3,090 research outputs found

    Data-driven modelling of biological multi-scale processes

    Full text link
    Biological processes involve a variety of spatial and temporal scales. A holistic understanding of many biological processes therefore requires multi-scale models which capture the relevant properties on all these scales. In this manuscript we review mathematical modelling approaches used to describe the individual spatial scales and how they are integrated into holistic models. We discuss the relation between spatial and temporal scales and the implication of that on multi-scale modelling. Based upon this overview over state-of-the-art modelling approaches, we formulate key challenges in mathematical and computational modelling of biological multi-scale and multi-physics processes. In particular, we considered the availability of analysis tools for multi-scale models and model-based multi-scale data integration. We provide a compact review of methods for model-based data integration and model-based hypothesis testing. Furthermore, novel approaches and recent trends are discussed, including computation time reduction using reduced order and surrogate models, which contribute to the solution of inference problems. We conclude the manuscript by providing a few ideas for the development of tailored multi-scale inference methods.Comment: This manuscript will appear in the Journal of Coupled Systems and Multiscale Dynamics (American Scientific Publishers

    Degeneracy: a link between evolvability, robustness and complexity in biological systems

    Get PDF
    A full accounting of biological robustness remains elusive; both in terms of the mechanisms by which robustness is achieved and the forces that have caused robustness to grow over evolutionary time. Although its importance to topics such as ecosystem services and resilience is well recognized, the broader relationship between robustness and evolution is only starting to be fully appreciated. A renewed interest in this relationship has been prompted by evidence that mutational robustness can play a positive role in the discovery of adaptive innovations (evolvability) and evidence of an intimate relationship between robustness and complexity in biology. This paper offers a new perspective on the mechanics of evolution and the origins of complexity, robustness, and evolvability. Here we explore the hypothesis that degeneracy, a partial overlap in the functioning of multi-functional components, plays a central role in the evolution and robustness of complex forms. In support of this hypothesis, we present evidence that degeneracy is a fundamental source of robustness, it is intimately tied to multi-scaled complexity, and it establishes conditions that are necessary for system evolvability

    Part 1: a process view of nature. Multifunctional integration and the role of the construction agent

    Get PDF
    This is the first of two linked articles which draw s on emerging understanding in the field of biology and seeks to communicate it to those of construction, engineering and design. Its insight is that nature 'works' at the process level, where neither function nor form are distinctions, and materialisation is both the act of negotiating limited resource and encoding matter as 'memory', to sustain and integrate processes through time. It explores how biological agents derive work by creating 'interfaces' between adjacent locations as membranes, through feedback. Through the tension between simultaneous aggregation and disaggregation of matter by agents with opposing objectives, many functions are integrated into an interface as it unfolds. Significantly, biological agents induce flow and counterflow conditions within biological interfaces, by inducing phase transition responses in the matte r or energy passing through them, driving steep gradients from weak potentials (i.e. shorter distances and larger surfaces). As with biological agents, computing, programming and, increasingly digital sensor and effector technologies share the same 'agency' and are thus convergent

    Adaptive Search and Constraint Optimisation in Engineering Design

    Get PDF
    The dissertation presents the investigation and development of novel adaptive computational techniques that provide a high level of performance when searching complex high-dimensional design spaces characterised by heavy non-linear constraint requirements. The objective is to develop a set of adaptive search engines that will allow the successful negotiation of such spaces to provide the design engineer with feasible high performance solutions. Constraint optimisation currently presents a major problem to the engineering designer and many attempts to utilise adaptive search techniques whilst overcoming these problems are in evidence. The most widely used method (which is also the most general) is to incorporate the constraints in the objective function and then use methods for unconstrained search. The engineer must develop and adjust an appropriate penalty function. There is no general solution to this problem neither in classical numerical optimisation nor in evolutionary computation. Some recent theoretical evidence suggests that the problem can only be solved by incorporating a priori knowledge into the search engine. Therefore, it becomes obvious that there is a need to classify constrained optimisation problems according to the degree of available or utilised knowledge and to develop search techniques applicable at each stage. The contribution of this thesis is to provide such a view of constrained optimisation, starting from problems that handle the constraints on the representation level, going through problems that have explicitly defined constraints (i.e., an easily computed closed form like a solvable equation), and ending with heavily constrained problems with implicitly defined constraints (incorporated into a single simulation model). At each stage we develop applicable adaptive search techniques that optimally exploit the degree of available a priori knowledge thus providing excellent quality of results and high performance. The proposed techniques are tested using both well known test beds and real world engineering design problems provided by industry.British Aerospace, Rolls Royce and Associate

    Modeling the emergence of multi-protein dynamic structures by principles of self-organization through the use of 3DSpi, a multi-agent-based software

    Get PDF
    BACKGROUND: There is an increasing need for computer-generated models that can be used for explaining the emergence and predicting the behavior of multi-protein dynamic structures in cells. Multi-agent systems (MAS) have been proposed as good candidates to achieve this goal. RESULTS: We have created 3DSpi, a multi-agent based software that we used to explore the generation of multi-protein dynamic structures. Being based on a very restricted set of parameters, it is perfectly suited for exploring the minimal set of rules needed to generate large multi-protein structures. It can therefore be used to test the hypothesis that such structures are formed and maintained by principles of self-organization. We observed that multi-protein structures emerge and that the system behavior is very robust, in terms of the number and size of the structures generated. Furthermore, the generated structures very closely mimic spatial organization of real life multi-protein structures. CONCLUSION: The behavior of 3DSpi confirms the considerable potential of MAS for modeling subcellular structures. It demonstrates that robust multi-protein structures can emerge using a restricted set of parameters and allows the exploration of the dynamics of such structures. A number of easy-to-implement modifications should make 3DSpi the virtual simulator of choice for scientists wishing to explore how topology interacts with time, to regulate the function of interacting proteins in living cells

    Complexity, Emergent Systems and Complex Biological Systems:\ud Complex Systems Theory and Biodynamics. [Edited book by I.C. Baianu, with listed contributors (2011)]

    Get PDF
    An overview is presented of System dynamics, the study of the behaviour of complex systems, Dynamical system in mathematics Dynamic programming in computer science and control theory, Complex systems biology, Neurodynamics and Psychodynamics.\u

    Flexible provisioning of Web service workflows

    No full text
    Web services promise to revolutionise the way computational resources and business processes are offered and invoked in open, distributed systems, such as the Internet. These services are described using machine-readable meta-data, which enables consumer applications to automatically discover and provision suitable services for their workflows at run-time. However, current approaches have typically assumed service descriptions are accurate and deterministic, and so have neglected to account for the fact that services in these open systems are inherently unreliable and uncertain. Specifically, network failures, software bugs and competition for services may regularly lead to execution delays or even service failures. To address this problem, the process of provisioning services needs to be performed in a more flexible manner than has so far been considered, in order to proactively deal with failures and to recover workflows that have partially failed. To this end, we devise and present a heuristic strategy that varies the provisioning of services according to their predicted performance. Using simulation, we then benchmark our algorithm and show that it leads to a 700% improvement in average utility, while successfully completing up to eight times as many workflows as approaches that do not consider service failures
    corecore