribution of reference vectors is rather smooth,
given the search for an optimal orientation and form
to match those of the input vector density. In addition,
the greater the variance between the input vector fea-
tures, the better their representation on the output map.
It would be expected that these features correspond to
the most important dimensions of the inputs.

2.2. Learning vector quantisation

LVQ consists of an input layer comprising multidi-
mensional vectors described by their features and an
output layer whose neurons correspond to the prede-
fined classes. There is also a matrix of connections be-
tween each output unit and all the input units, consist-
ing of weight vectors. Since each weight vector corre-
sponds to a class, they are considered as labelled. The
basic idea is that input vectors belonging to the same
class will cluster in data space, in the form of a normal
distribution around a prototype vector. Classifying an
input vector consists of computing the Euclidean dis-
tance between the considered input vector and all the
weight vectors, followed by assignment to the class as-
sociated with a weight vector for which the Euclidean
distance is a minimum[13].

During training, an adaptive process occurs with re-
spect to the closest weight vector, also called the win-
ning neuron. When both the input vector and the weight
vector belong to the same class, meaning that the in-
p ctor
i tion
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t to
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neurons in different areas of the network learn
orrespond to coarse clusters in the data), and a
onger fine-tuning phase during which the refere
ectors in each unit converge to their correct va
neurons adjust to reflect fine distinctions).

The learning process consists of a “winner-ta
ll” strategy, where the nodes in the output map c
ete with each other to represent the input vectors

his reason, the output layer is also called the c
etitive layer. Competitive learning is an adaptive p
ess, through which the neurons from the output l
ecome slowly sensitive to the input data, learnin
epresent better different types of inputs.

As Kohonen et al.[13] pointed out, a significan
roperty of SOM is the tendency to preserve cont

ty in terms of mapping similar inputs to neighbour
ap locations. This is influenced by the weight vec

rying to represent the density function of the in
ut vector was correctly classified, the weight ve
s modified in order to become a better approxima
f the input vector. However, when the input vecto

ncorrectly classified, the weight vector is adjusted
anner such that it increases the distance of the

ector (since they belong to different classes).
While the SOM algorithm strives to approxim

he weight vectors to the input vectors, LVQ tries
ead to weights that effectively represent each c
he process of adjusting the weights, without res

o any topological neighbourhood differentiates L
rom SOM. The performance of LVQ can be increa
y initialising the codebook vectors with those val
btained as a result of training the SOM[10]. Vari-
nts of SOM have been successfully applied to a l
umber of domains, ranging from monitoring and c

rol of industrial tasks, to robot navigation, from d
rocessing to machine vision, from image analys
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Fig. 1. Virtual conference room.

novelty detection[10]. However, their adoption within
the frame of spatial cognition in VEs constitutes a novel
approach.

3. Study design

VEs have become a rich and fertile arena in the in-
vestigation of spatial knowledge. Within the VEs, the
user set of actions is restricted, consisting mainly of
navigation and locomotion, object selection, manip-
ulation, modification and query[6]. VEs serve as an
efficient and powerful tool which facilitate accurate
spatio-temporal recording of users’ trajectory within
the virtual space[1]. Attempts to understand spatial
behaviour in both real and artificial worlds have hith-
erto been primarily concerned with highlighting the
symbolic representation of spatial knowledge.

In this study we utilise ECHOES[3,18,19]as an ex-
perimental test-bed. ECHOES is a virtual reality sys-
tem which offers a small-scale world, dense, static and
with a consistent structure. Adopting a physical world
metaphor, the ECHOES environment comprises a vir-
tual multi-story building, with each of the levels con-
taining several rooms: conference room (Fig. 1), library
(Fig. 2), lobby, etc. Users can navigate from level to
level using a virtual elevator. The rooms are furnished
and associated with each room there is a cohesive set
of functions provided to the user. These features enable
ECHOES to offer an intuitive navigational model.

A sample of 30 students were asked to perform two
tasks within the VE. The first, an exploratory task, pro-
vided the primary data for the trajectory classification,
while the second, a searching task, offered a basis for
assessing the quality of exploration and the efficiency
of the exploratory strategy. The time needed to search
for a particular room acts as a performance indicator of
the level of spatial knowledge acquired within the VE.
Thus, the shorter the search time, the better the spatial
knowledge[21]. According to the time required for the
search task, users have been identified as lowspatial
users, when they needed significantly longer time to
find the library, orhigh spatial userswho found the
library straight away. Each of these two groups is rep-
resented by about 20% of users participating in this
study.

A comprehensive set of data was recorded through-
out the experiment. This was achieved by way of intel-
ligent agent technology. A listener agent was encoded
with certain event activation thresholds and subse-
quently commitments were adopted to future directed
actions, namely to record. This agent was delivered
as a strong agent and realised within Agent Factory a
rapid prototyping environment for agents developed in
part by one of the authors[2,17]. Specifically move-
ments greater than half a virtual metre, and each turn
greater than 30◦, were recorded. This was achieved by
the inclusion of a rich set of virtual sensors or actua-
tors attached to the agent together with an odometer
and rotational event listener.
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Fig. 2. Virtual library.
. Data analysis and results

By providing a rich set of primary data, traje
ory analysis can support the extraction of valua
nformation regarding the rules users employ
ccomplishing spatial tasks. Moreover, when
nalysis is performed in the light of some performa
riterion (e.g., time required to perform a search t
t can provide valuable insights into discriminat
fficient and inefficient navigational strategies
lustering the users accordingly.

Trajectory classification provides the benefits of
ucing the huge amount of information stored in
ata and once a typology has been created it ca
sed to assess any new trajectory by comparing
ssigning it to the appropriate class. On-line trajec
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Fig. 3. Modular system for on-line trajectory classification.

classification would allow the identification of user’s in
terms of good or poor performers of spatial tasks. This
identification could represent an essential initial step
in designing the adaptive VE. Thus, the VE could be
dynamically reconfigured in order to enable poor users
to learn the efficient navigation procedures, while for
good performers, it can be redesigned in order to chal-
lenge users’ spatial skills.

The use of SOM[12] and LVQ [13] in perform-
ing trajectory cluster analysis requires several steps:
data collection, construction and normalisation of the
data set, unsupervised training, visualisation of the re-
sulting map, cluster identification, production of a set
of trained labelled codebook vectors to be used in su-
pervised training and finally the measurement of the
classification accuracy. We have developed a modular
architecture which encompasses these steps supporting
the automatic and seamless movement from one stage
to the next. This architecture is depicted inFig. 3.

4.1. Collecting data

The data collection module is based on the lis-
tener agent previously developed by O’Hare et al.
[18,19]. The listener agent constantly harvests infor-
mation about user behaviour within the virtual world.
The data captured when the user interacts with the
ECHOES virtual space contains details of navigation
paths through the world together with the time spent in
d

4

tion
o nto

the SOM. Each trajectory is represented within the
raw data as a multivariate time series. However, we
were interested in testing whether the possibility of
commissioning a static representation of trajectory
is sufficient to perform a classification. Thus it was
necessary that the reduction of the raw data should
be accomplished by preserving their significant fea-
tures. We chose to represent each trajectory by the
degree of occupancy of a predefined set of spatial
locations.

For the SOM analysis, we overlaid the virtual space
with a grid composed of 28 squares of 4× 4 virtual me-
tres. Each trajectory was converted to a succession of
locations upon the grid. Subsequently it was necessary
to map each trajectory into a sequence of 28 neurons
(one for each location), according to Eq.(2), where NV
is the input node value and LOC is location occupancy
expressed as how many times the user revisited that
location:

NV = log10 9 LOC+ 1. (2)

The above transformation permits a clear differenti-
ation between non-visited (NV = 0) and visited loca-
tions. In the later case the NV is within the range 1–2,
1 for only one visit and 2 for 11 visits, 11 being the
maximum number of times for revisiting a location. In
addition to this encoding which features space cover-
age, the trajectories were augmented by characterising
t ered
t 90
t has
m ater
t t to
3

ifferent rooms.

.2. Pre-processing data

Data pre-processing involves the transforma
f the raw data into a suitable form to be fed i
he amount and size of users’ rotations. We consid
rajectories involving rotation angles in excess of◦
o represent an interesting feature. If a trajectory
ore than 10% of the rotation angles equal or gre

han 90◦, the 29th node of the input vector was se
, otherwise it was set on 0.
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4.3. Training SOM

Once the data is pre-processed, we randomly di-
vided it into two equal subsets, one for training and the
other one for the testing. Each set consisted of 63 vec-
tors, comprising encoded trajectories covered by the
users on each level. A SOM of 16× 12 neurons was
used to perform a topology-preserving mapping.

The first phase of training was carried out for 1000
epochs, a radius of 16 and with a learning rate of 0.8,
while the second phase was 120,000 epochs, with a
learning rate of 0.01 and a radius of 2. The random
seed was 275 identified by using thevfind program.
These parameters were retained, after we tried more
than 50 trainings, with different architectures and learn-
ing rates, since they led to the smallestquantisation er-
ror for the testing set (1.97), while for the training set
it was 0.35. Quantisation error represents the norm of
difference of an input vector from the closest reference
vector[12].

4.4. Map visualisation

The resulting organisation of the map, shown in
Fig. 4shows five clusters of users, where clustering is
on the basis of their navigational pattern within the VE.

Numbers which were associated with the winner neu-
rons within each cluster were replaced by the original
corresponding trajectory. SOM provides an additional
visualisation benefit depicting cluster boundaries with
darker shades of grey, since they represent larger dis-
tances between adjacent neurons[11].

4.5. Cluster identification

Training the SOM led to the identification of five
clusters[23]. In order to assist identification we placed
the associated cluster number on the SOM map for
example cluster number 1 within the area designated
by number 1, located in the middle of the lower half
of the map. Cluster 1 groups trajectories limited to the
lower half, for example two rooms of the spatial layout.
These trajectories are generally circular. Some of them
are smooth while others contain sharper angles.

Cluster 2 located on the top left quadrant of the
map comprises trajectories, which contain lots of turns
and usually intersect themselves. These trajectories are
completely different from any other group, containing
straight lines joined at sharp angles. They do not fa-
cilitate an efficient coverage of the space and are more
likely to induce disorientation and accordingly the level
of spatial knowledge which can be acquired through

btained
Fig. 4. SOM map o
 from the training set.
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them is somewhat limited. As it can be seen, there are
two sub-clusters that can be identified within this class,
those whose main distinction resides in the coverage of
the space. For some of the trajectories, the coverage is
restricted to only one room within the space, while the
rest of them provide a larger coverage, which rarely
become circular. Within such trajectories there is an
erratic nature and the user seems anxious to explore
the space, for example he/she moves in the same area
or covers a larger space. In this case, however, it is
likely that their return to the starting point is achieved
through a non-circular path.

Cluster 3 located on the right part of the second half
of the map, consists of very smooth circular trajecto-
ries, which have at least one direction towards the cen-
tre of the spatial layout. Cluster 4 comprises longer tra-
jectories, which cover most of the spatial layout. They
demonstrate the “going around the edge” feature, in
a much more pronounced manner than other clusters,
with the exception of Cluster 2. Cluster 5 presents cir-
cular trajectories performed within the first half of the
spatial layout.

Each set of trajectories, with the exception of
Cluster 2, proves beneficial along the temporal dimen-
sion. Carefully selected and ordered, they enable users
to acquire particular spatial knowledge, with a mini-
mum investment of resources.

Previous work in classifying trajectories, performed
only on the basis of locations, led to a more detailed
classification[22]. However, since the purpose of this
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belonging to Cluster 2, which require special attention
are correctly classified in each case. This is an impor-
tant outcome, which supports the original goal of our
study, namely to discriminate users in terms of good
and poor performers on the spatial tasks. This finding
should also be emphasised in the light of the fact that,
more than 50% of trajectories comprising Cluster 2, are
covered by the subjects with worst performance in the
searching tasks. In other words, Cluster 2 provides an
interesting benefit by binding users’ spatial behaviours,
for example movement paths, with their spatial abili-
ties, for example performance on search tasks.

5. Intelligent navigation and scene adaptivity

Having successfully identified user clusters that cor-
respond to broad categories of spatial navigational
competencies we sought to harness these classifications
in order to underpin intelligent navigational support
and scene adaptivity within VEs. Based upon our work
we are able to effectively monitor user interactions
and patterns of navigation and exploration through our
listener agent and subsequently dynamically able to
match such behaviour patterns against the trajectory
clusters. Upon identification of the cluster to which an
individual user belongs we can potentially make infer-
ences based upon their competencies as to the level of
navigational support they might need and the likelihood
of success in exploration and retrieval tasks.

ort,
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b gents
c ak
n ach
nalysis is to discriminate between users emplo
fficient strategies and those navigating through
f inefficient strategies, we do have to take the r

ion angle into account. This leads to a more deta
epresentation of Cluster 2.

.6. Training LVQ

Once the SOM was trained, the codebook vec
ould be used in initialising the weights for the LV
lgorithm. This did indeed lead to increased clas
ation accuracy increasing from 72% obtained u
andom initialisation to 87%. In other words, each
ectory from the testing set was correctly classified
he LVQ with 87% accuracy. Within each class,
lassification accuracy is slightly different—Cluste
6%, Cluster 2: 100%, Cluster 3: 63%, Cluster 4: 8
nd Cluster 5: 100%. As can be seen, the traject
One cannot discuss intelligent navigation supp
ithout at least mentioningagents. Simply stated a
gent can be viewed as a self-contained concurr
xecuting software process, that encapsulates
tate and is able to communicate with other agent
essage passing[25].
The provision of navigation support within virtu

orlds is not new. Significant work has been und
aken of late[4,24] in the design of intelligent su
ort for VE navigation. The work of Dijk et al.[4] has
pecifically sought to make provision for navigat
ssistance in the form of an embodied agent within
E. However, this work merely encodes some gen
avigation heuristics and does not dynamically le
r deduce the navigational class of the individual
ased upon trajectory analysis. Furthermore, the a
ommissioned in this work[16] merely embrace a we
otion of agency and are in contrast to our appro
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Fig. 5. The mental state of the navigation support agent.

where strong BDI agents are utilised in the provision
of navigational support.

We have developed a navigational agent that cur-
rently is not embodied nor depicted as an avatar within
the VE, although this is not precluded in future work.
The nature and manner of our agent rather seeks to be
least intrusive and indeed in many cases the user ought
to be unaware of its very existence. The navigation
support agent acts in a proactive nature anticipating
the navigational needs of the user and taking actions
accordingly. The agent is realised via Agent Factory
a rapid prototyping environment for agent design and
delivery [2,17]. Central to our agents is a rich mental
state comprising of an aggregation of a set of beliefs,
a set of commitments to future directed actions and
a set of commitment rules that drive the adoption of
commitments.

Fig. 5depicts the mental state of our navigation sup-
port agent at a given instance in time. The mental state
of an agent continually evolves with respect to time as
the agent perceives new environmental events and de-
duces new observations about the user behaviour. Each
will result in belief update and the addition and/or drop-
ping of beliefs. In turn the beliefs drive commitment
rule activation and in turn commitment adoption and
ultimately the activation of actions that assist in user
navigation.

ConsideringFig. 5 specifically, here we can see a
set of commitment rules. The first quite simply states
that if the user classification is unknown then the agent
o re-

ality this results in a request to a classification agent,
which will when able to do so return the classification
via a communication. Inter-agent communication takes
the form of speech acts and specifically our navigation
support agent would receive an inform speech act as to
the user category. An agent preceptor would recognise
this communication and accordingly adopt a belief that
the current user was of that particular category. The sec-
ond and third commitment rules concern navigational
interventions, which the agent is empowered to per-
form. In the case of the former if the user is of low
spatial ability and there are a large number of exces-
sive rotations then the system would implicitly degrade
the responsiveness of the rotation step thereby assisting
the user in exploration. This is a case in point where
the user may remain unaware of the agent intervention.
Commitment rule 3 in contrast alerts the user with a
warning where an excessive amount of pronounced ro-
tation events occur. In both cases the occurrences of
these key navigational events would be logged by the
listener agent and communicated to the navigational
support agent. These rules are merely illustrative but
demonstrate how having identified the user category
relatively simplistic inferences can give the illusion of
more sophisticated navigational support.

Navigational support however is but one aspect of
intelligent support. We strive to provide dynamic scene
reconstruction whereby users, who are patently lost or
proving unable to accomplish retrieval tasks, are as-
sisted. This could take the form of bringing the desired
l thin
ught to commit to performing a classification. In
 ocation or resource closer to the foreground wi
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the scene graph. Alternatively the user could be re-
located adjacent to key way-finding objects or land-
marks that the navigational support agent knows the
user will recognise. We have described the process of
dynamic 3D world reconstruction elsewhere and the
specific mechanisms by which this can be achieved[8].

6. Conclusions

This study shows that an ANN could be success-
fully employed in modelling spatial behaviour in VEs,
in terms of classifying users’ motion trajectories per-
formed on-line. Based on this classification, each new
user can be associated with one of the clusters, and
accordingly identified as employing efficient or ineffi-
cient navigational strategies.

The SOM and LVQ analysis led to the identifica-
tion of five user trajectory clusters within the same VE.
The accuracy of classification is above 85% which is a
significant outcome given the relatively limited size of
our training and testing sets. Within each cluster, tra-
jectories share common features. Some of them were
already identified while the others require further anal-
ysis. A future direction will be to extract the quantita-
tive rules governing the clusters and to express them in
a symbolic manner. The study findings could provide
insights in understanding what do the efficient and in-
efficient strategies mean, by interpreting them through
theoretical aspects of spatial cognition described by
e di-
c ying
n the
a g a
c ient
n gest
h e re-
s s to
i E.
A in-
t lus-
t ple,
C fur-
t

liv-
e ser
c l be-
h the

user in the navigation process. Furthermore we con-
sider how real-time dynamic reconstruction of the VE
could assist the user in their tasks.
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