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Abstract

Systems biology aims to describe and understand biology at a global scale where biological

systems function as a result of complex mechanisms that happen at several scales.

Modelling and simulation are computational tools that are invaluable for description,

understanding and prediction these mechanisms in a quantitative and integrative way. Thus

multi-scale methods that couple the design, simulation and analysis of models spanning

several spatial and temporal scales is becoming a new emerging focus of systems biology.

This thesis uses an exemplar – Planar cell polarity (PCP) signalling – to illustrate

a generic approach to model biological systems at different spatial scales, using the

new concept of Hierarchically Coloured Petri Nets (HCPN). PCP signalling refers to

the coordinated polarisation of cells within the plane of various epithelial tissues to

generate sub-cellular asymmetry along an axis orthogonal to their apical-basal axes.

This polarisation is required for many developmental events in both vertebrates and

non-vertebrates. Defects in PCP in vertebrates are responsible for developmental

abnormalities in multiple tissues including the neural tube, the kidney and the inner ear.

In Drosophila wing, PCP is seen in the parallel orientation of hairs that protrude from each

of the approximately 30,000 epithelial cells to robustly point toward the wing tip.

This work applies HCPN to model a tissue comprising multiple cells hexagonally

packed in a honeycomb formation in order to describe the phenomenon of Planar Cell

Polarity (PCP) in Drosophila wing. HCPN facilitate the construction of mathematically

tractable, compact and parameterised large-scale models. Different levels of abstraction

that can be used in order to simplify such a complex system are first illustrated. The PCP

system is first represented at an abstract level without modelling details of the cell. Each

xiii



xiv

cell is then sub-divided into seven virtual compartments with adjacent cells being coupled

via the formation of intercellular complexes. A more detailed model is later developed,

describing the intra- and inter-cellular signalling mechanisms involved in PCP signalling.

The initial model is for a wild-type organism, and then a family of related models,

permitting different hypotheses to be explored regarding the mechanisms underlying PCP,

are constructed. Among them, the largest model consists of 800 cells which when unfolded

yields 164,000 places (each of which is described by an ordinary differential equation).

This thesis illustrates the power and validity of the approach by showing how the

models can be easily adapted to describe well-documented genetic mutations in the

Drosophila wing using the proposed approach including clustering and model checking

over time series of primary and secondary data, which can be employed to analyse and

check such multi-scale models similar to the case of PCP. The HCPN models support the

interpretation of biological observations reported in literature and are able to make sensible

predictions. As HCPN model multi-scale systems in a compact, parameterised and scalable

way, this modelling approach can be applied to other large-scale or multi-scale systems.
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Chapter 1

Introduction

1.1 Motivation

With the overwhelmingly growth of experimental data available, Biomodel Engineering

(BME) has been considered as a promising approach to meet the need of studying

and understanding biological systems, where at the heart of BME is mathematical

(computational) modelling. Mathematical modelling in engineering, physics or chemistry

has traditionally sought to extrapolate from existing information and underlying principles

to create complete descriptions of various systems, which could be analysed and simulated.

Often only incomplete abstracted hypotheses exist to explain observed complex patterning

and functions. Thus the question is what level of information is required about a biological

network in order to mathematically model the network hence to derive explanation about

the behaviour of the (biological) system. Thus it should simultaneously characterise the

complex and nonintuitive behaviour of a network, while reveal deficiencies in the model

and suggest new experimental directions.

A large variety of modelling approaches have already been applied to model a wide

array of biological systems (see [Heat 09] for a review). Until now many models have

1
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been at the intracellular level, and indeed have largely ignored locality within the cell;

however there is a need to increase the spatial scope of models of biological systems to

enable descriptions at the intercellular (cell-cell), tissue, organ and even whole organism

scales - moving from single cell to multi-cellular organisms. The motivation has come

both from the increasing need for life scientists to use computational models to facilitate

the investigation and understanding of multi-cellular systems, and the greater variety

of data available at different scales. All these lead to multi-scale modelling, which is

a field of study to solve physical problems which have important features at multiple

scales, particularly multiple spatial and/or temporal scales. It has a significant impact

on a diverse range of scientific and engineering disciplines, including material science,

fluid dynamics, meteorology, chemistry and biology. Multi-scale modelling in Systems

Biology needs to go beyond the traditional approach of modelling at just one spatial

scale. Thus the challenges for modellers includes the development of suitable paradigms

and associated tools to create coherent descriptions of biological systems by integrating

several spatial scales, and methods for the simulation, analysis, and checking of the models

in order ultimately to use them to predict the behaviour of the biological system when

disturbed by, for example, mutations, drugs, or stresses. Modelling biological systems

beyond one spatial scale introduces a series of challenges which should be addressed,

such as repetition of components, variation of components, organisation of components,

hierarchical organisation, communication of components, mobility/motility, replication of

components, deletion of components, irregular/semi-regular organisation of components,

dynamic grid size, differentiation of components, and pattern formation of components

[Gao 12, Hein 12a] (see details in Chapter 2).

There are several issues that should be noted in modelling a multi-scale system, which
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include: (i) the availability of data - due to technical limits time series data may not

obtainable, e.g. Planar Cell Polarity (PCP) signalling occurs in the pupal stage when it

is difficult to obtain such data; (ii) choice of a suitable modelling formalism by balancing

between simplicity and expressiveness; (iii) computational challenges due to simulating a

very large model, for example, simulating a model comprising a large number of biological

entities can take hours; (iv) fitting a multi-scale model to data, where problems are

mainly due to the lack of data and long simulation runtime; (v) searching for appropriate

techniques to analyse and check a multi-scale model at different levels, for example, a

biological system being modelled is at a lower level (e.g. biochemical level) but needs

to be interpreted at a higher level (e.g. physiological level). All these issues are briefly

discussed in Chapter 6.

This thesis has chosen Planar Cell Polarity (PCP) signalling in the Drosophila wing as a

biological example to present how to develop, construct and analyse a multi-scale model as

well as a multi-cellular one, while some of the issues addressed above have been covered.

Planar cell polarity (PCP) refers to the orientation of cells within the plane of the

epithelium, orthogonal to the apical-basal polarity of the cells. This polarisation is required

for many developmental events in both vertebrates and non-vertebrates. Defects in PCP in

vertebrates are responsible for developmental abnormalities in multiple tissues including

the neural tube, the kidney and the inner ear (reviewed in [Simo 08]). The signalling

mechanisms underlying PCP have been studied most extensively in the epithelia of the fruit

fly Drosophila melanogaster including the wing, the abdomen, the eye, and the bristles

of the thorax. Furthermore, genesis of human cancer has implicated that PCP shares

signalling components with the Wnt pathway [Cadi 97], which also motivates to get a better

understanding of this pathway.
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Genetic studies in the wing and eye in the 1990s led to the proposal of a PCP signalling

pathway involving the PCP proteins Frizzled (Fz), Dishevelled (Dsh) and Prickle (Pk)

(reviewed in [Wong 93]). In the late 1990s and 2000s further genetic analysis, including

the discovery of more PCP proteins, e.g. Flamingo (Fmi) and Van-Gogh (Vang), and

data on the sub-cellular localisation of these proteins in normal and mutant situations,

led to the formulation of more complex biological models of PCP signalling. With the

identification of key components involved in the signalling, the challenge in understanding

PCP has moved to discover the connection of the known players in this cascade that will

provide adequate explanation to the complex and various phenotypic behaviours of the

system. One phenomenon in particular, referred to as domineering nonautonomy, whereby

cell clones mutant for some PCP signalling components cause polarity disruptions of

surrounding wild-type cells, has been the source of much confusion and debate in the

literature [Adle 02, Stru 02d]. A secondary signalling molecule has been proposed to

explain domineering nonautonomy (described in Chapter 3 and [Adle 02, Adle 00, Fant 03,

Lawr 99, Lawr 02, Stru 97a, Stru 02a, Wehr 98, Zeid 99]), but despite an extensive search,

no such molecule has yet been identified [Axel 11].

An alternative model proposes that the most important components that explain

domineering nonautonomy have already been identified, but it is only through the

complex system dynamics resulting from feedback effects of the signalling network that

domineering nonautonomy arises [Axel 01, Cadi 97]. It is not immediately evident,

however, that this feedback loop model can adequately explain the variety of behaviours

exhibited by the system, and others have argued that it cannot account for some

experimental results involving clones of cells mutant for some of the polarity signalling

between interactions among the signalling components and the range of behaviours
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exhibited by the system [Adle 02, Stru 02d]. Mathematical modelling is ideally suited to

make explicit the link between interactions among the signalling components and the range

of behaviours exhibited by the system.

Various studies postulated the existence of an unknown and as yet unidentified secreted

morphogen signal to which the PCP proteins respond. Despite the lack of positive

data identifying such a morphogen signal [Pove 05] such models remain popular in the

literature. A second postulated upstream signal biasing PCP is associated with the

proto-caderhin molecules Fat and Dachsous (Ds) whose activities are modulated by the

golgi kinase Four-jointed (reviewed in [Barr 06, Yang 02]). It has thus been proposed

that the function of the Fat and Ds proteins is to facilitate the transport of the distal

PCP proteins, mainly Fmi, Fz and Dsh to the distal cell cortex where they are stabilized

by interactions with proximal complexes, which is so-called polarised vesicle transport

hypothesis (described in Chapter 3).

In the Drosophila wing, about 30,000 epithelial cells are hexagonally packed in a

2-dimensional honeycomb lattice. Signal transduction within each cell is coupled with

inter-cellular communication through the formation of protein complexes, so that local

signalling produces a global effect over the entire organ. Computational model of PCP

thus should include the repetition of components in a two-level hierarchy of different

geometries, permitting abstraction at the level of cells, with a static two-dimensional

organisation which is different at each level. The higher inter-cellular level is that of cells

in a rectangular honeycomb grid, representing the epithelium tissue, and the lower level

being intra-cellular organisation represented by virtual compartments within one cell in a

circular grid. Moreover the computational model should allow variations among cells in

the form of clones of mutant cells which either lack a specific signalling protein, or include
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an overexpression of a signalling protein.

Moreover, the computational model could be used to investigate properties of proposed

biological models for PCP signalling, explicitly demonstrating that it can explain the often

counter-intuitive, complex behaviours of the system, obviating the need for additional

factors to explain these behaviours, and providing insight into the system dynamics that

govern them. This led to an iterative process in which the inability of the model to

reproduce certain phenotypes of the system would allow researchers to ask why the

model was not able to reproduce the phenotype, and motivated additional areas for further

investigation. As additional biological evidence emerged, the model could be expanded,

permitting the biologists to then explore the implications of the new evidence on prior

beliefs about the mechanisms underlying PCP signalling.

Furthermore, another question that has to be addressed concerns the interaction between

the functional modules of polarity signalling. Not enough is known about how the

feedback loop interacts with upstream signalling components, which serve to impart a

directional bias on the system to align cell polarity along the global axis of the tissue

[Axel 01, Ma 03, Stru 02b]. It has not yet been settled whether PCP signalling is

established via one pathway (feedback loop interacting with the morphogen signal, or the

polarised vesicle transport) or by the two acting in parallel. Therefore, this work not only

studies the possible role that each pathway plays but also further investigates the possibility

of these systems collaborating in parallel.

1.2 Thesis contributions

Contributions of the work presented in this thesis include:
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• Application of a generic modelling approach, hierarchically coloured Petri nets

(HCPN), to design and construct compact, parameterisable and scalable models of

multi-scale and multi-cellular biological systems, illustrated in depth for Planar Cell

Polarity (PCP) in the Drosophila wing.

• A family of HCPN models developed to describe the core machinery of PCP

signalling, where HCPN have not yet been applied to model this biological system.

• An approach to analyse, visualise and model checking such multi-scale models which

allows us to compare in-silico results against semi-quantitative experimental data,

e.g. image obtained from biological laboratories.

• Exploration of the mechanisms underlying PCP, which includes testing various

hypotheses proposed in literature using the family of HCPN models, and predicting

additional phenotypes which could be testable in biological laboratories.

1.3 Publications

Publications raising from this work are listed as follows:

• Q. Gao, D. Gilbert, M. Heiner, F. Liu, D. Maccagnola and D. Tree (2012).

Multi-scale Modelling and Analysis of Planar Cell Polarity in the Drosophila Wing.

IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol 99.

ISSN: 1545-5963, DOI: 10.1109/TCBB.2012.101.

• D. Maccagnola, E. Messina, Q. Gao and D. Gilbert (2012). A Machine Learning

Approach for Generating Temporal Logic Classifications of Complex Model
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Behaviours. The Proceedings of Winter Simulation Conference (WSC 2012), Berlin.

http://dl.acm.org/citation.cfm?id=2429759.2430156.

• Q. Gao, F. Liu, D. Gilbert, M. Heiner and D. Tree (2011). A multi-scale approach

to modeling planar cell polarity in Drosophila wing using hierarchically coloured

Petri nets. The proceeding of the 9th International Conference on Computational

Methods in Systems Biology (CMSB2011). Published in the ACM Digital Library,

pp 209-218. ISBN: 978-1-4503-0817-5, DOI: 10.1145/2037509.2037538.

• Q. Gao, F. Liu, D. Tree and D. Gilbert (2011). Multi-cell Modelling Using Coloured

Petri Nets Applied to Planar Cell Polarity. The proceeding of the International

Workshop on Biological Processes & Petri Nets (BioPPN2011). ISSN: 1613-0073.

http://ceur-ws.org/Vol-724/.

1.4 Outline of the thesis

This thesis is structured as follows: this chapter has provided the motivation and an

overview of the work presented in this thesis. Chapter 2 provides a brief review of

the literature regarding biomodel engineering (focused on mathematical modelling) and

multi-scale modelling of biological systems, followed by Chapter 3 on the biological

background of planar cell polarity and related work. Chapter 4 describes the application

of modelling approach, hierarchically coloured Petri nets, by means of the PCP case study,

followed by Chapter 5 on the analysis and model checking of the HCPN models of PCP,

and finally the conclusion, future work and open problems in Chapter 6.

http://dl.acm.org/citation.cfm?id=2429759.2430156
http://ceur-ws.org/Vol-724/


Chapter 2

Multi-scale modelling of biological
systems

This chapter gives a brief review of Biomodel Engineering (BME), and a further review of

mathematical modelling of biological systems. It then focuses on multi-scale modelling,

including challenges, modelling formalisms and simulators.

2.1 Background

With the rapid growth of data being generated in biology, it has become an informational

science. Thus it is necessary to organise the data into coherent models that describe system

behaviours, which are subsequently used for simulation, analysis and prediction.

From a systems biology perspective, a biological system is a set of complex interactions

(network structure) rather than many individual molecular components. A biological

system comprises large numbers of functionally diverse, and frequently multi-functional

sets of elements that interact selectively and nonlinearly to produce coherent behaviours.

This can be anything from a simple biological process, such as a biochemical reaction

cycle, a gene regulatory network or a signalling pathway in a cell, a tissue, an organ, an

9
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entire organism, or even an ecological web.

The core of systems biology is mathematical modelling, which can involve, for

example, the process of simulating an abstract model of a biological system to test

hypotheses with in-silico experiments or to provide predictions to be tested by in-vitro

and in-vivo studies. In order to achieve the goal of answering biological questions,

computational models have to reliably depict a biological system and be able to predict

its behaviour. Based on the schematic representation of its components and their links, the

model is a description of the dynamic behaviour of the biological system, which equips

the model with predictive power. However, a model is not a real or exact portrait of the

biological system; it is rather a simplified description to assist in the analysis and enhance

the understanding of the system. Thus it is often needed to identify key components and

processes and to predict biological behaviour: such as which processes and proteins are

most important for signalling; why certain genes are oncogenes or tumour suppressor

genes; or what effects a particular experimental technology (e.g. RNA interference) or

drug will have on a biological system.

2.2 Biomodel engineering

Biomodel Engineering (BME) is the science of designing, constructing and analysing

computational models of biological systems [Gilb 09]. It takes place at the interface of

computing science, mathematics, engineering and biology, which provides a systematic

approach for designing, constructing and analysing computational models of biological

systems. Some of its central concepts are inspired by efficient software engineering

strategies. BME does not aim at engineering biological systems per se, but rather aims

at describing their structure and behaviour, using computational tools and techniques in a
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principled way. The two major application areas of BME are systems biology [Hood 03]

and synthetic biology [Endy 05, Hein 06] (Figure 2.1). In the former, the aim is to design

and construct models of existing biological systems, which explain observed properties and

predict the response to experimental interventions; in the latter, BME is used as part of a

general approach for designing and constructing synthetic biological systems with novel

functionalities [Brei 10, Hein 12a].

Systems biology is the main focus of this thesis. At the heart of systems biology lies

mathematical (computational) modelling, thus, the following further explores mathematical

modelling.

Figure 2.1: The role of formal models in systems and synthetic biology, adapted from
[Hein 12a].
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2.3 Mathematical modelling

Mathematical modelling in engineering, physics or chemistry has traditionally sought

to extrapolate from existing information and underlying principles to create complete

description of various systems, which could be analysed and simulated, and from which

further abstractions could be made. However, in studying biological systems, it is often

only incomplete abstracted hypotheses exist to explain observed complex patterning and

functions. The challenge has become to show that enough of a network is understood to

explain the complex and nonintuitive behaviour of a network, while revealing deficiencies

in the model and suggesting new experimental directions.

While advances in molecular biology, genome sequencing and high-throughput data

measurement have been driving factors to build system level models of biological systems

[Idek 01, Kita 02a, Kita 02b], modelling methodology must account for the lack of

complete data and understanding that will continue to characterise biological problems.

The success of bioinformatics has contributed to the characterisation of biology as an

informational science [Idek 01]. The next step is to successfully adapt tools from numerical

analysis, control theory and optimisation to greater challenges of treating biological

systems as complex dynamical systems. While traditional biology provides the logical

connections describing the interactions between genes and molecules, it is the dynamics

of these interactions that give rise to the relevant behaviour and function of the system.

The idea of mathematical modelling of the dynamics of biological systems is not new

[Turi 52], but complexity in biology has prevented the application of these methods which

have largely been developed for engineered systems or for studying problems in physics

and chemistry. Biological systems, however, are often characterised by a large number

of interconnected components, many of which participate in several different functions
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[Weng 99]. Advances in methods to deal with complexity [Weng 99] and a shift in biology

toward quantitative data permits a transition where biology begins to be characterised also

as a predictive science [Idek 01].

This view of biology forms the basis for the emergence of systems biology as an

approach to study biological systems [Idek 01, Kita 02a, Kita 02b]. Systems biology aims

to examine the structure of a biological system or function, and to simultaneously consider

all of the relevant component parts and the dynamics of their interactions. The question

remains, how to begin modelling a complex biological system. Traditionally, approaches

have involved attempting to work from the bottom-up, describing and assembling the

detailed components and interactions of a system until the complete system has been

reconstructed. Alternatively, some approaches begin from the top-down, in which abstract

models of the complete system are replaced by progressively more detailed models of

components’ parts. Each of these approaches suffers from various drawbacks. With

many biological systems, working from the bottom-up may quickly result in computational

intractability far before enough of a system has been sufficiently modelled to address

relevant questions regarding that system [Nobl 03]. Furthermore, higher level processes

often regulate low-level systems, such as controlling gene expression levels [Nobl 03].

In top-down approaches, high level models are often compatible with many lower level

models, without a clear indication as to which choice of decomposition would lead to new

insights and which would render the model intractable [Nobl 03]. There has been some

efforts to address these issues, such as some efforts to construct a whole cell simulation

of single cell organisms, in which the entire system was treated as a whole to understand

system-wide functions [Scha 99, Tomi 99]. Another approach attempted to identify and

characterise a large number of interactions that might possibly interact in a particular
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pathway using high-throughput data collection in order to develop a complete description of

the system. Motif finding efforts attempted to identify and characterise recurring patterns in

these interactions, providing building blocks upon which abstract models of more general

biological systems might be build [Milo 02]. Until these efforts succeed in establishing a

basis for studying arbitrary biological system, however, it is left as a challenge for modeller

to choose the appropriate scale of a model to address the specific questions that the model

is meant to address. Here, the goal is to begin from the available experimental data and

exploit existing knowledge of the biological system to work from the middle-out [Nobl 03]

to construct a model capable of providing insight into the system and propose experiments

that will allow parts of the model to be refined and to be extended to provide a more

complete model of the system (Figure 2.1).

This systems biology approach promotes interactions between simulation and

experiment that allow us to ask better experimental questions, make counter-intuitive

predictions, and be able to explore far more complex system dynamics, for example

where individual proteins may play multiple interacting roles in the system. This is

particular true when trying to understand patterning effects in developing tissues, where

often small changes affecting individual cellular processes can have widespread effects.

Traditional biological approaches of identifying isolated components and their functions

cannot always fully characterise the complete system behaviour necessary for cell and

tissue level patterning. It is at this interface between biochemical interactions of the cell and

tissue level patterning that the need for systems biology is evident. The critical challenge

for such problems is identifying the proper level of detail in the model to adequately

establish the nonintuitive link between events occurring at different levels of the system,

while remaining computational tractable.
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2.3.1 Modelling formalisms

Modelling efforts in systems biology typically lead to the simulation and analysis of models

containing an enormous number of components and associated interactions. Non-linear

mathematical models of biological processes and systems requires powerful numerical

analysis methods to investigate their behaviours. A large variety of modelling approaches

has been applied to model a wide array of biological systems [Heat 09] in order to meet the

overwhelming need to organise biological data into models that describe system behaviour,

which are mathematically tractable. This section describes briefly several modelling

approaches which are widely used in systems biology to represent computational models

of biological systems.

2.3.1.1 Ordinary differential equations

Ordinary differential equations (ODEs) is one of the most widely used modelling

formalisms in systems biology [Chas 02, Tyso 03, Chen 99, Rizz 97], as well as one of

the main modelling formalism used in this work. Therefore, a comprehensive review has

been given here.

All living organisms and biochemical processes are governed by the laws of

biochemistry. In order to support and maintain the complexity of life, biochemical

processes control the information and energy flow through a variety of pathways (e.g.

signalling and metabolic pathways), which require structures, functions and interactions

of cellular components.

Biochemical systems theory (BST) [Sava 69a, Sava 69b, Sava 70] was developed in

the late 60s in order to mathematically model biochemical systems using ODEs, in which

biochemical processes were represented as power-law expansions in the variables of the
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system. One main advantage of BST is that a set of equations can be set up without

knowledge of the exact mechanism of each reaction, and identity of reactants and their

reactional and regulatory interactions are feasible to design these biochemical models.

Biochemical systems consist of n molecular species (reactants), whose dynamic

evolution is determined by the occurrence of m biochemical reactions. A biochemical

system is fully characterised by the initial amount for each molecular species Xi (1 6 i 6

n) and and the description of the biochemical reactions Rj (1 6 i 6 m) with their kinetic

rate laws [Ball 10]. In biochemical systems, the production or consumption of reactants are

described by the biochemical reactions, presenting the regulations among these reactants.

Biochemical reactions involve zero or more molecular species which can be either reactants

or products. Stoichiometric coefficients associated with these reactions specify the number

of molecules which are consumer or produced for each molecular species involved in the

reactions.

An ordinary differential equation is defined as an equation involving one or more

unknown functions and their derivations [Goss 11]. It is a description of how a property of

interest, such as [A], the concentration of A, changes over time. This is usually expressed

by describing how the rate of change of the concentration is related to the concentration at

that moment. Taking a simple biochemical reaction as an example, the decay of substrate

A to product B at rate k can be depicted by a simple mass action equation: A k→ B, which

can be translated into differential equations as:

d[A]

dt
= −d[B]

dt
= −k × [A] (2.3.1)

Furthermore, many biochemical reactions are reversible, for example A
k1→
←
k2

B, which can

be described as the following differential equations:
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d[A]

dt
= −k1× [A] + k2× [B] (2.3.2)

d[B]

dt
= +k1× [A]− k2× [B] (2.3.3)

Since biochemical reactions are often catalysed by enzymes which are not consumed

during the process, they can extend the examples above as the following mass action

description and differential equations: A+ E
k1→
←
k2

A|E k3→ B + E

d[A]

dt
= −k1× [A]× [E] + k2× [A|E] (2.3.4)

d[A|E]
dt

= +k1× [A]× [E]− k2× [A|E]− k3× [A|E] (2.3.5)

d[B]

dt
= +k3× [A|E] (2.3.6)

d[E]

dt
= −k1× [A]× [E] + k2× [A|E] + k3× [A|E] (2.3.7)

Where E is the enzyme and A|E is the substrate-enzyme complex.

Enzymes serve a wide variety of functions inside living organisms. They

are indispensable for signal transduction and cell regulation, often via kinases and

phosphatases [Hunt 95]. Mass action kinetics [Horn 72] are often used for modelling

reactions within signalling pathways whereas Michaelis-Menten kinetics [Ment 13] are

often used in modelling the metabolic pathways. This latter kinetic model is relevant to

situations where very simple kinetics can be assumed, holding at the initial stage of a

reaction before the concentration of the product is appreciable, and makes the assumptions
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that the concentration of product is close to zero, no product reverts to the initial substrate

and the concentration of the enzyme is much less than the concentration of the substrate

[Gilb 09]. In the following equations [ET ] is the total enzyme concentration, V is the

reaction velocity, Vmax is the maximum reaction velocity, and kM is the Michaelis constant,

which is the substrate concentration required for an enzyme to reach one-half its maximum

velocity.

V = Vmax ×
[A]

kM + [A]
(2.3.8)

kcat = k3 =
Vmax

[ET ]
(2.3.9)

kM =
k2 + k3

k1
(2.3.10)

The advantage of using the Michaelis-Menten kinetics is that it enables a single

differential equation to describe the enzymatic reaction above:

d[A]

dt
= −d[B]

dt
= −kcat × [ET ]×

[A]

kM + [A]
(2.3.11)

Although ODE-based modelling is quite popular in the field, it has one major drawback,

which is that it is reliant on high-frequency sampling and parameter data being available,

such as kinetic rates and absolute initial concentrations. However, much data generated by

biologists are not directly amenable to modelling. Furthermore, as there is only very little

standardisation of measurements, data from different laboratories usually can merely be

compared in a semi-quantitative or qualitative fashion [Kolc 00]. Thus, several alternative

methods to estimate missing parameter data in an ODE-based model were developed,
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such as Flux Balance Analysis (FBA) [Bona 97] and Metabolic Control Analysis (MCA)

[Kacs 73].

Other types of differential equations, e.g. stochastic differential equations (SDEs) and

partial differential equations (PDEs) can be used respectively to account for stochastic

effects and spatial distribution [Turn 04]. In addition, piecewise-linear differential

equations (PLDEs) have been used to integrate discrete and continuous features in gene

regulatory networks [Batt 05, Jong 04].

2.3.1.2 P Systems

P systems introduced by Gheorghe Păun [Puau 98] are computational models that performs

calculations using a biologically inspired process based on the structure of biological cells

in which chemicals interact and cross cell membranes. Variations on P systems have led

to the formation of a research branch, membrane computing [Puau 98, Puau 99, Puau 00].

P systems were first employed as a computational model, but later they have been applied

to modelling of biological systems [Arde 03, Blak 11, Gheo 08, Paun 05, Rome 09b]. To

model a biological system, P systems are defined by a set of membranes, each of which

contains biochemical entities and rules. Entities in a P system model determine the process

in which one entity may react with another to form a product, while rules may cause

biochemical entities to pass through membranes or even cause membranes to dissolve

[Puau 98, Puau 99]. Moreover, in a cellular environment, a biochemical reaction may only

take place when required molecules collide and interact in a random manner. Therefore

rules in a P systems model are implemented randomly, which results in a stochastic

computation in the model and multiple simulation results being obtained in a repeated

computing process [Puau 98, Puau 99, Puau 00]. Computation in a P systems model stops
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at a state which no more reactions are enable. Thus simulating a P systems model is a

process of all biochemical entities being passed to outside of the outermost membrane or

into a specific membrane [Puau 98, Puau 99, Puau 00, Puau 01]. Although most research in

P systems is mainly in the study of the computational power of different proposed variants

and its application as a modelling formalism at cellular level, their recent applications in

multi-scale modelling have emerged [Rome 09a, Twyc 10].

2.3.1.3 Agent-based modelling

Agent-based modelling (ABM), also known as Individual Based Modelling (IBM), is an

approach to model systems comprised interacting autonomous agents. It is a rule-based

computational modelling methodology that focuses on rules and interactions among the

individual components or the agents of the system [An 09]. It is similar in concept to

cellular automata, except that instead of using a grid and synchronised time steps, the agents

move freely within the containing space. This approach has been used to study complex

phenomena and emergent dynamics using populations of agents with simple rules. At the

molecular level, it has been mainly used to build models of signalling pathways that account

for spatial distribution and the structural properties of the cell [An 09, Gonz 03, Gonz 06,

Pogs 08], but also applied to metabolic reactions [Klan 11].

2.3.1.4 Cellular automata

Cellular automata (CA) were created by von Neumann and Ulam in the 40’s [Neum 66].

They are discrete dynamic models that consist of a grid of cells with a finite number of

states. A cellular automaton has an initial configuration that changes at each time step

through a predefined rule that calculates the state of each cell as a function of the state
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of its neighbours at the previous step. They are specially suited for modelling complex

phenomena in a scale-free manner and have been used in biological studies for a long time

[Erme 93]. Due to their spatial features their main applications are related to molecular

dynamics and cellular population dynamics.

Application examples at the molecular level include enzyme reaction networks that

account for spatial diffusion [Weim 02] and signalling pathways [Kier 09, Wurt 00]. At the

cellular level they were used for models such as those of bacterial aggregation [Sozi 05]

and HIV infection [Corn 06, Sant 01]. Dynamic cellular automata are a variation of cellular

automata that allows for movement of the cell contents inside the grid, mimicking brownian

motion. They were used to model enzyme kinetics, molecular diffusion and genetic circuits

[Wish 05].

2.3.1.5 Petri nets

Petri Nets (PN) originating from the dissertation of Carl Adam Petri [Petr 62], are an

excellent modelling formalism for describing and studying systems that are characterised

as being concurrent, asynchronous, distributed, parallel or nondeterministic. The

formalism combines an intuitive graphical notation with a number of advanced analysis

techniques with a firm mathematical foundation. PN are applied in practice by industry,

academia, and other fields to the analysis of systems arising in asynchronous circuit

design, communication protocols, distributed computing, production systems, flexible

manufacturing, transportation, systems biology etc. Particularly in systems biology

different classes of Petri nets have been used to model a large variety of biological systems,

see [Bald 10] for a detailed review.

Petri nets are weighted, directed, bipartite graphs, consisting of places, transitions and
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arcs that connect them. Places usually represent passive system components like conditions

or resources, while transitions represent active system components like events. In systems

biology, places may represent species or any kind of chemical compounds, e.g. genes,

proteins or proteins complexes, while transitions represent any kind of chemical reactions,

e.g. association, disassociation, translation or transcription. For a chemical reaction, its

precursors correspond to the preplaces of a transition while its products to the postplaces

of the transition. The arcs lead from places to transitions, or from transitions to places,

whose weights indicate the multiplicity of each arc, reflecting e.g. stoichiometries for

chemical reactions. The arc weight 1 is usually not labeled explicitly. A place may contain

an arbitrary (natural) number of tokens, represented as black dots or a natural number. A

distribution of tokens over all places of a Petri net represents a state of it, which is called a

marking.

A transition is called enabled if each of its preplaces contains at least the number of

tokens specified by the weight of the corresponding arc. An enabled transition may fire and

the firing of a transition transfers tokens from its preplaces to its postplaces according to

their weights. The firing of a transition updates the current marking to a new reachable one.

The repeated firing of transitions establishes the behaviour of a net. The set of markings

reachable from the initial marking constitutes the state space of the net. These reachable

markings and transitions between them constitute the reachability graph of the net. A

simple Petri nets model adapted from a stochastic π-machine model in [Blos 08] modelling

the well-known repressilator (a synthetic genetic regulatory network designed to exhibit a

stable oscillation) [Elow 00] is illustrated in Figure 2.2.

A unifying Petri nets framework, illustrated in Figure 2.3, has been proposed to

relate the three major ways of modelling and analysing biochemical networks: qualitative,



23

Figure 2.2: A Petri net model for the repressilator. In the model, the highlighted transitions
are logic transitions to facilitate the readability of the net, e.g. the two transitions named
binda are in fact the same transition with two graphic representations, adapted from
[Liu 12]

stochastic and continuous [Gilb 07b]. The Petri nets formalism in the framework comprises

three classes, sharing nature structure but specialised by their kinetic information,

namely qualitative (time-free) place/transition Petri nets (QPN) as well as quantitative

(time-dependent) Petri nets: stochastic Petri nets (SPN) and continuous Petri nets (CPN)

[Gilb 07b, Rohr 10]. As the qualitative analysis considers all possible behaviour of the

system under any timing, the behaviour of QPN forms a discrete state space, which can

be analysed in the bounded case, for example, by a branching time temporal logic, one

instance of which is Computational Tree Logic (CTL) [Clar 01]. SPN description preserves

the discrete state description, but in addition associates a probabilistically distributed

firing rate (waiting time) with each reaction, while special behavioural properties can be

expressed using e.g. Continuous Stochastic Logic (CSL)[Desh 02]. CPN are represented

as a set of ordinary differential equations (ODEs), the state space of which is continuous

and linear. It can be analysed by, for example, Linear Temporal Logic with constraints

(LTLc) in the manner of [Calz 06]. For more details about Petri nets see [Hein 11] and

[Mura 89].
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Figure 2.3: A unifying framework for modelling biochemical networks using Petri nets,
adapted from [Gilb 07b]

Remarks Several modelling formalisms that are widely used in systems biology have

been introduced here, however, other modelling formalisms, such as boolean networks

[Kauf 69], bayesian networks [Pear 88], process algebras [Miln 80], cybernetic modelling

[Dhur 85, Komp 84], hybrid automata [Ghos 01, Ghos 04], and artificial neural networks

[Vohr 01], are also worth mentioning. There is no single formalism which covers the whole

spectrum of features desired for modelling all kinds of biological components while Petri

nets and rule-based models are among the formalisms that cover most features. Petri nets

have several extensions available (e.g. coloured, timed, stochastic, continuous, hybrid,

hierarchial and functional), although none of the extensions alone fulfills all requisites, all

together they form a very versatile modelling framework. The work in this thesis inclues

both QPN and CPN models, while the CPN models are analysed using Probabilistic Linear

Temporal Logic with constraints (PLTLc) [Dona 08], which is an extension of LTLc.
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2.3.2 Standardisation of models

In the systems biology community, it is widely agreed that models of biological systems

should be represented in a common format for exchange and sharing. Currently, Systems

Biology Markup Language (SBML) and Cell markup language (CellML) are of the most

popular file formats which are widely supported by the community.

2.3.2.1 SBML

SBML is a free and open interchange format for computer models of biological processes

[SBML 12]. As a computer-readable file format which can be used to represent models

of metabolism, cell signalling, and many other biochemical networks and biological

processes. SBML is ultimately proposed to serve as a declarative representation language

for computational models in biology. More precisely, the goal of SBML is to serve

as a software lingua franca supporting the encoding of models such that those models

can be exchanged and interpreted unambiguously by different software systems. It is

not intended to encode the details of algorithms used to instantiate the models, nor the

procedures used to process and analyse the models. Furthermore, SBML is not linked to

any specific software system. It is an XML-like annotation language, in which biological

processes and entities involved in biological systems can be described by employing SBML

frameworks [Huck 03]. Details about normative definitions and features of SBML can

be referred to most recent SBML specification document SBML Level 3 Version 1 Core

[Huck 12]. SBML models of biological systems can be found in a repository called

BioModels Database (http://www.ebi.ac.uk/biomodels-main/).

In addition, a number of software tools are available for SBML-based models [Orto 05,

Pett 05], which include CellDesigner (www.celldesigner.org), Copasi (www.

http://www.ebi.ac.uk/biomodels-main/
www.celldesigner.org
www.copasi.org
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copasi.org), E-Cell (www.e-cell.org/ecell), Jarnac combined with JDesigner

(www.sys-bio.org/software/jdesigner.htm). Additionally, Mathematica

(http://www.wolfram.com/) and Matlab (www.mathworks.com) are also

compatible with SBML-based models.

2.3.2.2 CellML

CellML is an open standard XML-based markup language, which has been developing

by Auckland Bioengineering Institute at the University of Auckland and affiliated research

groups. The aim of CellML is to store and exchange computer-based mathematical models,

which allows model sharing and enables researchers to reuse components [Mill 10]. With

its growth in popularity as a portable description format for computational models, CellML

has been used for modelling and developing software tools based on CellML (see CellML

case studies at http://www.cellml.org/community/case-studies). CellMl

is similar to SBML but provides greater scope for model modularity and reuse, and is not

specific to description of biochemistry.

Details about core specifications as well as addition specifications for metadata of

CellML can be referred to most recent CellML specification document CellML 1.1

(http://www.cellml.org/specifications/cellml_1.1) and the metadata

associated specification documents (the metadata 1.0 http://www.cellml.org/

specifications/metadata, simulation metadata http://www.cellml.org/

specifications/metadata/simulations, graphing metadata http://www.

cellml.org/specifications/metadata/graphs)

In addition, a repository of several hundred biological models encoded into CellML can

be found at CellML Model Repository (http://models.cellml.org/cellml).

www.copasi.org
www.copasi.org
www.e-cell.org/ecell
www.sys-bio.org/software/jdesigner.htm
http://www.wolfram.com/
www.mathworks.com
http://www.cellml.org/community/case-studies
http://www.cellml.org/specifications/cellml_1.1
http://www.cellml.org/specifications/metadata
http://www.cellml.org/specifications/metadata
http://www.cellml.org/specifications/metadata/simulations
http://www.cellml.org/specifications/metadata/simulations
http://www.cellml.org/specifications/metadata/graphs
http://www.cellml.org/specifications/metadata/graphs
http://models.cellml.org/cellml
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2.3.3 Simulators

There are various kind of modelling and simulation environment in the systems biology

community. Although different software tools define models in different formats to

represent biological systems, most of them support importation and exportation of models

among several different model formats, for example, SBML-based model files can be

imported and exported by Snoopy [Hein 12b, Rohr 10].

Several widely used modelling simulators are listed as follows:

• CellDesigner [Funa 03, Funa 08]: it is a structured diagram editor for gene regulatory

and biochemical networks. These networks are drawn based on the process

diagram with graphical notation system [Kita 05], which are stored as SBML

models. Simulation of these models can be linked to other analysis packages

through Systems Biology Workbench (SBW). CellDesigner supports simulation and

parameter scanning via an integration with SBML ODE solver and COPASI. Users

are allowed to design, construct and modify their models, and simulate and view the

dynamics through an intuitive graphical interface.

• COPASI [Hoop 06]: it is a stand-alone software for simulation and analysis of

biochemical networks. COPASI is compatible with SBML models, and includes

ODEs solver and Gillespie stochastic simulation algorithm. Moreover, arbitrary

discrete events can be included in its simulations. Several approaches to analyse

the models and its dynamics are provided in COPASI, as well as parameter

estimation and optimisation. Details of utilisation of COPASI can be found in

[Mend 09b, Mend 09a, Sahl 06].

• BioNessie [Liu 08]: it is a free platform-independent simulation and analysis
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environment of biochemical networks, which was developed in Java and could be

installed to a number of platforms supporting Java Runtime Environment (JRE) 1.5

or higher. Its Graphical User Interface (GUI) allows users to import, create, edit and

export models using SBML standard. BioNessie also provides multiple functions,

such as multi-thread/core enabled parameter scans, sensitivity analysis and parameter

estimation. By incorporating with National e-Science Centre (NeSC) at Glasgow

- BioNessieG benifits from a high performance compute resources across the UK,

which enables users to implement large-scale simulations.

• Snoopy [Hein 12b, Rohr 10]: it is a software tool to design and animate hierarchical

graphs among other Petri nets. It integrates a unifying framework for graphical

display, computational modelling, simulation and bioinformatics annotation of

biochemical networks, which can be divided into two levels: uncoloured [Hein 08]

and coloured [Liu 12]. A range of Petri nets models are consisted in each

level: (i) the uncoloured level contains qualitative (time-free) place/transition Petri

nets (QPN) as well as quantitative (time-dependent) Petri nets such as stochastic

Petri nets (SPN), continuous Petri nets (CPN), and generalised hybrid Petri nets

(GHPN); (ii) the coloured level consists of coloured qualitative Petri nets (QPN c),

coloured stochastic Petri nets (SPN c), coloured continuous Petri nets (CPN c), and

coloured generalised hybrid Petri nets (GHPN c), illustrated in Figure 2.4. It also

includes several ODE solvers for continuous simulations and Gillespie algorithm for

stochastic simulations. Snoopy can be downloaded from http://www-dssz.

informatik.tu-cottbus.de/DSSZ/Software/Snoopy.

http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy
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Figure 2.4: Paradigms integrated in Snoopy’s unifying framework, adapted from
[Hein 12b]
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2.4 Multi-scale modelling of biological systems

Until now many models have been at the intracellular level, and indeed have largely ignored

locality within the cell, however biological systems are made up of many spatial and

temporal scales, each rich and complex. There are different types of scale in biological

systems. The organisation of biological systems has been classified into a hierarchy of

spatial scales and called this “levels of biological organisation” [Sout 08], which range

from gene, to proteins, individual biological cells, tissues, organs, and up to the individual

organism that interacts with environment. Associated with this spatially based organisation

are the temporal scales of biological processes that range from microsecond (10−6 s) for

molecular interactions to 80 years (109 s) for the average human life expectancy [Walk 09].

These diverse scales coupled with intra- and inter-scale interactions make a biological

system extremely complex, e.g. cell made up of millions of molecules, tissue made up

of billions of cells etc.

To understand the behaviour of a biological system requires models that integrate

the various interactions that occur on these diverse spatial and temporal scales [Sout 08,

Twyc 10] (see Figure 2.5). The complexity of biological systems has made the use

of mathematical and computational models to describe and analyse their behaviours and

functions an active area of research in recent years. The use of models and experimental

data to study how the intra- and inter-scale interactions give rise to their collective

behaviours and how they form relationships with their environments is a central theme

of systems biology research.

In order to interpret the complexity of biological systems, two major strategies can

be employed: ‘top-down’ or ‘bottom-up’. The ‘top-down’ approach starts with the

observation of biological characteristics in the intact biological system and then construct
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Figure 2.5: Spatial and temporal scales in biological systems [Sout 08, Twyc 10].

theories that would explain the observed behaviours, eventually uncovering the underlying

mechanisms. On the other hand, the ‘bottom-up’ approach begins with the study of the

system components in isolation and then integrates the behaviour of each component in

order to predict the behaviour of the entire system. Another emerging approach is the

‘middle-out’ approach, which starts with an intermediate scale (usually the biological cell,

the basic unit of life) that is gradually expanded to include both smaller and larger spatial

scales [Walk 09].

To fully achieve the objectives of systems biology, models at different scales must

be coupled together to produce integrated models across multiple scales. This needs

to be carried out with appropriate methods that integrate models representing the

different scales involved. The resulting complex integrated models, however, are often

computationally expensive and difficult to solve numerically even with the incredible

advances in computational power. This is a typical characteristic of multi-scale problems

that require the use of suitable multi-scale algorithms, and perhaps with more powerful

computers (e.g. distribution computing etc).

In the following, the challenges in multi-scale modelling in systems biology are briefly

addressed, and later several multi-scale modelling formalisms, which are playing or will

play important roles in such problems in systems biology, are described. More reviews of

the existing approaches to multi-scale modelling of physiological and biological systems
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can be found in [BASS 05, Dada 11, Schn 07].

Modelling biological systems beyond one spatial scale introduces a series of challenges

which should be addressed. These include [Gao 12, Hein 12a]:

1. Repetition of components – e.g. the need to describe multiple cells each of which has

a similar definition, e.g. epithelial cells in an adult Drosophila wing.

2. Variation of components – sets of similar components with defined variations. For

example, mutants, which widely exist in biological systems, are important to study

and understand a biological system, thus in a multi-cellular system, variations among

cells are often considered [Kono 71].

3. Organisation of components – e.g. how cells are organised into regular or irregular

patterns over spatial networks in one, two or three dimensions.

4. Hierarchical organisation – enabling the description of (possibly repeated)

components which contain repeated sub-components. e.g., cells containing several

compartments. This feature enables the use of abstraction regarding the level of detail

used to describe components.

5. Communication between components – in general communication is constrained to

occur between immediate neighbours, but this may be further constrained according

to the relationship between neighbours, and the position of a component within a

spatial network.

6. Mobility/Motility – e.g. transport of components within a system, or actively motile

cells.

7. Replication of components – e.g. cell division.

8. Deletion of components – e.g. cell death.
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9. Irregular/semi-regular organisation of components – e.g. an approximated

honeycomb grid.

10. Dynamic grid size – for example alter size and/or topology of grid to model

development, may also required for ability to insert/remove components.

11. Differentiation of components – e.g. differentiation of embryonic stem cells or

immune cells makes a less specialised cell more specialised.

12. Pattern formation of components – organising a number of cells in proper one, two

or three dimensional structures in space and time.

Consequently these challenges raise crucial demands in the actual process of

multi-scale modelling the behaviour of a biological system, which includes seven distinct

steps ([Gilb 06, Gilb 10, Hein 12a, Orto 05], see Figure 2.6).

Step 1: System delimitation This step involves selecting the biological system to be

modelled, e.g. Planar Cell Polarity (PCP) signalling. More importantly, it is the step to

identify the biological question(s) that the model aims to answer, e.g. what is the possible

underlying mechanism of PCP signalling?

Step 2: Design and construction This is the key step in the modelling process

which involves defining the model to represent the biological system of interest. One of

the essential is to draw a detailed topological chart of the system which shows spatial

information of the system (e.g. how cells align along the space and if the locality of

each cell is static) - only for multi-scale systems, all involved molecular species in each

cell (e.g. proteins), what reactions these species are involved and where. It is important

to note that most biological systems beyond one scale, if not all, are very complex and

not fully understood. Therefore defining such a model often involves making simplifying
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assumptions in order to reduce complex and poorly understood systems into simpler ones

that can still represent the biological system well enough to explain the observed data.

Step 3: Parameter identification After constructing the structure of the system, the

kinetic types for each reaction then need to be defined and the parameter data (e.g. initial

concentrations and rate constants) assigned to give a set of detailed kinetic reactions. This

step can involve exhaustive searches of the scientific literature to discover what parameter

data are already available, as well as performing laboratory experiments to provide data if

possible, and often the use of computational techniques to estimate and optimise missing

parameters (for example [Webe 13]), whereas the complexity of large-size models makes

it even more difficult to search for those missing parameters.

Step 4: Simulation After the model has been defined and quantified, the next step is to

translate the kinetic reactions, for example, in an intracellular signalling pathway model(at

a single scale), those reactions can be translated into a set of differential equations that

describe how the concentration of each species in the system changes over time; this set of

differential equations is then simulated over a desired period of time. This is a relatively

straightforward step however models with multiple scales raise issues such as: (i) models

constructed at different scales sometimes need to be simulated respectively, and then the

simulation results at each scale are integrated; (ii) the simulation time is very long due to

the complexity of such models, or (iii) it is impossible to simulate such models as there

are only a few of multi-scale simulation environments are general frameworks that can be

applied to any multi-scale problems in systems biology .

Step 5: Visualisation As multi-scale models always involve different spatial levels

(e.g. hierarchical organisation), the visualisation allows the modeller to better comprehend

the system behaviour and facilitates the communication between wet lab experimentalists
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and dry lab (computational) theoreticians.

Step 6: Validation Simulating a model typically returns a table of data or a curve

showing how each species concentration varies over time. These data must then be

validated against available experimental data. If the model behaves as the experimental

data suggest, then the model can be analysed further. If it does not, then the design

and construction step must be revisited, where the model is checked for errors, such as

incorrect kinetics or parameter data, over-simplifications of processes and perhaps missing

components. This is a debugging loop involving model design, simulation and validation,

where the model is refined in order to obtain behaviour which conforms with experimental

observations. Sometimes the refinement already reveals useful information about the

system. This step is even more intricate for a multi-scale model because: (i) data of

biological observations are at a higher level (e.g. tissue level) whereas the simulation results

are at the lower level (e.g. biochemical level); (ii) the lack of reliable time-series data for

concentrations of key species during to the difficulty of obtaining such data; (iii) biological

experimental data are at one time point rather than dynamic (i.e. the final state).

Step 7: Analysis After the model has been validated, it can be analysed and the

simulation results are interpreted. Analysis can come in various forms, from the simple

examination of the species concentration graphs to more complex statistical analyses.

Alternatively model checking can be applied to check the behaviour (simulation results)

generated by the model to discover if this model exhibits certain properties. Sensitivity

analysis is a commonly used approach that studies the response of system variables to

changes in parameter values, and can therefore be used to identify the key reactions and

species, as well as monitoring how robust a model is. Robustness is a very important

factor in biological systems, as it allows a system to absorb fairly large perturbations
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and still function reasonably well; this is because the functionally important behaviour

of a system has a certain degree of resilience to damage. If a system variable has a low

sensitivity with respect to a parameter, it is robust to alterations in that parameter, however

caused. The structural robustness of a model can also be analysed by monitoring how

it performs when parts of it are removed; for example, how does the system behave if a

species, reaction or entire pathway is removed. This can be useful, because there is often

redundancy in biological systems where multiple pathways are available for the production

or activation of a certain protein. Overall, the analysis step aims to generate new predictions

and hypotheses about biological processes that were not known or unproven before, thus

increasing our overall understanding of the system itself.

Design & 

Construction 

Parameter 

Identification 

Visualisation 

Validation Analysis 

System 
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No 

Yes 

Figure 2.6: The seven steps of multi-scale modelling.

2.4.1 Multi-scale modelling formalisms

A multi-scale model can be defined as a composite model that incorporates more

elementary models from several levels of biological organisation or temporal scales
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[Sout 08]. With the increasing interest in multi-scale modelling in systems biology,

applying proper modelling approaches, which are capable of representing the behaviour of

complex systems across a wide range of spatial and temporal scale, becomes critical. Over

the past decades, several multi-scale methods have been developed in other fields of science

to meet this requirement, which can be adapted to systems biology. As this thesis focuses on

spatial scales, thus multi-scale methodologies introduced here are more adaptable to these

situations but still could be applicable to temporal scales. As described in Section 2.3.1, P

systems can also be applied to multi-scale modelling [Rome 09a, Twyc 10], however, they

are not further discussed here.

2.4.1.1 Multi-grid method

Multi-Grid (MG) method developed by Brandt [Bran 77] is a fast and efficient way of

solving a wide class of integral and partial differential equations. It requires a series of

problems to be solved on a hierarchy of grids with different mesh sizes in order to reduce

the problem execution time [Bran 77]. The original MG was later extended by Brandt

[Bran 02] taking into consideration different nature of the models at different scales.

2.4.1.2 Complex automata

Complex Automata (CxA) is a general modelling framework developed in [Hoek 08] for

multi-scale systems using Cellular Automata (CA) (described in Section 2.3.1), Lattice

Boltzmann Models (LBM) and Agent-Based Models (ABM) as building blocks. CxA is

based on the ideal that a multi-scale system can be decomposed into N single-scale CA that

mutually interact across the scales. A system is first decomposed into its subsystems and a

Scale Separation Map (SSM) is built on which each subsystem can be represented as area
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according to its spatial and temporal scales as shown in Figure 2.5. The SSM is defined as

two dimensional map with the horizontal axis coding for the temporal scales and vertical

axis coding for the spatial scales [Hoek 07].

CxA allows the decomposition of the original CA into a number of single-scale CA and

let the CAs exchange information in such a way that the overall behaviour of the multi-scale

process is reproduced as accurate as possible. Processes having well separated scales are

easily identified as components of the multi-scale model [Hoek 08].The interaction across

the scales (i.e. exchange of information) is through appropriate coupling mechanisms,

which can either be Sub-Domain Coupling (SDC) or Hierarchical-Model Coupling (HMC)

method. In the case of SDC, adjacent spatial domains are described by different models on

space-time grids of possible different resolution, while some parameters or variables of the

main model are first computed locally on the fly by a finer scale model when HMC is used

[Hoek 07].

2.4.1.3 Multi-scale Agent-based modelling

Although Agent-Based Modelling (ABM) method has been applied to intra-cellular level

(described in Section 2.3.1), its main applications are at the multi-cellular level, where they

have been used to study granuloma formation [Sego 04], tumour growth [Enge 08, Zhan 07,

Wang 09, Zhan 09], morphogenesis [Gran 06], and several others [Emon 05, Li 08, Loll 06,

Mere 07, Thor 8]. These ABM multi-scale approaches were classified into three categories

[Walk 09]:

1. cellular-continuum approaches: biological sub-scales are represented in the model as

a field of values representing concentrations that are considered to be in steady-state.

In this case, single time scale is incorporated in order to represent cellular behaviours.



39

2. spatially hierarchical approaches which represent sub-cellular components explicitly

as a lower hierarchy of agent in the model, but without separation of biological time

scales.

3. temporally separated approaches that integrate a second model which represent

processes that occur on the a faster time scale.

The major drawback of ABM method is its high computational requirements. The

determination of emerging macroscopic system behaviours by simulating the behaviour

of all the interacting components can be extremely computational intensive, particularly

for higher eukaryotes, where even single organs are composed of large numbers of cells.

Efficient techniques for reduction in the computational cost are therefore necessary to help

overcome this limitation. Despite this limitation, the important of ABM as multi-scale

modelling paradigm in different areas of biological and biomedical problems has been

recognised in recent years.

2.4.1.4 Hierarchically coloured Petri nets

Coloured Petri nets Coloured Petri nets (CPN) [Jens 81, Jens 09] are an established

discrete event modelling formalism combining the strengths of Petri nets with the

expressive power of programming languages. Petri nets provide a sound graphical

notation for modelling systems with concurrency, communication and synchronisation.

Programming languages offer the constructions of data types, which permit the creation

of compact and parameterisable Petri net models. This is the most important advantage of

CPN which are going to be exploited in this thesis.

Syntax. CPN comprise – as do standard Petri nets – places, transitions, and arcs.

In systems biology, places typically represent species (chemical compounds), while
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transitions represent any kind of chemical reactions or transport steps [Hein 08]. In this

thesis places represent PCP proteins whereas transitions represent physical interaction

and/or signalling events between proteins and polarised transport of proteins.

Additionally, a CPN model is characterised by a set of colour sets (i.e. discrete data

types). Each place gets assigned one colour set and may contain distinguishable tokens

coloured with a colour of this colour set. As there can be several tokens of the same colour

at a given place, the tokens at a place define a multiset over the place’s colour set. A

specific distribution of coloured tokens at all places constitutes a marking of a CPN. Each

arc is assigned an expression; the result type of this expression is a multiset over the colour

set of the connected place. Each transition has a guard, which is a Boolean expression,

typically over variables occurring in the expressions of adjacent arcs. The guard must be

evaluated to true for the enabling of the transition. The trivial guard ‘true’ is usually not

explicitly given.

Behaviour. The variables associated with a transition consist of the variables in the

guard of the transition and in the expressions of adjacent arcs. Before the expressions are

evaluated, the variables must be assigned values with suitable data types, which is called

binding [Jens 09]. A binding of a transition corresponds to a transition instance in the

underlying unfolded net.

Enabling and firing of a transition instance are based on the evaluation of its guard

and arc expressions. If the guard is evaluated to true and the preplaces have sufficient and

appropriately coloured tokens, then the transition instance is enabled and may fire. When

a transition instance fires, it removes coloured tokens from its preplaces and adds coloured

tokens to its postplaces, i.e. it changes the current marking to a new reachable one. The

colours of the tokens that are removed from preplaces and added to postplaces are decided
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by the arc expressions. The set of markings reachable from the initial marking constitutes

the state space of a given net. These reachable markings and transition instances causing the

marking change constitute the possibly infinite reachability graph (state transition system)

of the coloured net.

Folding and unfolding. Coloured Petri nets with finite colour sets can be automatically

unfolded into uncoloured Petri nets, which then allows the application of all the powerful

standard Petri net analysis techniques. Vice versa, uncoloured Petri nets can be folded

into coloured Petri nets, if partitions of the place and transition sets are given. These

partitions of the uncoloured Petri net define the colour sets of the coloured Petri net.

However, the algorithmic identification of suitable partitions is an open research issue. The

conversion between uncoloured and coloured Petri nets changes the style of representation,

but does not change the structure of the underlying reaction network, see Figure 2.7 for

some introductory examples and Chapter 4 for more details.
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p CS
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x++
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(a) 

(c) 

(b) 

Declarations:
colorset CS = int with 1,2;
variable x : CS;

(d) 

Figure 2.7: Three typical examples for folding-unfolding; notation: ++ multiset addition,
(+x) successor, [x=2] guard, adapted from [Gao 12].

The key challenge when unfolding coloured Petri nets is to compute all transition

instances. Their computation can be considered as a combinatorial problem, which suffers
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from combinatorial explosion. However, when the number of transition instances is only

decided by guards, which are in fact logical expressions, Liu [Liu 12] has employed a

constraint satisfaction approach [Brai 99, Tsan 93] and an efficient search strategies of

Gecode [Geco 11] to greatly improve the unfolding efficiency of coloured Petri nets.

Extensions. Special arcs are specially allowed, e.g. read arcs or inhibitor arcs in the

coloured Petri nets. If transitions are additionally associated with stochastic (deterministic)

firing rates, as discussed in [Gilb 07a, Hein 08], coloured stochastic (continuous) Petri

nets will be obtained. The rate functions defining the usually state-dependent rates can

be specified for coloured transitions, or individually for each transition instance; for more

details see [Liu 10, Liu 11].

Hierarchically coloured Petri nets [Gao 12, Liu 12]

CPN enable the modelling of (biological) systems comprising repeated components,

each of which is associated with a particular colour.

Moreover, colour can be used to encode spatial locality. For example, to model cells in

a 2-dimensional lattice, one cell can be represented as a CPN with colour sets denoting the

number of copies (cells), and use functions to describe the connectivity between the cells.

A colour is a 2-tuple which can then be read as an address identifying locality in space.

This can be easily extended to higher dimensions. Moreover, the model is adjustable to

different lattice sizes by just changing some constants.

Typically colour sets are not read as unordered sets, but are assumed to be totally

ordered, with an implicit successor relation. This idea are generalised, by permitting a

partial order relation over a set. One instance of this would result in a hierarchy, i.e.

a tree-like structure. Combining the base colour set with the partial order relation, a

hierarchical colour set is obtained, and each node in the tree is represented by the path
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describing the branch from the root to the node, which enables direct referencing of the

position of the node in the hierarchy, and thus permitting the formulation of operations

over hierarchy levels.

Operations can be represented over the hierarchically defined colours which correspond

to navigation over the hierarchy tree. Operations which move up/down one node are a

generalisation of the predecessor/successor function over a totally ordered set. However,

operations can also be defined which move over more than one node at a time or jump to

nodes in different branches in the tree.

The concept of hierarchy is orthogonal to, and can be freely combined with other colour

set constructors such as product or union.

Specifically, the notation for colour sets are described by one, two or three-tuples,

corresponding to the number of spatial dimensions being modelled, and note that the

underlying colour set is given by the Cartesian product expansion of the colour set tuple.

Thus, for example, when modelling cells in, for instance, a rectangular M ×N grid, each

cell is associated with a colour (x, y) where x ∈ {1..M}, y ∈ {1..N}. A colour set can be

associated with a set of constraints which effectively describe the topology of the one, two

or three-dimensional grid used to model the layout of the components. Thus a component

in a honeycomb (hexagonal) grid may be embedded by imposing the requisite constraints

over an underlying rectangular grid. Guards over transitions permit the description of the

patterns of connection allowed between cells.

Furthermore in order to describe regular organisation within a cell, this concept can

be extent by having a grid at the intra-cellular level and another set of colours to indicate

the position inside the inner grid. A separate set of arc functions at the intra-cellular level

indicates the inter-component communication at this level. Consequently, a sequence of



44

tuples are obtained, each tuple referring to the address within a certain level. This concept

is called hierarchically structured colours, and the corresponding net class HCPN.

In order to support the description of hierarchically organised systems, the notation for

colour sets can be extent as follows. The colour set of the highest level of an L hierarchy

is denoted by a tuple TL, that of the next level by a tuple TL−1 and the lowest level by

a tuple T1. When referring to the colour set of a level, its position will be given in the

hierarchical tree of colour sets by prefixing the colour sets above it. Thus for example, the

colour set for the L − 1 level is given as TL · TL−1, and the colour set for the lowest level

as TL · TL−1 · . . . · T1. The number of colours in the underlying colour set is given by the

product of the number of underlying colours in the colour set tuple from each level.

In order to further facilitate modelling, each level can be denoted by a descriptive label,

thus the levels in a three level hierarchy could be denoted by wing, cell, subcellular-location

and the entire colour set by wingcs·cellcs·subcellular-locationcs. The notation can be further

expanded for the guards so that they are associated with the level at which they operate.

See Chapter 4 for more details on how a HCPN model can be constructed.

In summary, hierarchically structured colours are useful to express repetition and

(spatial) locality as what are illustrated in this thesis (see details in Chapter 4).

Unlike [Valk 98], HCPN in this thesis does not use a concept of nets-within-nets to describe

hierarchy, but colours-within-colours. Two two-tuples (nested two dimensions) are used to

address hierarchical systems.

2.4.2 Multi-scale simulators

Most of the available multi-scale simulation environments were developed for specific

problems. Only a few of them are general frameworks that can be applied to any multi-scale
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problems in systems biology. The most advanced multi-scale simulators come from the

heart modelling community. Several packages have been developed for modelling and

simulating the heart models by various groups [Nick 05, Usyk 03, Wata 04]. In order to

overcome some of problems usually associated with individual groups based simulators,

the development of Cancer, Heart and soft Tissue Environment (CHASTE) has been started

[Pitt 09]. CHASTE aims at the cardiac electrophsiology and heart modelling and is being

developed to code as much modularity and re-use as possible. Among various ABM

toolkits, the most popular ones are Repast http://repast.sourceforge.net/,

Swarm http://www.swarm.org/index.php/Main_Page, NetLogo http://

ccl.northwestern.edu/netlogo/, Mason http://cs.gmu.edu/˜eclab/

projects/mason/ and Flame http://www.flame.ac.uk/. A comprehensive

review of these ABM modelling toolkits can be found in [Grim 06].There are also

other multi-scale modelling frameworks, such as Multi-scale Systems Immunology (MSI)

[Mith 08], Basic Immune Simulator (BIS)[Folc 07] and Infobiotics Workbench (http:

//www.infobiotics.org/).

Snoopy [Hein 12b, Rohr 10] is a unifying framework and simulator implementing

qualitative, continuous and stochastic Petri nets, as well as coloured qualitative, stochastic

and continuous Petri nets (see Figure 2.4). Therefore the software tool not only supports

traditional modelling and simulation of biochemical networks but also is able to fold and

unfold compact and parameterised models, e.g. HCPN models, which gives users the

feasibility to construct, edit and simulate multi-scale models using a range of Petri nets

methods.

http://repast.sourceforge.net/
http://www.swarm.org/index.php/Main_Page
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://cs.gmu.edu/~eclab/projects/mason/
http://cs.gmu.edu/~eclab/projects/mason/
http://www.flame.ac.uk/
http://www.infobiotics.org/
http://www.infobiotics.org/
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2.5 Summary

With the rapid development of biological technologies and the overwhelming growth of

data at various biological levels, there is an urgent need of modelling biological systems

with multi-scales (this thesis focuses on spatial scales). The challenges in multi-scale

modelling not only come from the complexity of biological systems themselves but also

bring issues to modellers to tackle, for example, the choice (perhaps the development as

well) of suitable paradigms and associated tools to create coherent descriptions of these

biological systems by integrating several spatial scales, and methods for the simulation,

analysis and checking of these models (both by human and machine) in order to use

them to predict the behaviour of the biological system when disturbed by, for example,

mutations, drugs, or stresses. Thus, this thesis uses the application of HCPN modelling

formalism to multi-scale modelling of a multi-cellular system, Planar Cell Polarity (PCP)

described in Chapter 3, to illustrate how to apply a suitable multi-scale modelling approach

to model biological systems with several spatial scales, especially systems organising in a

hierarchy, and to search for proper analysis and visualisation techniques to check and verify

the models.



Chapter 3

Planar cell polarity

3.1 Introduction

This chapter provides a brief review of planar cell polarity and existing hypotheses

regarding its underlying mechanisms. These are used as the biological basis to model

PCP signalling using HCPN approach. This is followed by a review of related work in

modelling PCP system.

Planar cell polarity (PCP) refers to the coordinated polarisation of cells within the plane

of epithelial tissues orthogonal to their apical-basal axes. This critical step is observed in

various body regions of the fruit-fly Drosophila melanogaster. For instance, the fly eye is

comprised of about 800 ommatidia, which are clusters of chirally organised photoreceptors

and other cells types [Stru 99, Zhen 95], arranged in a mirror image pattern reflected across

the midline (or the equator) toward the dorsal and ventral poles of the eye. Similarly,

bristles on the thorax originate from a single sensory organ precursor cell, which polarises

in the plane of the epithelium along the anterior-posterior axis to establish the orientation

of the bristle [Bell 04, Bell 01a, Bell 01b, Gho 99, Gho 98, Lu 99, Roeg 01a, Roeg 01b].

The adult Drosophila wing comprises about 300,000 hexagonal cells [Ma 03] each of

47
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Figure 3.1: Drosophila: whole wing (left); scheme of hexagonal cells with hairs (right).

which contains a single hair pointing in an invariant distal direction, see Figure 3.1. This

hair comprises actin bundles and is extruded from the membrane at the distal edge of the

cell during pupal development, at the conclusion of PCP signalling.

Planar polarity was initially studied using insects such as the milkweed bug Oncopeltus,

in which gradients of morphogens were hypothesised to direct the local alignment of cell

polarity [Lawr 66]. Drosophila serves as an ideal experimental platform for studying PCP,

because it permits genetic and cell biological analyses, while the hairs and bristles that

cover the body surface and the ommatidia of the eye allow for easy assessment of PCP

[Tree 02b].

While PCP has been most extensively studied in Drosophila, this signalling mechanism

is conserved to mammals, and can be seen in the patterning of skin hair, scales in fish,

and feathers on birds [Adle 02]. In the organ of Corti in the cochlea of mammalian

ears, PCP signalling components have been implicated in the orientation of stereoiliary

bundles [Dabd 03]. Defects in the orientation of these stereociliary bundles have been

linked to decreased hearing sensitivity or deafness [Comi 89, Dabd 03, Fuji 90, yosh 99].

PCP signalling components also play a role in convergent extension, in which cells

elongate, intercalate, and ultimately establish the body axis during gastrulation [Mlod 02,

Shih 92, Take 03, Wall 02, Wall 01]. PCP defects can lead to failure of neural tube
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closure during development, a condition known as spina bifida, which is a permanently

debilitating birth defect among humans. Moreover, PCP signalling components are

closely related to the Wnt signalling pathway, which regulates various developmental

processes, and the misregulation of which can lead to cancer formation (reviewed in

[Cadi 97, Kili 94, Nuss 92]).

The study of PCP is therefore an important step to understand developmental processes

and their relationship to intercellular signalling. Indeed, planar polarity serves as a model

system for understanding the relationship between cell-level signalling components and

their effect on tissue-level patterning and development. These interactions may be quite

complex and often may not permit intuitive understanding. Mathematical modelling,

especially multi-scale modelling, of such signalling networks can serve to make this link

between complex patterning phenotypes and the molecular and genetic interventions that

lead to them.

Note that in this thesis, names of genes start with a lower case, whereas names of

proteins with a upper case, e.g. fz indicates that it is a gene while Fz is used for the

corresponding protein.

3.2 Core polarity signalling components

Genetic studies in Drosophila have identified a group of core planar polarity genes, so

called because they participate in what is called the frizzled pathway, which establishes the

polarity of various body regions [Adle 02, Gubb 82, Shul 98, Stru 99]. Key components in

this pathway include frizzled (fz), encoding a seven-pass transmembrane protein [Gubb 82,

Vins 89], dishevelled (dsh), encoding a cytoplasmic protein [Kili 94, Kras 95, Thes 94],

Van Gogh (Vang)/strabismus (stbm), encoding a four-pass transmembrane protein [Bast 03,
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Tayl 98, Wolf 98], starry night (stan)/flamingo (fmi), encoding a seven-pass transmembrane

protein with cadherin domains [Chae 99, Usui 99], and prickle-spiny-legs (pk), encoding a

LIM domain protein [Gubb 82, Gubb 99, Tree 02a]. The fz pathway affects ommatidial

polarity by regulating the R3/R4 cell fate decision, establishing the chirality and rotation of

the ommatidia [Stru 99, Zhen 95]. In the fly wing, the fz pathway affects the assembly of

prehairs that contain large bundles of actin filaments at the distal vertex of each pupal wing

cell by directing the sub-cellular location for prehair initiation [Wong 93].

The core polarity proteins were found to accumulate asymmetrically in cells (see Figure

3.1), forming separate proximal and distal cortical domains in wing cells, or accumulating

on the equatorial or polar sides of the R3 and R4 photoreceptor cells in ommatidia, thereby

defining their polarity [Adle 02, Adle 01, Axel 01, Bast 03, Eato 03, Fant 04, Feig 01,

Jenn 03, Rawl 03, Shim 01, Stru 02c, Stru 01, Stru 02d, Tree 02a, Usui 99, Yang 02]. In the

wing, preceding the ultimate manifestation of PCP, signalling occurs such that the proteins

adopt an asymmetric localisation within each cell. At the initiation of PCP signalling Fmi,

Fz, Dsh, Vang and Pk are all present symmetrically at the cell membrane. At the conclusion

of PCP signalling Fmi [Chen 08, Tree 02a] is found at both the proximal and distal cell

membrane, Fz [Stru 01] and Dsh [Shim 06, Wong 03] are found exclusively at the distal

cell membrane, Vang [Bast 03] and Pk [Tree 02a] are found exclusively at the proximal cell

membrane. Through the interpretation of various genetic experiments a consensus view

of the signalling events has been formulated that centres on the communication between

these proteins at cell boundaries, where the distally localised Fmi, Fz and Dsh recruit

Fmi, Vang and Pk to the proximal cell boundary and vice versa. Since the localisation

of the distal and proximal proteins appear to be mutually exclusive a completely polarised

arrangement of protein localisation results [Axel 01, Feig 01, Shim 01, Stru 01, Usui 99].
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The PCP proteins are thus thought to mediate the cell-cell communication that comprises

PCP signalling and that they are involved in establishing the molecular asymmetry within

and between cells which is subsequently transformed into the polarisation of the wing hairs

(reviewed in [Axel 11, Stru 02b]). The result is a polarisation of individual cells and local

alignment of polarity between neighbouring cells. This process takes place during the pupal

stage of Drosophila development, where the core signalling proteins are initially distributed

symmetrically within each cell. By 33 hours after puparium formation (APF), shortly

before prehairs form, the core polarity proteins have adopted their asymmetric distribution

in the cell [Shor 72].

3.3 Overall polarity

Several mechanisms are possible for specifying the overall planar polarity of cells in each

body region, cuing the direction in which the core signalling components will accumulate.

For example, Lawrence hypothesised a gradient of a morphogen could align the polarity

of cells [Lawr 66]. Alternatively, a group of organising cells could initiate a signal that

propagates across the tissue. However, a number of experiments argue against the existence

of a special group of organising cells in the wing. For instance, vestigial mutant wings

result in the death of cells on the distal tip of the wing, but the mutation does not disrupt the

polarity of rest of the wing [Fris 68, Gubb 82]. Similarly, experiments removing proximal

wings cells also do not disrupt polarity [Adle 00, Turn 95]. The temperature-sensitive

period for fz function was shown to be during the pupal stage, after the loss of the candidate

organising cells [Adle 94]. Therefore, any polarity signalling from such organising cells

must precede fz signalling and act prior to the pupal stage of development.

In the eye, the type II transmembrane protein, Four-jointed (Fj) and the atypical
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caherins Dachsous (Ds) and Fat (Ft) provide the fz pathway with directional cues [Clar 95,

McNe 97, Vill 95, Yang 02, Zeid 99], and also affect polarity in the wing and abdomen

[Adle 98, Casa 02, Ma 03, Mata 04, Stru 04, Zeid 00]. In absence of Fj, Ds, or Ft, the

proteins in the fz pathway remain asymmetrically localized, although not necessarily in the

correct direction, suggesting that they act upstream of Fz activity [Axel 01, Ma 03, Stru 01].

Therefore, the long-range expression or activity gradient of Fj, Ds, or Fat may serve to cue

the direction of Fz activity in the wing, although it is possible that the direction information

may come via Fat from a different source [Ma 03]. Through an unknown mechanism, Ft,

which associates with the intracelluar protein Atrophin [Fant 03], biases the direction in

which the fz feedback loop operates. The PP2A regulatory subunit Widerborst (Wdb), also

biases the direction of Fz accumulation, through its relationship to Ft is unknown, and its

substrate has not been identified [Hann 02]. However, the function of Ft is essential for

directional signals in both the eye and wing, mutations in the genes coding for Ft lead to

mutant phenotypes in which cells still coordinate their polarity with neighbouring cells,

but fail to align with the tissue axes [Axel 09]. Several mechanisms for how the Fj/Ds/Ft

group drive the intracellular asymmetry of the core proteins have been proposed. Some

of the first models invoked diffusible morphogens that establish a gradient of ”factor X”,

in which the gradient of factor X is translated, by each cell, into a scalar value of Fz, and

that each cell can compare this value with those of their neighbours and orient their polarity

accordingly [Casa 02, Lawr 04]. Being unable to identify a morphorgen congruous with the

properties of the factor X, this model has largely given way to signalling models relying on

local interaction [Axel 09]. Following the discovery of the heterotypical complex formed

by Ds and Ft, it was suggested that the graded expression of Fj and Ds is converted into

intracellular asymmetries of these DsFt heterodimers [Ma 03, Yang 02]. These subcellular
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gradients would then transmit directional information to downstream components of PCP

pathway, although a mechanism for this interaction has not yet been identified [Wu 09].

Another proposed model for how Ds and Ft could orient cell polarity is the polarised vesicle

transport hypothesis. Vesicles containing Fz and Fmi, tagged by green fluorescent protein,

and Dsh have been observed to be transported preferentially towards the distal cell cortex

on a polarised microtubule cytoskeleton during the build-up of intracellular asymmetry

[Shim 06]. However it has not settled whether PCP is established via on pathway or by the

two systems acting in parallel. Nonetheless, it is clear that the mechanism for PCP employs

partially redundant information and that this partial redundancy increases the robustness of

PCP signalling and reduces polarity errors.

3.4 Three-tiered model

PCP signalling can be viewed as three steps, in which

1. a global directional signal provides a cue to the fz pathway, which in turn

2. locally propagates the signal and converts it into the asymmetric accumulation of

PCP signalling components, and

3. directs the tissue specific readout of the cell polarity, for example, making the site

of prehair assembly or directing the R3/R4 cell fate decision in the ommatidia

[Tree 02b].

The focus of this work was on the second tier and how the fz pathway receives the

asymmetry cure, mainly focusing on factor X and polarised vesicle transport, from the first

tier.
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3.5 Hypotheses of domineering nonautonomy

An interesting property of the establishment of planar polarity was observed in experiments

in which clones of cells mutant for fz were observed to not only disrupt polarity within

the mutant clone, but also to repolarise some of the surrounding genetically wild-type

cells [Gubb 82, Vins 87]. This long-range disruption of hair polarity is referred to as

domineering nonautonomy (Figure 3.2). Later experiments overexpressing fz in a clone

revealed that the hair polarity tended to point away from regions of high Fz activity

[Alde 97], whereas the hair polarity tended to point toward clones of cells with null fz

alleles [Gubb 82, Vins 87]. Vang clones show the opposite effect, with hairs pointing

away from cell lacking Vang activity and pointing toward cells which overexpress Vang

[Tayl 98]. However no polarity occurs in both fmi clones and neighbouring wild-type cells

if lacking Fmi activity, indicating that Fmi homodimers are necessary for communication of

polarity information between cells [Usui 99]. Clones of cells mutant for other core polarity

genes do not all exhibit such long-range effects, exhibiting cell autonomous behaviours

(Figure 3.3). For example, dsh clones show only a cell autonomous polarity phenotype

[Kili 94, Thes 94], and pk clones show only a subtle phenotype even inside of the clone

[Amon 05]. In the eye, domineering nonautonomy near mutant clones that disrupt Wingless

(Wg) signalling, such as arrow mutant cells, is seen on the equatorial side of the clone

[Wehr 98], while clones disrupting fz produce domineering nonautonomy on the polar

side of clones [Zhen 95]. Interestingly, the overexpression of either dsh and pk also show

nonautonomous phenotypes [Bast 03]. It is not clear how cells mutant for some polarity

genes can repolarise neighbouring cells [Adle 02]. Three differing models have emerged

to explain this behaviour though their relationship is still controversial.
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Figure 3.2: Image of domineering nonautonomy obtained from Dr Tree’s lab. (a) fz- clone,
(b) Domineering nonautonomy distal to the clone, (c) wild-type cells far from the clone.

3.5.1 Factor X or Z models

To explain how cells mutant for PCP genes can affect the polarity of neighbouring wild-type

cells, a class of models has been proposed in which cells respond to an initial cue by

producing and secreting a diffusible second factor whose graded distribution determines

polarity [Adle 00, Fant 03, Lawr 99, Lawr 02, Stru 97a, Stru 02a, Wehr 98, Zeid 99]. In

the eye, Wingless(Wg) signals in a gradient that is highest at the poles and lowest at the

equator. It was hypothesized that Wg signalling induces the dose dependent secretion of

”factor X”, which diffuses, and in turn regulates Fz signalling [Wehr 98]. Clonal disruption

of the response to Wg would perturb the factor X gradient in both the mutant and the

neighbouring wild-type tissue, thereby producing nonautonomy. Similarly, in response to

a graded upstream signal, Fz and Vang has been hypothesised to regulate production of

diffusible ”factor Z” that is required for polarity readout [Adle 00, Adle 02]. Interestingly,

while for most fz alleles, including null alleles, clones of mutant cells produce domineering
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Figure 3.3: Diagram of autonomous clone. Grey region indicates mutant clones.

nonautonomy, clones of cells mutant for some fz alleles produce an almost cell autonomous

polarity phenotype [Gubb 82, Jone 96, Vins 87]. Clones of cells mutant for dsh also

produce nearly cell autonomous polarity disruptions [Kili 94, Thes 94]. Diffusible factor

models explain these observations with the hypothesis that Fz mediates two separately

mutable signalling functions, transducing a cell autonomous signal through Dsh, and

a Dsh independent nonautonomous signal [Chae 99, Kras 94, Stru 02d, Tayl 98]. The

nonautonomous signal was proposed to be mediated by factor X, or a second, similar,

factor Z, in this case produced in response to Fz signalling, and feeding back through Fz,

while the autonomous signal was proposed to initiate cell polarisation [Adle 00, Adle 02].

Nonautonomous Fz signalling has been proposed to temporally precede autonomous

signalling in both the eye and wing [Stru 02d]. However, despite the ability of these models

to explain domineering nonautonomy, diffusible factors X or Z have not been identified

[Lawr 02], and no molecular level of understanding of the autonomous and nonautonomous

signalling functions of Fz has been obtained [Adle 02, Stru 02d].
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3.5.2 Polarised vesicle transport model

It has been observed that Fz, Fmi and Dsh are transported preferentially towards the

distal cell cortex via vesicles on a polarised microtubule cytoskeleton during the initiation

of intracellular asymmetry [Shim 06]. Moreover, Ds and Ft control alignment of

cortical microtubules along the proximal-distal axis and asymmetry of microtubule growth

[Haru 10]. The hypothesis that Ds and Ft can orient active transport of core proteins

by controlling the polarity of the microtubule cytoskeleton has been supported by data

[Olgu 10] as well. The most persuasive piece of evidence comes from studies of the

fly abdomen, where excess Ds or Ft in cells within a clone can repolarise surrounding

cells receiving this polarity information, even when the cells in the clone and in the

surrounding tissue lack Fz or Fmi or both [Casa 06, Lawr 07], which indicates that PCP

can be established by the Ft/Ds/Fj system in the absence of the function of core proteins.

Further more, studies of the wing have shown that not all cells need to respond correctly

to the Ft polarity signal, as subsequent action of the feedback loop, comprising the core

proteins, is sufficient to align cells [Ma 03].

3.5.3 Feedback-loop model

Asymmetric cortical recruitment of core PCP complexes also relies on intercellular

feedback at the interface of neighbouring cells [Axel 01, Tree 02a]. This is mediated

by an asymmetric, homotypic interaction between Fmi bound to Fz in one cell and

Fmi associated with Vang in the other [Bast 03, Chen 08, Das 04, Lawr 04, Usui 99,

Shim 06]. Mutual inhibition between Fz/Dsh and Vang/Pk complexes is proposed to

drive the system to an asymmetric distribution [Axel 01, Tree 02a] (reviewed in [Zall 07]),

but this is not yet known in molecular terms. Feedback may depend on molecular
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interactions between proximal and distal components, as Vang and Pk both bind Dsh

and inhibits its membrane recruitment and function [Bast 03, Tree 02a]. Diego (Dgo)

also binds Dsh, which promotes its activity and blocks the antagonistic effect of Vang/Pk

[Das 04, Feig 01, Jenn 03, Jenn 05]. Feedback loop may also involve regulated vesicle

trafficking [Shim 06, Stru 08]. The assembly of asymmetric intercellular complexes

both communicates polarity information between cells and helps define and stabilise the

asymmetric cortical domains within cells.

This feedback model was proposed by Amonlirdviman et al. [Amon 05] that

experimentally identified local feedback loop and global directional cue comprise the

central components of a PCP signalling network, and that examination of their properties

may yield testable insights into the mechanisms underlying domineering nonautonomy.

However, intuition alone is insufficient to deduce the behaviour of this regulatory network.

Indeed, progress in understanding PCP signalling has been severely hampered by an

inability to deduce, given a particular signalling network hypothesis, definitive links

between molecular genetic interventions and tissue level patterning effects. Thus, it is

not readily apparent that this network is sufficient to explain the complex patterns observed

in fields of cells containing mutant clones, and others have argued that it cannot account

for some of the observed phenotypes [Adle 02, Stru 02d]. For example, it is apparent that

removing Dsh and Fz would disrupt the feedback loop, whereas, it is not obvious how the

feedback loop in adjacent wild-type cells responds, such that dsh mutant clones behave

autonomously, while fz clones behave nonautonomously. Furthermore, pk overexpression

promotes the asymmetric accumulation of Dsh and Fz [Tree 02a], while the role of Pk in the

feedback loop is to inhibit the membrane recruitment of Dsh. Thus, if the model is correct,

then this amplification must be a non-obvious consequence of the feedback loop system
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dynamics. Finally, the design and interpretation of additional experiments will require a

clear prediction of expected outcomes.

Remarks Although most investigators now favour the model that the core polarity

signalling components may function in a feedback loop that acts to both amplify the global

directional cue (factor X) and replay the signal to neighbouring cells, several puzzles

remain. This thesis investigates different hypotheses derived from experiments in order

to shed the light on the mechanisms underlying PCP signalling.

3.6 Mathematical modelling of PCP

Several mathematical and computational approaches have been applied to study PCP

signalling. In order to understand how the core proteins interact to produce domineering

non-autonomy in Drosophila wing, Amonlirdviman et al. [Amon 05] (extended

in [Raff 08]) built a model by applying Partial Differential Equations (PDEs) and

reaction-diffusion equations which abstract from the spatial dimensions of the PDE

model by discretising each cell into a triangular mesh and used periodic boundary

conditions to select the grid of cells. Agent-based Modelling (ABM) with stochastic

differential equations was used to create a computational model which includes the

mechanism in which a Frizzled gradient occurs through feedback-reinforced formation

of Flamingo-based asymmetric intercellular complexes in Le Garrec’s research [Le G 06]

(applied to the Drosophila eye in [Le G 08]). Farhadifar et al. [Farh 07] investigated

the physical basis of epithelial cell packing in Drosophila wing using a vertex model to

establish the network of cells in which vertices are subject to mechanical forces. Burak

et al. [Bura 09] constructed a semi-phenomenological representation model involving

stochastic equations and used statistical mechanics to study how local interactions between
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cells impact the dynamics of the process on parameters. Schamberg et al. [Scha 10] built

two models by applying reaction-diffusion equations to study the influence of feedback

loop, intra-inter-cellular diffusion and whether the re-distribution of proteins depends on

the amount of proteins in neighbouring cells during polarisation, which was based on

one-dimensional line of cells. See [Axel 11] for an overall review of this field.

3.6.1 Amonlirdviman model

Amonlidirdviman et al [Amon 05] developed a mathematical model in order to understand

how protein localisation within and between cells, and local feedback loop could drive

planar cell polarity in the Drosophila wing. Their model centred on the system of core

proteins involved in PCP signalling, and a feedback loop between adjacent cells which

amplifies an initial asymmetry of protein distributions to later produce huge asymmetric

distributions of proteins and complexes as seen in laboratory experiments. This model

was constructed by using PDEs based on diffusion and reaction kinetics. It described the

concentration of core proteins (Fz, Dsh, Vang and Pk) and their interactions throughout an

array of cells, as well as introduced a global directional cue to insert a directional bias in

the feedback loop. This PDE-based model was mathematically simulated by discretising

to ODEs on a two-dimensional grid of hexagonal cells, which was able to reproduce the

characteristic PCP mutant phenotypes, including the effect of domineering nonautonomy

in the Drosophila wing. Although this model was able to illustrate that a local feedback

loop combined with a global directional bias could possibly explain some aspects of the

behaviour of PCP mutant clones, the model itself had limitations, for example, it only

employed a limited number of proteins of PCP signalling, and parameters were restricted

to fit a set of feature constrains such that those simulations would reproduce qualitative
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features of the experimentally observed PCP phenotypes (see [Amon 05] supplementary

material). Moreover, the effects of stochasticity or geometric variation are not included

in the model. Thus a more detailed implementation of this model has been carried out.

In contrast to the previous model, the new model was able to correctly reproduce the

characteristic swirling pattern created by mutant clones lacking ft [Ma 03, Ma 08, Raff 08].

3.6.2 Le Garrec model

The model developed by Le Garrec et al [Le G 06] focused on the local feedback loop

between core proteins and implemented diffusion and reaction kinetics for proteins and

complexes that they form, which was similar to the Amonlidirdviman model [Amon 05].

In this model, polarisation was conditional upon three molecular processes: (i) a transient

long-range signal over the whole wing tissue in order to establish a small asymmetry in Fz

activity; (ii) the ability of adjacent cells to communicate and compare their concentrations

of the intermediate complexes Fz:Fmi and Vang:Fmi, and (iii) the presence of an

intracellular feedback loop for the amplification of the initial symmetry [Le G 06]. This

model is computationally different to the Amonlidirdviman model [Amon 05], because

it was built by using Agent-based modelling (ABM), in which PCP in-silico cells were

represented by a connected collection of pixels, membranes by closed loop of pixels and

cell motion was implemented by exchange of pixels between cells according to a statistical

tendency of cells to maintain an optimal size. The cell boundaries were therefore fluid,

nonetheless, remain approximately hexagonal, and the dynamics of all processes were

noisy and described by stochastic differential equations. The model was also able to

reproduce characteristic PCP mutant phenotypes through parameter fitting.
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3.6.3 Farhadifar model

Farhadifar et al. [Farh 07] constructed a vertex model of epithelial cells as to investigate

physical basis of cell packing in the Drosophila wing. The vertices in this model

were subject to mechanical forces, such as forces due to the mechanical properties of

cell cytoskeleton (contractility) and cell membrane (elasticity), the adhesive properties

of cell-cell communications, and the tendency of cells to maintain an approximately

constant volume and area. As stationary and stable cell network configurations satisfy

a mechanical force balance, cell packing geometries were described by local minima of

an energy function in the model, which included terms representing cell area elasticity,

line tensions at junctions between cells (the effect of cell-cell adhesion and actin-myosin

contractility), and the cortical actin contractility which acts along the cell perimeter. This

energy function may have various local minima as well as global minimum depending on

parameter values. In addition, several dynamic processes were allowed to affect the cell

packing geometry, for instance, cell division, neighbour exchange, cell death (removing

from the network). Farhadifar et al. probed the mechanical properties of junctions

using laser ablation techniques and in analogy with [Clas 05], used the distribution of

polygons in the tissue to characterise the packing geometry. They identified a region

in parameter space where simulations matched observed tissue properties by analysing

the ground state and equilibrium topologies of the model and comparing their numerical

results to laboratorial experiments. They concluded that hexagonal lattice is the global

minimum for epithelial cells with physical properties corresponding to this parameter

region, and disordered packing geometry caused by stochastic cell division represented

a local minimum. Furthermore, line tension on individual cell boundaries was positive,

indicating that contractility predominates over adhesive cell-cell interactions. Later,
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Mehonic [Meho 11] investigated the model further by introducing noise to the system.

3.6.4 Burak and Shraiman model

In the Burak and Shraiman model [Bura 09], they investigated the role of stochastic

dynamics in PCP signalling by developing a semi-phenomenological model based on three

biological assumptions essential for reproducing the pattern of protein localisation and the

nonautonomy of mutants lacking Fz and Vang. These assumptions are: (i) transmembrane

proteins Fz and Vang form complexes across intercellular cell gap which is the source of

intercellular interaction; (ii) complex formation on a single intercellular cell gap is bistable

such that the formation of polarised complexes inhibits the formation of opposite polarised

complexes which leads to segregation of the complexes; (iii) this inhibition acts non-locally

within each cell which leads to special segregation of complexes on opposite sides. This

model does not place emphasised on the molecular detail and the number of parameters,

thus it is significantly smaller than any other models mentioned above. It was used to

study the response of the tissue to various types of orienting signals and discovered that

global alignment of polarity could be produced by a weak graded signal across the tissue,

in contrast, a boundary signal cannot effectively propagate polarity information over a large

number of cells. Furthermore, the model was used to illustrate that in the absence of an

external orienting signal, swirling patterns would emerge due to random noise in qualitative

agreement with the phenotype observed from mutants lacking of ft [Ma 03, Ma 08].

In addition, Schamberg et al. [Scha 10] built two reaction-diffusion equations

models based on one-dimensional line of cells to study the influence of feedback loop,

intra-inter-cellular diffusion, and if the re-distribution of proteins depends on the amount

of proteins in neighbouring cells during polarisation.
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Remarks As discussed above, these computational models have their own advantages

and deficiencies. They were designed and constructed to study particular aspects of PCP

signalling. However, their common drawback is that these models lack of an approachable

way to generate the cell geometry or a grid of hexagonal cells, and are hard to reproduce

by other researchers. Thus, it will be a significant contribution to provide an approach

which allows the systematical construction of large scale mathematically tractable models

in which cell geometry is clearly formalised. Compared with ODEs and PDEs, HCPN are

more intuitive for users who do not have much knowledge about modelling. In addition,

new aspects of signalling will be incorporated into computational models, such as the

inclusion of polarised vesicle transport.

3.7 Summary

This chapter has summarised the current understanding of PCP signalling, which provides

the basis of modelling, and then described as well as discussed the computational models

developed to study this biological system, while ended with a brief discussion regarding

the weakness of existing computational models of PCP signalling.

As PCP system is assumed to be treated as a continuous multi-cellular system with

multiple spatial scales (see further discussion in Chapter 4), the choice of a suitable

multi-scale modelling formalism does not only depend on the validity and feasibility of the

approach but also partly up to the computational tractability of an appropriate simulator

to model and simulate such a system 1. Thus HCPN were chosen because: (i) it can

1The work presented in this thesis started from 2010. By then CPN integrated in Snoopy was quite
promising to be used as multi-scale modelling and simulation environment. In addition, this work has also
driven the development and improvement of Snoopy as the urgent need to construct and simulate large-scale
models.
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be applied to construct compact, parameterisable and scalable models, (ii) the modelling

and simulation tool, Snoopy [Hein 12b, Rohr 10], can cope qualitative, stochastic and

continuous PN and CPN models.

In the next chapter, a family of HCPN models are built based on the core machinery of

PCP signalling and hypotheses, e.g. feedback loop, factor X and polarised vesicle transport

described in this chapter. In addition, new aspects of signalling, such as polarised transport

of molecules which has not been considered in previous models, are to be tested using the

HCPN models presented in Chapter 4.



Chapter 4

Multi-scale modelling of PCP

4.1 Introduction

This chapter describes the initial attempt to mathematically model PCP, followed by a full

development of Hierarchically Coloured Petri Nets (HCPN) template, the ODE models, and

the family of HCPN models and their variants. Then, the primary exploration of parameter

optimisation using simulated annealing with a description of the implementation details is

given. It concludes with a discussion of the design and construction of the HCPN models,

and the computational efforts made to accelerate the simulation. Some models presented

here were published in [Gao 11, Gao 12].

The primary goal was to develop a mathematical model of PCP signalling that

would recapitulate the phenotypes of all known mutant conditions, both loss and gain

of function. It is hoped that this model would be able to address questions about the

mechanisms underlying the polarising signal, the dynamics of signalling by the individual

components and the interactions between the PCP proteins which orchestrate the ultimate

morphological manifestation of planar polarity. Ultimately, this model would make

predictions about the mechanisms underlying PCP signalling process which would be

66
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testable in a biological laboratory.

The core elements proposed in [Axel 01, Le G 06, Tree 02a] are included in the model

in order to illustrate that the model could explain both autonomous and nonautonomous

clonal phenotypes. An initial ODE model of PCP signalling was built using a set of

ODEs. This model included the production of the PCP proteins in the nucleus, the

uncharacterised transport of these proteins to the proximal and the distal membranes, and

the core machinery regulating the PCP. Recruitment of Fmi to the membrane and binding

of Fmi from two adjacent cells activate the signalling, which was explicitly modelled as

a binding (complexation) reaction. Recruitment of Fz, Dsh, Vang, Pk from the interior to

and from either the proximal or distal membrane was controlled by the formation of the

dimer of the transmembrane protein Fmi from adjacent cells. This initial ODE models of

the core machinery of PCP as described above and its variants (by incorporating different

hypotheses to the initial model) were used as the basis of creating a family of HCPN

models of PCP signalling in order to study and understand the underlying mechanism of

this signalling pathway.

The work started off by the construction of an asymmetric model representing the

PCP system using Coloured Petri Nets (CPN) [Gao 11] based on a limited inter-cellular

communication schema and a crucial way of introducing biasing mechanisms. In this

model, each cell was divided into virtual compartments, three each at the proximal and

distal sides, and one large central block. This configuration introduced an inherent

proximal-distal topological bias across the in-silico wing tissue. In addition, the

asymmetric model included three specific intracellular biasing mechanisms in terms of

feedback loop, morphogen factor X and polarised vesicle transport (see biological details

in Chapter 3). Moreover, only two neighbourhood functions were defined to enable
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inter-cellular communication between adjacent cells, forbidding a cell from interacting with

its north and south adjacent cells.

The aim was then to construct models that would eliminate the tissue-level bias

and permit the exploration of different biasing mechanisms controlling the intra-cellular

biasing mechanisms proposed in the field. Such models could present the feasibility of

the Hierarchically Coloured Petri Nets (HCPN) model to explain the characteristics PCP

phenotypes subject to reasonable assumptions of the properties of the physical mechanisms

for the interactions.

4.2 Establishing the hierarchically coloured Petri nets

template

Initially each cell was modelled as a (standard) Petri net at a highly abstract level,

neglecting details of the intra-cellular pathways, and divided several virtual compartments

to facilitate the description of PCP. Because Drosophila wing cells form a regular

honeycomb lattice, this organisation at the top level of the model has been thus imposed

as a hexagonal grid of cells, see Figure 4.2. The Hierarchially Coloured Petri Nets

(HCPN) model template was developed by step-wise colouring this spatial information

(the construction of the abstract model). The next step was to create a family of HCPN

models by adding details of the intra- and inter- signalling mechanisms, and reusing the

colouring template of this abstract model.
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4.2.1 Coloured Petri nets template

The first model of the wing epithelial cell, illustrated in Figure 4.1, was a high-level

representation of the PCP system in order to establish the colour sets required.

Figure 4.1: Abstract Petri net model for a single cell: (i) one-to-two neighbourhood
relationship; (ii) four spatial regions: communication, proximal, transport and distal; and
(iii) seven virtual compartments. Dashed red lines indicate cell boundaries [Gao 12].

Each cell was sub-divided into four spatial regions (Figure 4.1, from left to right): (i) the

extracellular space (labelled as communication), where the intercellular complexes form,

(ii) the proximal cell margin (left-hand side of each cell) in order to process intercellular
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signals between two neighbouring cells, (iii) production (read arcs cause an infinite supply

of proteins) and intracellular transport of core proteins, and (iv) the distal cell margin

(right-hand side of each cell).

In order to facilitate the detection of PCP asymmetry, each cell was then partitioned

into seven virtual compartments, three each for the proximal and the distal membrane

arranged in a circular manner, and one middle compartment for the cytosol, see Figure 4.2,

right. This circular structure was imposed on an underlying 3 × 3 rectangular grid, which

explained the numbering of the compartments. Different neighbourhood relationships

between adjacent cells were created in order to investigate their influence on the overall

behaviour. The two neighbourhood relationships are (i) one-to-two, where one individual

compartment in a cell communicates with two other compartments in the neighbouring

cell(s), see Figure 4.2 (b); (ii) one-to-one, where each compartment in a cell communicates

with only one compartment in the neighbouring cell, see Figure 4.2 (c).

(a)  

Cell (3,2) 

(b) 

(c) (d) 

Figure 4.2: Drosophila wing epithelial cells. (a) Fragment of wing tissue; coordinates
represent honeycomb grid position. (b) Cell with seven virtual compartments in a
circular manner in one-to-two relationship, arrows denote inter-cellular communication
with adjacent neighbouring cells [Gao 12]. (c) Likewise, for one-to-one relationship in a
circular manner. (d) Cell asymmetrically divided into seven virtual compartments [Gao 11].
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Both of these relationships require the definition of six neighbourhood functions (north,

north-east, south-east, south, south-west and north-west, abbreviated as NN, NE, SE, SS,

SW, NW respectively), see Figure 4.1. Because a honeycomb is a tessellated structure, the

pairwise complementary symmetries between neighbouring cells are ignored, thus reducing

the need for the 6 rotational axes of symmetry to 3 axes (NN, SW, NW), see Table 4.1.

4.2.2 Hierarchical coloured Petri nets template

This section presents the construction of a HCPN model for a one-to-two neighbourhood

relationship and later illustrates how simple it is to adapt this approach to generate a HCPN

model for a one-to-one relationship. For the declarations see Table 4.1.

Two constants M , N and a two-dimensional colour set (CS1) representing a

rectangular M × N grid were defined, and the subset denoting the coordinates of the

hexagonally packed cells (CS Cell) was selected (Figure 4.2). At this level of hierarchy

(wing tissue comprising folded cells) a HCPN model was obtained, which had a similar

structure to that of Figure 4.1, but each place had been assigned the colour set CS Cell.

Next a colour was assigned to each of the seven virtual compartments of a cell. This

was done by using a 3 × 3 grid (CS ComP ) and ignoring colours (1,2) and (3,2) so

that the proximal compartments were (1,1), (2,1) and (3,1), the middle compartment was

(2,2), and the distal compartments were (1,3), (2,3) and (3,3). The information about

cell and compartment locality were combined by defining CS2 as product of the colour

set to address cells (CS Cell) and the colour set to address the virtual compartments

(CS ComP ). Two subsets CSmembrane, and CSmiddle of CS2 were introduced to

facilitate addressing the components of a cell in a specific region, (i.e. distal or proximal,

and middle). The colour defined were hierarchical, thus, each place could be located in
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terms of the coordinates ((x, y), (a, b)), where (x, y) denoted the position of a cell in the

honeycomb grid, and (a, b) denoted the position of a virtual compartment within that cell.

The folding was continued by using these colours to obtain a more compact HCPN

model – a tissue of cells comprising virtual compartments. This was achieved by folding

the six membrane compartments into one, by assigning the colour set CSmembrane to its

places. The central compartment (2, 2) was denoted by the colour set CSmiddle.

Finally, the two similar communication components (the transitions given in red in

Figure 4.1) were folded in each membrane compartment into one. For this a colour set

CSI of two colors and a product colour set CS3 based on CSmembrane and CSI were

defined.

The following describes the necessary steps to construct the compact HCPN model.

Having defined the colour sets, variables that were used in transition guards and arc

expressions were created. All the transitions in the six membrane compartments

were assigned guard Gd1 that selected the coordinates of the hexagonally packed

cells, while the communication transitions were assigned guard Gd2 which mediated

the communication between two neighbouring cells. Each arc in the six membrane

compartments for the proximal and distal cell edges was assigned an expression

(((x, y), (a, b)), r), where the coordinate tuples ((x, y), (a, b)) described the arcs linking

the associated place to a particular transition in compartment (a, b) in cell (x, y), and

r took a value of the colorset CSI . In the middle compartment, the arc expression

was ((x, y), (2, 2)). In the communication region, each arc was assigned an expression

NN(x, y, a, b, r)++NW (x, y, a, b, r)++SW (x, y, a, b, r) which defined how neighbouring

cells communicated with each other. Finally the HCPN of the abstract PCP model,

illustrated in Figure 4.3, were generated. Unfolding this model gives the plain Petri net
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model in Figure 4.1.

Figure 4.3: Abstract HCPN model, folded version of Figure 4.1. Places B, C, D, and E
are logical nodes which are in the distal compartments of each cells [Gao 12].

This is a generic model able to generate honeycomb tissues of arbitrary size by adjusting

the two constants M , N . The colour sets define a pattern which can easily be reused to

model similar scenarios of spatial locality. For example, the colour sets for a one-to-one

HCPN model retain most of what has been established for the above HCPN model. Since

this neighbourhood relationship only enabled each compartment of the cell to communicate

with one compartment in an adjacent cell, it is achieved by simply removing CSI , CS3,

and the parameter CSI r in the neighbourhood functions.

In summary, the procedure to construct a HCPN model for a multi-cellular tissue in a

hierarchy, e.g. regularly structured compartments inside each cell, can be divided into two

steps.

• Fold cells: build up the structure of multi-cells representing the locality of each cell.

• Fold compartments: create the required localisation of compartments within a cell.

This can be trivially extended to model systems with more than two levels of hierarchy.
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4.2.3 Model validation

Animation is an important technique for obtaining an intuitive understanding of a Petri

net model as it demonstrates the dynamic behavior of the model in a visual way. Nearly

all visual tools for modeling Petri nets provide the animation functionality [Nets 12].

Animation of colored Petri nets [Liu 10] enables users to experience the model behavior by

following the token flow, which has been used to establish the confidence of the colouring

template described above. The animation shows that target species representing report

molecular species (FFD) in the abstract model accumulated equally in all six membrane

compartments.
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Table 4.1: Declarations for the abstract and refined HCPN models. Abbrev used: “const”
– “constant”, “cs” – “color set”, “var” – “variable”, and “fun” – “function”.

Category Declaration
const int : M = 40, N = 40, R = 3, C = 3

cs Row = int with 1−M
cs Column = int with 1−N
cs CS1 = product with Row × Column
cs CS Cell = CS1 with

x%2 = 1&y%2 = 0|x%2 = 0&y%2 = 1
cs ComR = int with 1−R
cs ComC = int with 1− C
cs CS ComP = product with ComR× ComC
cs CS2 = product with CS Cell× CS ComP
cs CSmembrane = CS2 with b = 1|b = 3
cs CSmiddle = CS2 with a = 2&b = 2
cs CSI = int with 1− 2
cs CS3 = product with CSMembrane× CSI

var x : Row, y : Column,
a : ComR, b : ComC, r : CSI

fun NN (Row x,Column y,ComR a,ComC b,CSI r)
CSMembrane :
{[(!(x = 1|x = 2))&(r = 2&a = 1&b = 1|
r = 1&a = 1&b = 3)], (((x− 2, y), (a+ 2, b)),+r)}

fun NW (Row x,Column y,ComR a,ComC b,CSI r)
CMembrane :
{[(!(x = 1|y = 1))&(r = 1&a = 1&b = 1|r = 2&
a = 2&b = 1)], (((x− 1, y − 1), (a+ 1, b+ 2)),+r)}

fun SW (Row x,Column y,ComR a,ComC b,CSI r)
CMembrane :
{[(!(x = M |y = 1))&(r = 1&a = 2&b = 1|r = 2&
a = 3&b = 1)], (((x+ 1, y − 1), (a− 1, b+ 2)),+r)}

fun Gd1 (Row x,Column y)
bool :
{x%2 = 1&y%2 = 0|x%2 = 0&y%2 = 1}

fun Gd2 (Row x,Column y,ComR a,ComC b)
bool :
{(!(x = 1|x = 2))&(a = 1)&(r = 1&b = 3|r = 2&
b = 1)|(!(x = 1|y = 1))&(b = 1)&(r = 1&a = 1|
r = 2&a = 2)|(!(x = M |y = 1))&(b = 1)&
(r = 2&a = 3|r = 1&a = 2)}

fun RectangleReg (Row x,Column y)
bool :
{x >= 15&x <= 25&y >= 20&y <= 25}

fun DiskReg
(Row x,Column y,Row x0,Column y0,int radius)
bool :
{(abs(y − y0) <= radius)&
(abs(x− x0) + abs(y − y0) <= 2 ∗ radius)}

fun OvalReg
(Row x,Column y,Row x0,Column y0,int rx,int ry)
bool :
{(rx < ry)&(abs(x− x0) <= rx)&
(abs(x− x0) + abs(y − y0) <= ry)|
(rx >= ry)&(abs(y − y0) <= ry)&
(abs(x− x0) + abs(y − y0) <= rx)}
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4.3 Ordinary differential equation models

The development of the ODE models proceeded in several steps, beginning with the choice

to represent the continuous movement of the PCP proteins as transport and to represent the

interactions between the proteins as the formation of protein complexes. The accumulation

of a protein at a location could then be achieved by the reduced ability for these complexes

to dissociate. Such complexes could also form across cell membranes with neighbouring

cells, restricting some complexes to the shared edge between adjacent cells.

The reactions between individual proteins to form complexes occur as discrete events,

resulting in a stochastic process. However, when the number of reacting molecules is large,

their quantities may be expressed as concentrations and their reactions can be treated as

deterministic, continuous equations by the law of mass action. The total absolute quantity

of protein in the system was not known, it was chosen to begin with a deterministic model,

since the feedback loop model [Tree 02a] did not reply on random fluctuations in order

to function. Furthermore, the fluorescence microscopy techniques used to visualise the

sub-cellular localisation of these proteins usually require a large number of proteins for

detection [Roge 98].

The feedback loop model is completely symmetric and, as discussed in the previous

chapter, functions as an amplification and local error-correction mechanism according to

this hypothesis. The interaction of the signalling network with the upstream polarity genes

(such as fat, fj and ds) is not well understood, but somehow this interaction must bias

the signalling network to uniformly orient the cell polarity toward the distal vertex. The

two general possibilities for introducing this asymmetry are through the gradient of some

signal throughout the tissue, and through boundary conditions in the cell network that

would be propagated by the signalling mechanism, relaying the polarity signal from cell to



77

cell to correctly polarise the entire tissue. As the biological evidence suggests that global

directionality does not come only from the boundaries of the tissue (see Chapter 3), the

global directional cue has been chosen to represent a signal influencing the activation of

Frizzled (Fz) in every cell. In addition, the interaction of the polarised vesicle transport

(see Chapter 3) with PCP signalling is still controversial. Vesicles containing Flamingo

(Fmi), Frizzled (Fz), and Dshievelled (Dsh) tagged by green fluorescent proteins, have

been observed to be transported preferentially toward the distal cell cortex on a polarised

microtubule cytoskeleton during the build-up of intracellular asymmetry [Shim 06]. This

biased transport was modelled by using different constant rates for those involved proteins

(Dsh, Fmi and Fz) transporting toward the proximal and distal cortexes, whereas keeping

the same transport rates for the rest of the core proteins. Furthermore, it has not yet been

settled whether PCP signalling is established via one of the mentioned systems or by two

systems acting in parallel. Uncertainty about the form and nature of the global directional

cue and biased vesicle transport has led to a number of implementations and interpretations

concerning their roles in the models (see Chapter 5).

4.3.1 Modelling the core machinery of PCP

An initial ODE model of PCP was created, involving the core proteins: Flamingo (Fmi),

Frizzled (Fz), and Dishevelled (Dsh), Prickle (Pk) and Van Gogh (Vang). These proteins

participate in two sets of reactions to form complexes, FmiDshFz and FmiVangPk, which

can be depicted by the following mass action equations:

Note: a indicates that the protein is from a neighbouring cell; b a homodimer formed

by two transmembrane proteins, Fmi; † indicates that it is an active form of Fz.
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Fmi+ Fmia
k1


kd1
FmiFmib (4.3.1)

FmiFmi+ Fz† + V anga
k2−→ FmiFz + FmiV anga (4.3.2)

FmiFmi+ V ang + Fza
k3−→ FmiV ang + FmiFza (4.3.3)

FmiFz +Dsh
k4


kd4
FFD (4.3.4)

FmiV ang + Pk
k5


kd5
FV P (4.3.5)

Where k1, k2...k5 are forward reaction rate constants. kd1, kd4 and kd5 are backward

reaction rate constants. These sets of reaction represent the initial state of PCP signalling

where the formation of FFD are equal along the cell membrane.

This initial ODE model involves only the basic proteins, complexes and reactions.

The first attempt was to build a qualitative Petri net model of two neighbouring cells this

initial ODE model to confess ourselves, then to quantify the model with parameter values,

resulting a quantitative Petri net model with an underlying ODE system (each place in the

Petri net model is represented by one ODE). Parameter estimation was initially performed

by trying reasonable guesses for parameter values and manually refining these values to

reproduce the wild-type phenotype (the accumulation of Flamingo-Frizzled-Dishevelled

(FFD) complexes ).

Results from this initial quantitative Petri net model were promising, exhibiting the

desired behaviour at the initiation of PCP signalling where FFD are equally distributed
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along the cell membrane. The model correctly shows the symmetric accumulation of FFD

along the cell membrane of simulated wild-type cells.

Although this early model of PCP is successful in demonstrating what has been

expected, the model lacks the necessary degrees of freedom to capture additional

complicated behaviours that are characteristic of polarity signalling in the wing. For

example, this model does not include the feedback loop and the transport of the core

proteins from the cytoplasm to the membrane. Additionally, the influence of these two

possible systems (morphogen factor X and polarised vesicle transport) which introduce

the asymmetry to PCP signalling. Hence, this model is incapable of reproducing both the

autonomous and nonautonomous phenotypes.

4.3.2 Modelling the hypotheses

Based on the above assumptions, the model was modified to include the feedback loop,

where Vang/Pk inhibits the recruitment of Fz/Dsh to the membrane and Fz/Dsh inhibiting

the recruitment of Vang/Pk to the membrane [Axel 01, Tree 02a, Zall 07] which are

modelled as the following mass action equations:

Note: pv and fd indicates that the complexes form through different processes of the

feedback loop.

FFD + FV P
kf1−−→ complexpv

kf2−−→ FV P + Fmi+ Fz +Dsh (4.3.6)

FFD + FV P
kf3−−→ complexfd

kf4−−→ FFD + Fmi+ V ang + Pk (4.3.7)

Where kf1, kf2, kf3 and kf4 are feedback-loop reaction rate constants. These two

feedback reactions are symmetrically introduced into the model, which function as an
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amplifier in the asymmetry of PCP signalling. This resulting system is one of the ODE

models which later is used to construct a family of HCPN models to explore the underlying

mechanisms of PCP.

The production and transport of proteins are modelled as a set of mass action equations

as follows:

Note: Prot represents the production of protein; ? indicates that the protein is in the

nucleus, waiting to transport to the membrane via vesicles.

Prot
kp1−−→ Fmi?

kt1−→ Fmi (4.3.8)

Prot
kp2−−→ Fz?

kt2−→ Fz (4.3.9)

Prot
kp3−−→ Dsh?

kt3−→ Dsh (4.3.10)

Prot
kp4−−→ V ang?

kt4−→ V ang (4.3.11)

Prot
kp5−−→ Pk?

kt5−→ Pk (4.3.12)

Where kp1, kp2...and kp5 are production rate constants. Note that, for convenience,

the production have been modelled as a constant supply of proteins. kt1, kt2...and kt5 are

transport rate constants, while kt1, kt2 and kt3 can be different due to which cortex those

proteins are transported to in the scenarios that involves polarised vesicle transport.

Furthermore, the global directional cue (factor X) which introduces the asymmetry to

PCP is modelled as the following mass action equation:
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Note: † indicates it is an active form of Fz which is the only form able to form FFD

complexes.

Fz + Ld
kx−→ Fz† (4.3.13)

Where kx is the reaction constant rate. In order to model the role of the global

directional cue, an intermediate form of Fz is introduced after it transports from the

cytoplasm to the membrane and assumed that only active form of Fz can participate PCP

signalling (Equations 4.3.2 and 4.3.3). Note that this reaction is sequential to Equations

4.3.9, and its product Fz† is the sole form of Fz to be involved in the formation of FFD

complexes.

In order to enable the model to reproduce PCP signalling in Drosophila wing, an

in-silico wing tissue (a multicellular system) is essential to discover the underlying

mechanisms. The sets of equations described above are later used to build multi-scale

models using Hierarchically Coloured Petri Nets (HCPN).

4.4 Hierarchically coloured Petri nets models of PCP

signalling

A set of more detailed PCP models were developed step-wise by refining the model in

Figure 4.3. Theses HCPN models incorporate equations described in Section 4.3.

An unbiased model (see Figure 4.4) was first constructed by using the equations

described in Section 4.3.1, which did not include any proposed biased systems, to

recapitulate the symmetrical localisation of proteins before the polarisation of PCP

signalling. This model creates an equal distribution of FFD in all membrane compartments
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in those cells having six neighbours (see Figure 4.4). The boundary cells or cells

communicating with less than six neighbours do not have a symmetric localisation of FFD

due to the lack of intercellular communication.
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Figure 4.4: HCPN model of unbiased PCP [Gao 12]. It refines the abstract HCPN model
given in Figure 4.3.

To construct this unbiased model the same declarations as those used for Figure 4.3 (see

Table 4.1) were used, thus, there was no need to start from scratch. Transitions and places

were grouped into different spatial regions and virtual compartments, and then the same

colour sets were assigned to each region or compartment as done for Figure 4.3, likewise

for arc expressions. Additionally, three functions, RectangleReg, DiskReg and OvalReg

were defined to generate a rectangle, circle-like (hexagonal) or oval region within the whole

tissue, respectively (see Table 4.1, Figure 4.5) which would be used to place mutant cells on

the tissue to model biological mutant clones. Therefore, the models can not only perform

simulations of PCP signalling in normal, wild-type cells but also on clones of mutant cells

in a wild-type background.

A family of HCPN models were developed based on this unbiased model by introducing
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(a) (b) (c) 

Figure 4.5: Diagram of possible shapes of a mutant clone that can be introduced to the
in-silico tissue. From left to right: rectangular region, hexagonal region and oval region
(labelled in red).

feedback loop, factor X, polarised transport in different combinations in order to test

different hypotheses:

• By introducing the inhibitory loop, which mediate a competition between

proximal and distal proteins displayed on adjacent surfaces of neighbouring

cells [Axel 01, Tree 02a, Zall 07] (see equations of the feedback loop in Section 4.3),

to the unbiased model, a biased feedback model was obtained. Subsequently, a set

of HCPN models based on this basic biased model by introducing either factor X

or biased transport alone, or both combined, were constructed. These variants can

be used to test various hypotheses underlying PCP signalling, e.g. how the global

directional cue interacts with the feedback loop, how the inhibitory loop responses

to the polarised transport, and if these two factors act in parallel or only one of them

plays a critical role.

• Two additional HPCN models were created by introducing only factor X or polarised

transport alone to the unbiased model.

In order to simplify the identification of these models, the biased and unbiased versions

are distinguished. If the model is biased (B) then it optionally includes feedback loop (F),
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biased transport (T) or factor X ligand (X), or both or all of them. The neighbourhood

relation can be one-to-one or one-to-two. Finally a biased model can be wild-type (Wt) or

contain one of six mutant clones, fmi-, fz-, dsh-, vang, pk- or pk+ (see details in Appendix

A). This naming convention can be described by the following simple BNF:

Note: ‘-’ indicates the loss of function of the protein; ‘+’ indicates the protein

overexpression.

B [F] [X] [T] [1|2] [Wt|Fmi|Fz|Vang|Dsh|Pk|Pk+].

Details of the unbiased model and variants of the biased model, and the list of mutant

clones can be found in Appendix A.

4.5 Quantifying HCPN models

The models were quantified by assigning to each transition a rate function following

mass-action kinetics. The kinetic parameters were optimised by using simulated annealing

to fit against constraints obtained from qualitative features of PCP phenotypes observed in

biological laboratories [Axel 01, Gubb 82] (see details in the following section).

These quantitative models can be equally read as stochastic or continuous models,

with appropriate scaling of the kinetic constants. Particularly, a continuous HCPN model

uniquely defined a set of ODEs. To simulate wild-type and different mutant conditions,

individual marking sets, function sets, and parameter sets (which are maintained within

one model file) were considered.

The unspecified model parameters were the initial concentrations for each of the

proteins and complexes involved (e.g. denoted [Dsh]0), and the constant rates for each

of the reactions. The unit of measure for concentration in the problem was unspecified,

thus, the number of parameters were reduced by arbitrarily fixing the initial concentrations
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of the core proteins (denoted [Dsh]0, [Fmi]0, [Fz]0, [Pk]0, and [V ang]0) to 1.

4.5.1 Hair growth direction

The hair growth direction for each simulated cell was determined based on the protein

concentration distribution at the end of the simulation. The distribution of FFD was chosen

to predict the hair growth direction because polarisation of hair cells recruits tissue specific

effectors, in this case – FFD, to proximal and distal sides of the cell that control actin

polymerisation and bundling to produce a distal hair [Adle 04, Stru 08]. Therefore, the hair

growth direction predicted by the HCPN models are represented as the localisation of FFD

in each cell.

4.5.2 Parameter sensitivity analysis

Parameter sensitivity analysis was implemented by using an extension of the ODE15s

Matlab ODE solver [MATL 11, Sham 97, Sham 99]. It solves ODE systems, at

the same time, calculates derivatives (sensitivities) of the solution with respect to

parameters [Bock 81, Maly 96].

There are several issues needed to be concerned to use this extension:

• The main question is about the accuracy of the computed derivatives. It is difficult

to give a precise answer, but it has been observed that it gives accuracies of the order

of the integrator accuracies. These accuracies can be controlled through the original

ODE15s tolerances; the tighter the ODE15s tolerances, the better the derivatives

accuracy. Therefore, the accuracy attainable is problem-dependent. It has been found

that the default relative tolerance in ODE15s (1e-3) is too coarse to obtain good

accuracies to the derivatives, so that it has been set to 1e-6.
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• As The vectorization of the m-files can make the subroutine fail when: (i) extra

parameters are passed; (ii) the parameters, whose derivative needs to be found, have

no influence on the system.

The sensitivity of all parameters involved in the signalling was computed with the

respect to the concentration of FFD complexes, and found that not all parameter values

had a high impact on the behaviour of the signalling. Thus, the number of parameters that

would be taken into account in performing parameter optimisation (see Section 4.5) were

reduced. Results of sensitivity analysis of BFXFz model are shown in Table 4.2 as BFX

model is the most interesting and promising (see discussion in Chapter 5).

Parameter Sensitivity value Parameter Sensitivity value Parameter Sensitivity value Parameter Sensitivity value
k1 1.4077 k5 -0.0664 kp1 0.0028 kt2 0.0005
kd1 0.0195 kd5 -0.0051 kp2 0.0005 kt3 -0.0003
k2 -0.1699 kf1 -0.0136 kp3 0.0006 kt41 0.0001
k3 -0.2670 kf2 -0.0226 kp4 0.0000 kt5 0.0000
k4 1.1606 kf3 0.0175 kp5 0.0000 kx 0.5092
kd4 -0.0063 kf4 0.0507 kt1 0.0036 kmutant 1.8360

Table 4.2: Overall Sensitivity of all parameters using BFXFz model comprising 18 cells.

According to the sensitivities, 12 highly influential parameters 1 out of the total set of

24 parameters were selected to perform parameter optimisation in order to quantify the

HCPN model. Note that k24 is constant rate used for the knock-out, which must be zero

in order to reproduce the scenario of loss of function of a particular mutation (e.g. fz-). It

is crucial to any models with mutant clones consistent with the sensitivity results (k24 has

the highest impact on the signalling output).

However, testing the sensitivity of a model to single parameter variations does not

guarantee that the model is not sensitive to other combinations of parameter changes, nor

is it necessarily appropriate, since the model may be insensitive to simultaneous changes

1Influential parameters: parameters whose sensitivity is higher than 0.01 or lower than -0.01
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in several parameters, while remaining sensitive to changes in the relative values of some

parameters. Methods to reliably identify model parameters that are robust to parameter

variations remains an open problem and will be discussed further, along with the biological

basis for this form of robustness in Chapter 6.

4.5.3 Parameter Optimisation

4.5.3.1 Simulated annealing

Simulated annealing (SA) is a randomised local search method based on the simulation

of annealing a metal, which was firstly described by Kirkpatrick et al in 1983 [Kirk 83].

The application of SA has been widely used to address optimisation problems with/without

constraints. The principle of SA models is to heat and lower system temperature iteratively

to reduce system defects and to enable the system to reach a minimum energy status.

In order to search for optimum solution, SA randomly generates a trial solution based

on the current solution at each step. The trial solution is evaluated by an objective function

to decide if the trial solution can be accepted to replace the current one, which is called

an acceptance probability. The system favours to go downhill by lowering the temperature

when the temperature is high. Whereas uphill moves enables the system to escape from

the local minima, without which, the system would be trapped into a local minimum.

This probability is controlled by temperature in such a manner that at the beginning of the

procedure the temperature is sufficiently high, in which a high probability is available, and

as the calculation proceeds the temperature is gradually decreased, lowering the probability.

The procedure of SA consists of two nested loops: an outer loop and an inner one,

where the cooling and the equilibrating processes are performed, respectively. This search

procedure is iteratively repeated and won’t stop until the terminated conditions reach.
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The SA routine is represented in pseudocode format in Algorithm 1, and

implementation details can be found in the following.

Require:
choose the initial solution; calculate the cost (fitness);
repeat

outer loop (cooling)
repeat

inner loop (equilibrating)
perturb the current solution;
calculate the cost;
accept the trial solution as a new solution by acceptance probability;

until
iteration limit is reached;
temperature is lowered according to the cooling schedule;

until termination condition is satisfied;
return Optimal solution

Algorithm 1: Pseudocode representation of simulated annealing

4.5.3.2 Implementation of parameter optimisation

The selected parameters were optimised by constraining them so that the simulation

would reproduce qualitative features of the experimentally observed PCP phenotypes. For

example, one case involves simulating clones of cells lacking fz function surrounded by

wild-type cells, and constraining the parameters to make sure at the end of the simulation,

reversed hair polarity is produced in a wild-type cell that is distal to the mutant cells. The

degree of asymmetry was scored in this cell based on the asymmetry distribution of the

FFD concentration at the end of a simulation for a given set of parameters.

Sfz = −
[FFD]distaltotal − [FFD]proximal

total

[FFD]total
(4.5.1)
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Then the constraint was implemented as a quadratic penalty function with weight, Kfz,

that was nonzero when the polarity in this cell was not reversed above a threshold target

value, Tfz.

Ffz =

{
0 Sfz > Tfz

Kfz × (Tfz − Sfz)
2 Sfz < Tfz

This form of the penalty function has the advantage of having a continuous derivative

and does not require that the initial parameter set be feasible. Two feature constraints

corresponding to the characteristic PCP phenotypes listed in Table 4.3 were used to train

the models. A fitness function evaluation of the SA procedure described in Algorithm 1

was applied to different cases. The parameters were selected by iteratively running

the optimisation routine after adjusting the weights of the penalty functions for each of

the individual feature constraints, cooling and equilibrating processed until the desired

behaviour of the system was achieved. In order to reduce the amount of computational

effort required for each fitness function evaluation, cases involving mutant clones were

simulated on lines of wild-type cells extending parallel to the proximal-distal axis and

interrupted by mutant cells (see Figure 4.6) using models in a size of either 6 or 18

cells. However, it still demands very heavy computational power to run the optimisation

routine (see Figure 4.7) due to the search space for the rate parameters and the number

of underlying ODEs of the simulated model to solve (e.g. 6-cell model comprising of

1,086 underlying ODEs, while 18-cell consists of 3,258 underlying ODEs) each time

manipulating the penalty function.

The same SA optimisation routine was applied to the family of models generated in

Section 4.4 .

Once parameters that satisfied the constraints on the simple lines of cells had been
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Model Fitness Constraint description
Biased model with a fz clone Ffz > 0 in cells distally

adjacent to the fz-
clone; Ffz < 0 in other
wild-type cells far away
from the clone

Distal domineering
nonautonomy [Gubb 82]

Table 4.3: Characteristic PCP phenotypes used as constraints to fit the HCPN models.

Figure 4.6: Cell configuration for parameter optimisation: (a) simulated cell array
comprises 6 cells: four cells distally to the mutant cell are chosen to be fit (labelled by
x), (b) simulated cell array comprises 18 cells: five cells are selected to fit (labelled by x).
Mutant cells are labelled in red.

identified, they were verified over a larger two-dimensional honeycomb lattice to see if

the model could still exhibit the desired behaviour which was used to produce the feature

constraints. The selected parameters are shown in Table A.2.

The parameter optimisation routine (SA) was implemented in Matlab R©7.11.0

[MATL 11] because Matlab facilitates to plot and examine the fitness function values makes

it easier to follow the progress of the parameter optimisation. A procedure was followed

in order to implement the optimisation routine: (i) exporting ODEs of an unfolded Petri

nets at a required size from Snoopy [Hein 12b, Rohr 10]; (ii) converting these ODEs to a

Matlab readable format; (iii) applying the SA routine to optimise the parameters in the ODE

model. The computational effort required by the optimisation algorithm is small compared

to the effort required in evaluating the fitness functions due to the time-costing of solving
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Figure 4.7: Runtime for parameter optimisation (time unit is in days). It shows the
relationship between the runtime of SA routine and the number of iterations as well as
the number of ODEs to be solved (representing by the size of the model): (i) the more
iterations the SA routine implements, the longer runtime is; and (ii) the larger the model is,
the more computational effort is required.

the large underlying system of ODEs.
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4.6 Discussion

A number of assumptions were made to construct the HCPN models of PCP. This section

summarises the most important of these, discussing their basis and validity, and noting the

consequent limitations on the models and conclusion drawn from their results.

In addition, in this work, the simulation and fitting of a multi-scale model consisting

of a large number of biological entities, e.g. a model comprises over 150,000 ODEs (see

Table 4.5), requires high computing power. Therefore, efforts made in this work in order

to speed up computation in simulation and parameter optimisation have been discussed in

this section.

4.6.1 Kinetics - deterministic versus stochastic

It is assumed that conditions are met such that protein concentrations may be treated as

continuous, deterministic variables. The discrepancy between deterministic models and

stochastic models of these reactions increases when the number of reacting molecules is

small, the reactions proceed very slowly, or if the behaviour of the signalling network

depends on the random fluctuations in protein concentrations, rather than on their average

values [Blou 91, Gill 77, Kurt 72, McAd 97]. The biological model does not rely on

fluctuations of protein concentrations, and the timescale for the asymmetric accumulation

of Fz, Dsh, Pk, and Vang is much greater than the time necessary for protein-protein

interactions. Furthermore, the minimal level of detection of fluorescent tagged molecules,

localised to the plasma membrane, used to visualise these proteins suggests that the number

of molecules present in each cell is likely to be on the order of thousands or more [Tsie 98].

Therefore, it will not be expected that the increased computational effort of stochastic

models would be necessary, and indeed, it has shown that a deterministic model is sufficient
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to reproduce the behaviour of the system.

4.6.2 Cell geometry

The planar nature of the signalling network permits the mathematical modelling of the

biological system in two-dimensions. The computational grid geometry describes a regular

hexagonal lattice of cells (see Figure 4.2) that remains fixed throughout the simulation.

Drosophila wing epithelial cells are generally hexagonally packed, but the precise size and

shape of the cells vary over the wing and during PCP signalling. These geometric variations

likely influence precise hair angles, the degree of asymmetric localisation of proteins, and

the extent of nonautonomous polarity disruptions in regions near some mutant clones. This

work only attempted to reproduce general qualitative features of PCP phenotypes, and thus

these variations were not considered in the HCPN models.

4.6.3 Feedback loop

The underlying mechanisms for the interactions in the local feedback loop are not yet fully

understood, the essential logic of this feedback loop was preserved by representing these

interactions as binding to form protein complexes. Direct biochemical evidence exists

for the FmiVangPk complex [Bast 03, Jenn 03]. It has been observed that Fz induces the

recruitment of Dsh to the cell membrane in vivo and in heterologous systems, and evidence

of direct, albeit weak, binding exists for Fz and the PDZ domain of Dsh [Axel 01, Axel 98].

A direct FzFmi-FmiVang interaction through a homodimer Fmi-Fmi was modelled. Fz

and Vang localise to opposite sides of the cell, and Vang accumulation depends on

the Fz allele (autonomous or nonautonomous) in the adjacent cell (see Section 2 and

[Amon 05]). Fz and Vang are linked through a mutual affinity for a bridging cadherin
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such as Fmi, which is presented in both membranes, and is required for assembly of the

other components [Usui 99]. Diego (Dgo) [Das 04, Feig 01], Wdb [Hann 02], and other

proteins known to be involved in PCP signalling, were not included in the model, as their

roles were in- sufficiently understood. Fmi is required for the membrane localisation of

the other proteins [Bast 03], Dgo localises to the proximal cell surface [Das 04], and both

are required to generate asymmetry. Fmi bound to Fz in one cell and Fmi associated with

Vang in the other [Bast 03, Chen 08, Das 04, Lawr 04, Usui 99, Shim 06]. It is unknown

how Dgo exactly influence other proteins. Thus, this work only includes Fmi in the models

but not Dgo. When the role of Dgo is more fully understood, it may be included in the

model without perturbing the function of the feedback loop, and could provide additional

degrees of freedom that may enhance the concordance with experimental data. Therefore,

the feasibility of the model should not be sensitive to these assumptions.

Both genetic and cell culture data previously led us to propose that Pk inhibits Fz

dependent membrane recruitment of Dsh [Tree 02a]. In a cell culture assay, Pk was

shown to cell-autonomously antagonises Dsh recruitment [Tree 02a]. This result has been

replicated by some, but not others [Bast 03, Carr 03, Take 03, Veem 03]. New experimental

results demonstrated a dose dependent inhibition of Dsh membrane recruitment by both Pk

and Vang, and a combinatorial effect when both are expressed. This is consistent with the

hypothesis that Pk and Vang work together on the proximal side of the cell, and with the

observation that, like Pk, Vang binds Dsh [Bast 03, Park 02, Tree 02a]. The differences

between these results and those of others might therefore depend on differences in the

uncontrolled levels of host cell Vang, or other uncontrolled aspects of the experiment. It

has observed that colocalisation of Dsh with Pk and Vang at the end of PCP signalling,

suggesting that Dsh does not remain bound to Pk and Vang after this inhibition has taken
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place [Axel 11]. Therefore, it is expected that the mechanism for this inhibition is more

complicated than competitive binding, such as some modification that then destabilises

the FmiFzDsh complex. The implementation of Pk and Vang inhibition used in the

mathematical model only required that these proteins inhibit the FmiDshFz interaction,

without relying on a specific molecular mechanism for this activity.

4.6.4 Modelling implementations

Several possible mechanisms exist for providing the asymmetric signal that the feedback

loop interprets, and then use to produce, from an initially symmetric distribution, the

asymmetric localisation of the proteins included in the model (Fz, Dsh, Vang, and Pk).

The gradient of global directional cue was modelled as a tissue-level gradient

throughout the whole wing. This was implemented by assigning different initial

concentrations of the factor X (denoted by [Ld]0 ) in different regions, e.g. [Ld]0 forms

a gradient from the proximal end of the in-silico tissue to the distal end.

In addition, the modelling of the polarised transport of Fz, Fmi and Dsh towards the

distal cell cortex via vesicles was achieved by assigning different parameter values to

reactions which control the transport of corresponding proteins to the distal & proximal,

respectively.

4.6.5 Computational speed-up

As the HCPN models requires computational experiments over very large underlying

models which are represented by systems of ordinary differential equations (ODEs), a

crucial point is how many cells that can be simulated in terms of current computational

capabilities, i.e. what tissue size can be actually analysed.
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4.6.5.1 Choice of parameters

The lack of a detailed biological understanding limits the ability of the mathematical

model to make quantitative predictions about the detailed behaviour of PCP signalling.

It has only enforced qualitative feature constraints during parameter selection, and so

quantitative results from the model, such as the degree of asymmetry observed in each

of the proteins or the extent of nonautonomy observed around mutant clones, could vary

with the specific choice of parameters without violating the feature constraints. Further, the

feature constraints were enforced only based on features of the results at the end of each

simulation. Therefore, the dynamic behaviour of the model, which also depends on the

choice of parameters, does not necessarily reflect the behaviour of the biological system.

Finally, the relative values and stabilities of the model parameters are themselves dependent

on the choice of the other parameters in the model. A different choice of parameters might

exhibit different relative parameter values or stabilities, and so it has refrained from making

any inferences about the relative importance of various parameters based on the current

parameter set.

As mentioned in Section 4.5.3.2, evaluating the fitness functions is the most

computational expensive procedure in the SA routine using Matlab. This is due to the large

number of ODEs to be solved each time. Thus this step was accelebrated by converting

the system of ODEs to jacobian matrix, binary matrix and sparse matrix, which could be

critical to make stiff ODE solvers (e.g. Matlab ODE15S solver) execute faster. A massive

speed-up has been achieved (see Table 4.4 for details), which as a result dramatically reduce

the runtime for the SA routine.
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Properties Simulation time (in seconds)
ODEs 115.3

Jacobian matrix 84.5
Jacobian matrix & pre-allocation 76.4

Binary matrix 16.2
Sparse matrix 3.7

Table 4.4: Simulation time for 6-cell model using different properties for Matlab ODE15s
solver. A massive speed-up of simulation has been achieved by using Sparse matrix.a

a performed on a MacBook Pro Intel Duo-core, CPU 2× 2.93GHz, memory (DDR 3) 4
GB;

4.6.5.2 Simulation of HCPN models

In order to simulate HCPN models, there are three technical key problems: unfolding,

ODEs construction, and simulation. The coloured continuous Petri nets are automatically

unfolded which can be considered as a kind of compilation. Afterwards, the corresponding

ODE needs to be constructed for each place; the runtime for this step is negligible. Finally,

the model has to be simulated using an appropriate continuous simulation algorithm.

Considering the huge size of the models (see the number of places and transitions in Table

4.5).

Size Runtime
Grid(M ×N ) Cells Places Transitions Unfolding runtime (seconds) Simulation runtime (seconds)

5× 5 12 2,028 2,802 1.154 3.145
10× 10 50 8,450 11,826 2.613 14.618
15× 15 112 18,928 26,622 4.495 42.586
20× 20 200 33,800 47,646 9.231 88.886
40× 40 800 135,200 191,286 83.162 371.647
40× 40b 800 164,000 229,686 120.186 7,399.544

Table 4.5: Unbiased PCP model size and runtimea for unfolding and continuous simulation
over 1000 time units, illustrating the efficiency of constraint solver.

a performed on a Mac Quad-core Intel Xeon, CPU 2× 2.26GHz, memory (DDR 3) 8 GB; b for the biased model BFXWt.

These improvements of unfolding, ODEs construction, and simulation in Snoopy

[Hein 12b, Rohr 10] were conducted by Professor Heiner’s group at the Brandenburg

University of Technology, in Cottbus.
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4.7 Summary

This chapter has illustrated the development of the HCPN colouring template which could

be easily adapted by other systems with a similar hierarchical organisation, followed by

the construction of a family of HCPN models which would enable us to test different

hypotheses of PCP signalling and possibly make predictions of the underlying mechanisms

of the signalling. In addition, the challenges of simulating such large models and optimising

parameters in these models have been discussed. The next chapter describes how to

check and verify the HCPN models constructed in this chapter in order to have some

understanding of the biological system of PCP signalling.



Chapter 5

Validation and analysis

5.1 Introduction

This chapter illustrates an approach to analyse and check the multi-scale models of PCP

signalling constructed in the previous chapter (Chapter 4). This is followed by a discussion,

including insights into the domineering nonautonomy, as well as additional phenotype

predications.

Hierarchically coloured Petri nets (HCPN) enjoy a large variety of analysis techniques,

ranging from informal animation to formal static or dynamic analysis techniques. In the

following, the simulative methods to analyse dynamic properties of the models in the

continuous setting have been used, because the infinite state space caused by the infinite

supply of proteins precludes the application of dynamic exhaustive analysis techniques.

Specifically, automated clustering and visualisation techniques to identify sets of cells with

similar behaviors are used, complemented by PLTL model checking and visual analysis

to both primary and secondary time-series data from representative cells of automatically

identified clusters.

The analysis begins with the experiments by using the unbiased and biased HCPN

99
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models to generate an in-silico wild-type tissue based on a honeycomb grid comprising

800 cells imposed on an underlying 40 × 40 rectangular grid. Next, the effect of a clone

of mutated cells lacking the key signalling molecules Frizzled (Fz) or Van Gogh (Vang),

denoted by Fz- and Vang-, respectively, in an otherwise wild-type field of cells by zeroing

the concentration and switching off transport in the corresponding Petri net places, is

modelled. A mutant clone of fz- or vang- in a circle-like shape with 80 mutant cells,i.e.

10% of the in-silico tissue, using the DiskReg function (see Table 4.1) are produced.

Later the influence of lacking of Dishevelled (Dsh), Flamingo (Fmi), Prickle (Pk), and

overexpression of Pk, denoted by Dsh-, Fmi-, Pk- and Pk+, respectively, are modelled

using the same approach as described above. Details for naming convention can be found

in Section 4.4.

The analysis has been conducted as a proof of principle that the models indeed have

the ability to capture the given biological phenomena and make sensible predictions. Some

results presented in this chapter has been published in [Gao 12].

5.2 Simulations

All simulations were run over 1,000 time units reported at 200 time points. The time

span represented PCP signalling beginning at 33 hours APF (after puparium formation)

in-vivo [Shor 72]. Snoopy’s (version: 02-7-2012) [Hein 12b, Rohr 10] built-in continuous

simulators were used to simulate the models. Simulation traces had been written to csv

files, which were then been further processed by Matlab R©7.11.0 [MATL 11] for clustering

and visualisation, and MC2 [Dona 08] for model checking.
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5.3 Clustering analysis

The approach to analyse the models is based on the behaviour of each cell, represented

by the Flamingo-Frizzled-Dishevelled (FFD) complex concentrations for each of the six

membrane compartments because these are associated with the PCP response [Stru 01]

(explained in Chapter 4 Section 4.5.1). In the first step, the time points of the FFD time

series from the six membrane compartments were taken and then used as ‘features’ for each

cell; they comprised the characteristics which defined the behaviour. With e.g. 200 time

points for each of the six time series 1,200 features were obtained, which contained some

less significant variables. This could slow down the clustering algorithm, and the clustering

result may be diluted by the background noise.

Thus a feature selection technique, Principal Component Analysis (PCA) [Joll 86], was

applied to reduce the number of features. This way, the original features were converted

into new features, which are a linear combination of the previous ones, see Figure 5.1. PCA

allows the calculation of the variance explained by each new feature in order to find how

many new features that are needed to describe the space. The number of features that were

needed to explain at least 95% of the variance were then checked.
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Figure 5.1: Representation of the most important three features derived by PCA for model
BFXFz. PCA reduces the large number of features generated by the time series data, in
which those original features are converted into a linear combination of them.
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Once the new dataset had been obtained through PCA, a clustering algorithm was

applied to find groups of cells with similar behaviour. There are many clustering algorithms

available in literature, such as the commonly used K-means [MacQ 65] and hierarchical

clustering [Hast 09]. However, these two traditional methods can not be relied on because

the approach should not require a priori an expected number of clusters, but more

importantly the clusters are not necessarily spherical. For this reason a density-based

clustering algorithm called DBScan [Este 96], which permits finding clusters of any shape,

was applied in this work. DBScan identifies dense areas of space by looking at the

neighbourhood of each point. An area of a given radius is considered to be dense if it

contains at least a given number of points. The algorithm then merges connected dense

areas to form a cluster. All the points left out of the clusters are labelled as outliers. The

best number of clusters to fit the scenario can be found by inspecting the three dimensional

data space and adjusting the parameters (radius and size of the neighbourhood). The results

were then plotted on a hexagonal grid, which represented the layout of the cells in the

model, see experiments below. The cells in each cluster were allocated a unique colour and

labelled by the cluster number generated by the technique. All outliers were allocated -1 as

their cluster number.

To confirm the efficiency of the approach mentioned above [Gao 12], another two

widely used clustering techniques, K-means and hierarchical clustering, were applied as

comparison. A visual inspection of the data showed that clusters of common behaviours

were characterised by non-spherical shapes. Moreover, the time series exhibited rather

smooth behaviour, partly due to being the results of deterministic simulation. Therefore

the application of clustering procedures belonging to the clustering categories, such as

partitioning methods, hierarchical methods and model-based methods, did not lead to
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useful results as shown in Figure 5.2, which was also confirmed by the cluster evaluation

results. The clustering technique was expected to detect at least: (i) the boundary cells

at the edge of the in-silico tissue; (ii)the mutant clone; (iii) the neighbouring cells to the

clone. Hierarchical clustering failed to even detect the boundary cells, which K-means

was successful to achieve. However, K-means is less efficient to capture features of the

time series compared to DBScan combined with PCA (see Figure 5.2), e.g. boundary cells

at the four corner of the in-silico tissue behave differently due to their localities, which

was assigned as separate clusters from other boundary cells by DBScan with PCA but

not distinguished by K-means (cluster -1 in Figure 5.2 (c)). To evaluate the goodness of

clusters, a validity index named Composed Density between and within clusters (CDbw),

which was introduced by [Halk 08], was calculated. This index measures the quality

of the clusters by considering multiple representative points per cluster and therefore

accommodates non hyper spherical cluster geometry. The higher the CDbw value is, the

better the quality of clusters is (for more details, refer to [Halk 08, Macc 12]).

Clustering algorithms were encoded and implemented in Matlab. DBScan for Matlab

was taken from [Dasz 01], which was later combined with PCA by 1. K-means and

hierarchically clustering were done by using Matlab’s built-in functions. Applications of

this clustering approach can be found in [Gao 12, Macc 12].

1D. Maccagnola was responsible for developing and encoding the clustering approach (DBScan combined
with PCA), as well as the validity index CDbw into Matlab. Address: Dipartimento di Informatica
Sistemistica e Comunicazione, Università degli Studi di Milano-Bicocca, Italy.
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Figure 5.2: Comparison of validity of different clustering techniques over time-series data
obtained from BFXFz model in one-to-two neighbourhood relationship. (a) Hierarchical
clustering assigns 18 clusters; (b) K-means allocates 16 clusters; (c) DBScan combined
with PCA detects 14 clusters. The approach, DBScan combined with PCA, has
successfully captured most features of the time series, if not all, with the least number
of clusters. Hierarchical clustering fails to detect boundary cells even by assigning the
most number of clusters, while K-means is able to detect some of the features from the
dataset, however, it still lacks the capability to acquire the other important features. Thus,
compared to the other two clustering techniques, DBScan combined with PCA gives the
best clusters.
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5.4 Model Checking

In order to explore in more detail the behaviour of a model, model checking was performed

on representative cells from the clusters identified by the cluster analysis. Model checking

is a technique which is used to check the validity of properties of a dynamic model

expressed in a temporal logic; this can be performed either analytically (requiring the entire

state space to be explored), or over finite time-series traces produced by the simulation of

the model. This work used simulative model checking because of the infinite state space of

the models, and specifically employed the MC2 model checker [Dona 08] which operates

over Probabilistic Linear Temporal Logic with constraints (PLTLc). Both the primary data

output from a model (i.e. time series of concentrations) as well as secondary data – in

this case time series of accumulated concentrations (known as cumulative rewards in CSL

model checking [Schw 11]) were checked.

This secondary data has been checked because the localisation of PCP signalling

components at any given time point is the result of the cumulative effect of the sum over

the signalling events until that point. This was done by computing the accumulation of

the concentration of FFD at each point in the time series trace, and called as cumulative

time series. The cumulative time series data “smooths away” small variations which are

apparent in the primary data.

5.5 Models

All experiments reported in this chapter refer to the one-to-two neighbourhood relationship

models, namely the unbiased model and variants of the biased model, as defined in

Section 4.4 (details see Table A.3), as one-to-two neighbourhood is more interesting
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because: (i) in topological point of view, one-to-two neighbourhood could provide more

variations in cell behaviours and may give more insights into the mechanisms underlying

PCP signalling compared to one-to-one neighbourhood (Figure 5.3); (ii) the simulation

results for mutant conditions confirm that one-to-one can not reproduce the biological

observations, where cells adjacent to the clones behaves similarly to other wild-type cells

(not distal domineering nonautonomous), see Figure 5.4.

(a) (b)

Figure 5.3: Representation of one-to-one and one-to-two neighbourhood relationships. (a)
one-to-two, where each compartment in a cell communicates with two other compartments
in the neighbouring cell(s); (b) one-to-one, where on individual compartment in a cell
communicates with only one compartment in the neighbouring cell.

In addition, boundary cells (the most outside cells) are not considered when analysing

and checking the model.
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Figure 5.4: BFXFz model in one-to-one neighbourhood: continuous simulation for a
representative of wild-type cells away from the clone (top left); cumulative signal for a
representative of wild-type cells away from the clone (top right); continuous simulation for
a representative of cells distally adjacent to the clone (bottom left); cumulative signal for a
representative of cells distally adjacent to the clone (bottom right).
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5.6 Experiments and results

In order to validate the ability of the models to recapitulate biological phenomena observed

in the wet lab, the experiments start off by simulating and analysing the wild-type models,

before considering the effect on neighbouring wild-type cells of a clone of mutant cells

lacking Fz or Vang proteins or other core signalling proteins mentioned at the beginning of

this chapter. Then mutant clones are introduced to the in-silico tissue in order to reproduce

well-documented PCP phenotypes.

An approach including clustering using DBScan with PCA and PLTLc model checking,

is proposed in this section to analyse and check the family of HCPN models against

qualitative features of the experimentally observed PCP phenotypes. The approach could

be applied to analyse other multi-scale models with similar features. Some results were

published in [Gao 11, Gao 12].2

Experiment 1: Unbiased model

Current biological models of PCP in the literature [Stru 01] show that at initialisation of

signalling PCP proteins are symmetrically distributed along the cell membrane. In order to

mimic this, the unbiased model was used to reflect this symmetry.

Clustering. It is expected that FFD complexes would be equally distributed over the

six membrane compartments in those cells which communicate with six neighbouring

cells (i.e. except boundary cells). The continuous simulation result confirms the expected

behaviour, as shown in Figure 5.5; all cells with six neighbours belong to cluster 3 (labelled

in green in Figure 5.5). Cells at each boundary are separately assigned to other clusters;

2Model checking queries: the concentration of FFD in the proximal and distal compartments (1,1), (2,1),
(3,1), (1,3), (2,3), and (3,3) are represented by P1, P2, P3, D1, D2 and D3.
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due to the different number of communication neighbours resulting from the honeycomb

grid. In the following analyses tissue border cells are ignored, since these are an artificial

artifact, and there are no real biological data or observations for these.
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Figure 5.5: Clustering for continuous simulation of unbiased and BFXWt models.

Model checking, primary data. The unbiased model is constructed to reproduce

the lack of polarisation, causing proteins to be symmetrically distributed along the cell

membrane. This is confirmed by the results, see Figure 5.6 which shows identical

time-series plots for all six membrane compartments.

For this, the following query was formed, where P1, P2, P3, D1, D2 and D3 denoted

the concentration of FFD in the proximal and distal compartments.

P=? [G(P1 = P2 ± δ ∧ P1 = P3 ± δ ∧ P1 = D1 ± δ
∧P1 = D2 ± δ ∧ P1 = D3 ± δ)]

Note that P1 = P2 ± δ is a short-hand for P1 < P2 + δ ∧ P1 > P2 − δ. A small value

δ = 0.003 was used because the query was dealing with real numbers, and there could be

slight variations between traces due to, for example, effects in the solver. This query holds

for all non-boundary cells.

Model checking, secondary data. Because the wild type cells (except boundary cells)

exhibit the same time-series behaviour in all compartments, the accumulation of FFD is
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Figure 5.6: Unbiased model, continuous simulation for a representative of cluster 3 (see
Figure 5.5).

identical in all membrane compartments (see Figure 5.7).

The same query as above was used, but set δ = 0.04 due to the cumulative nature of

variations; again this query holds for all non-boundary cells.
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Figure 5.7: Unbiased model, cumulative signal for a representative cell, relating to
Figure 5.6.

Experiment 2: Biased model with feedback loop and factor X, wild-type

(BFXWt)

Clustering. The feedback loop mediates the competition between proximal and distal

proteins between adjacent surfaces of neighbouring cells and amplifies the asymmetric

localisation of these proteins. In wild-type cells, Dsh and Fz localise on the distal

membrane, while Vang and Pk accumulate to the proximal membrane as seen in vivo

[Axel 01, Bast 03, Stru 01, Tree 02a]. The results obtained by clustering analysis for

this model exhibit similar characteristics to the wild-type unbiased model (Experiment 1,

Figure 5.5).

Model checking, primary data. The time-series behaviour for a representative cell is

shown in Figure 5.8. The middle proximal and the distal compartments were chosen for

comparison because they exhibited the largest differences in proximal-distal intra-cellular

behaviour. At the initial time point all concentrations are zero; after this the concentration
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of FFD in the middle distal compartment ((2,3) in Figure 5.8) represented by D2 is

always the highest of all the compartments, and that in the middle proximal compartment

((2,1) in Figure 5.8) represented by P2 is always the lowest. The upper and lower distal

compartments are equal, lower than the middle distal and higher than the corresponding

upper and lower proximal compartments.
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Figure 5.8: BFXWt model, continuous simulation for a representative of cluster 3 (see
Figure 5.5).

The following query was constructed to reflect the observation above, where δ = 0.002:

P=? [time > 0→ G(D2 > D1 ∧D1 = D3 ± δ∧
D1 > P1 ∧ P1 = P3 ± δ ∧ P1 > P2)]

It has been observed that all traces exhibit one peak followed by a trough, and formulate

a query for compartment D2 as an example, using the differential function:

P=?[F (d(D2) > 0 ∧ F (d(D2) < 0 ∧ F (d(D2) > 0)))]

The queries were then extended in the obvious manner to show that the proximal

compartments have two peaks whilst the distal compartments have one peak in the traces
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over the time period shown here.

P=?[F (d[P2] > 0 ∧ F (d[P2] < 0 ∧ F (d[P2] > 0) ∧ F (d[P2] < 0 ∧ F (d[P2] > 0)))))]

Model checking, secondary data. It has been observed that the middle distal

compartment always has a higher cumulative time series than the other compartments,

whereas the middle proximal compartment is consistently the lowest. The upper and

lower distal compartments are very similar, less than the middle distal and higher than

the corresponding upper and lower proximal compartments (see Figure 5.9).
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Figure 5.9: BFXWt model, cumulative signal for a representative cell, relating to
Figure 5.8.

The cumulative variables for the membrane compartments P1, . . . , D3 by

CP1, . . . , CD3 were denoted. The equivalent query to that which was formulated

for the time series traces holds for the cumulative signal, again with δ = 0.002:

P=? [time > 0→
G(CD2 > CD1 ∧ CD1 = CD3 ± δ∧
CD1 > CP1 ∧ CP1 = CP3 ∧ CP1 > CP2)]

Free variables in MC2 [Dona 08] were used to compute the range over the difference
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in the maximum and minimum cumulative signals:

P=? [$γ = max(CD2)−max(CP2)]

In this case γ = 194, indicating the clear signal in the Wt for the formation of the hairs

in the central part of the distal edge of the cell.

Experiment 3: Biased models with with feedback loop, factor X and

mutated clones (BFXFz and BFXVang)

This experiment presents the results of both fz- and vang- mutant clones. As reported

in [Gubb 82, Vins 87], cells in a fz- clone have incorrect polarity and occasional multiple

hairs. Wild-type cells distal, but not proximal to the clone have incorrect polarity, pointing

more proximally towards the clone [Gubb 82, Vins 87], see Figure 3.2. Regarding the

capability of the current model, it is expected that: (i) cells in the clone have incorrect

polarity (FFD does not form); (ii) wild-type cells distal to the clone have FFD accumulated

at the proximal rather than distal edge of cell.

As reported in literature [Tayl 98, Ma 03], cells in a Vang- clone have proximal

domineering nonautonomy characteristic, the wild-type neighbouring cells proximally next

to the clone point away from the clone rather than towards the clone.

Clustering: fz- mutant clone. The result demonstrates the impact of a clone of fz-

mutant cells on the neighbouring wild-type cells surrounding it, see Figure 5.2 (c), where

all of the mutant cells are in one cluster, and disruption was detected in all the wild-type

cells directly adjacent to the clone. In more detail, different clusters are detected, and

hence different responses in the wild-type cells to each of the six sides of the clone. Note

that each of the six cells at the vertices of the clone were detected as individual outliers by

the clustering technique. Because Fz is knocked out in all mutant cells, the supply of Fz to
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form FFD is completely cut off, leading to zero FFD in the mutant cells. In addition, FFD

could be affected by adjacent cells due to intercellular communication. These factors have

an influence on the clusters that are detected.

Clustering Vang- mutant clone. The result shows the impact of a clone of Vang-

mutant cells on their neighbouring cells around it (see Figure 5.10). In this case the central

cells in the clone is in one cluster, while the mutant cells at the edges of the clone are in

other clusters – one cluster at each of the six edges. Disruption has been detected in all the

wild-type cells directly adjacent to the clone, resulting in several clusters, one at each edge

of the clone. Only cells at four of the vertices of the clone are detected as individual outliers

by the clustering technique. The lack of Vang in the central mutant cells indirectly affects

the formation of FFD in adjacent cells due to intercellular communication. Thus while the

central Vang- clone cells has zero FFD due to the lack of Vang in their surrounding cells,

mutant cells at the boundary of the clone have some FFD because they maintain some

communication with adjacent wild type cells. Proximal domineering nonautonomy was

reported for Vang- clone[Tayl 98], cells proximal but distal to the clone point away from

the clone, while cells distal to the clone somehow behave as the wild-type cells (pointing

distally). Thus cells distal and proximal to the clone are expected to belong to different

clusters, which is confirmed by the clustering results. Cells in the distal or proximal edge

of the clone is assigned to three clusters, respectively. Because cells at the same edge to the

clone have similar overall behaviour pointing away from the clone, however the angle of the

hair in each cell may be slightly different from each other due to different communication

patterns with its neighbouring cells.

Model checking, primary data, fz- clone. In the following, only the middle distal and

middle proximal compartments, D2 and P2, are considered because they exhibit the highest
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Figure 5.10: Clustering for continuous simulation of model BFXVang.

PCP signal.

Unlike in the wild-type cells, for the cells distally neighbouring to the clone the

concentration of FFD in the middle distal compartment is always lower than that of the

middle proximal compartment, see Figure 5.11:

P=? [time > 0→ G(D2 < P2)]

Moreover, the trace of D2 exhibit a peak followed by a trough, which is not true for P2:

P=?[F (d(D2) > 0 ∧ F (d(D2) < 0 ∧ F (d(D2) > 0)))]

However the cells immediately proximal to the clone exhibit behaviour similar to

wild-type cells, i.e. the middle distal compartment is always higher than the middle

proximal compartment (see Figure 5.12). The concentration of FFD in all the clone cells is

zero at all time points.

Model checking, primary data, vang- clone. All the non-boundary cells within the

clone have zero FFD at all time points, however the clone cells directly adjacent to the clone

boundaries do exhibit some accumulation of FFD in those compartments directly abutting
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Figure 5.11: BFXFz model, continuous simulation for a representative of cells distally
adjacent to the fz- clone (cluster 10, coloured in ECE amber see Figure 5.2 (c)).

wild-type cells; this was to be expected because of the formation of FFD could take place

with participation of Vang from the adjacent wild-type cells.

As in the wild-type cells, the concentration of FFD in the middle distal compartment of

the cells distally neighbouring to the clone is always higher than that of the middle proximal

compartment, but this latter is always zero. The trace for the distal compartment exhibit a

peak and a trough, see Figure 5.13.

P=?[(time > 0→ G(D2 > P2)) ∧G(P2 = 0)]

P=? [F (d(D2) > 0 ∧ F (d(D2) < 0 ∧ F (d(D2) > 0)))]

The behaviour of the cells immediately proximal to the clone is similar to wild-type

cells, in that middle proximal compartment is always higher than the middle distal

compartment, while the latter is always zero (see Figure 5.14).

P=?[(time > 0→ G(P2 > D2)) ∧G(D2 = 0)]

P=? [F (d(P2) > 0 ∧ F (d(P2) < 0 ∧ F (d(P2) > 0)))]
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Figure 5.12: BFXFz model, continuous simulation for a representative of cells proximally
adjacent to the fz- clone (cluster 9, coloured in amber see Figure 5.2 (c)).

Model checking, secondary data, fz- clone. All biased models with the fz- clone

(BFXFz, BFTFz and BFXTFz) always exhibit a relatively higher cumulative signal in the

middle proximal compartment compared to the middle distal compartment in those cells

distally directly next to the fz- clone (see Figure 5.15 for model BFXFz):

P=? [time > 0→ G(CD2 > CP2)]

Run the following query to check wild-type cells not adjacent to the clone:

P=? [$γ = max(CD2)−max(CP2)]

In this case, the range over the difference in the maximum and minimum cumulative

signals γ = 72, indicates a severe loss of polarising signal compared to BFXWt model.

The wild type cells in the tissue (i.e. away from the clone area) display behaviour

similar to the wild type cells in the BFXWt model (see Figure 5.9).

P=?[time > ε→ G(CD2 > CD1 ∧ CD1 = CD3 ± δ ∧

CD1 > CP1 ∧ CP1 = CP3 ∧ CP1 > CP2)]
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Figure 5.13: BFXVang model, continuous simulation for a representative of cells distally
adjacent to the vang- clone (cluster 12, see Figure 5.10).

where ε = 50 and δ = 0.2

The behaviour of the cells proximally next to the fz- clone (see Figure 5.16) is similar

to that of the wild-type cells in the model. All clone cells within the fz- clone have zero

accumulation of FFD in all compartments because there is no supply of Fz to form the FFD

complex.

Model checking, secondary data, vang- clone. In contrast to the fz- clone, for all

Vang- clone models (BFXVang, BFTVang and BFXTVang) the cumulative signal in the

proximal cells next to the clone is always higher in the middle proximal compartment

compared to the middle distal compartment, and the latter is always zero (see Figure 5.18

for the BFXVang model):

P=?[(time > 0→ G(CP2 > CD2)) ∧G(CD2 = 0)]

In this case the range over the difference in the maximum and minimum cumulative

signals between the compartments is given by γ = 421 over compartmentsCP1 andCP3 as
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Figure 5.14: BFXVang model, continuous simulation for a representative of cells
proximally adjacent to the vang- clone (cluster 11, see Figure 5.10).

the maxima and CD2 as the minima indicating strong polarisation in the opposite direction

to the Wt cells.

The behaviour of the distal cells next to the clone (see Figure 5.17) exhibit a similar

trend to that of the wild-type cells; however the cumulative value for FFD in the middle

proximal compartment is always zero, and the values in the upper and lower proximal

compartments are lower than in the wild-type cells. This is because the knockout of Vang

in the adjacent cells in the clone causes the lack of FFD in the distally neighbouring cells.

P=?[(time > 0→ G(CD2 > CP2)) ∧G(CP2 = 0)]

P=? [$γ = max(CD2)−max(CP2)]

In this case γ = 472, indicating very strong polarisation in the normal (Wt) direction.

The findings regarding the analysis of the secondary data are consistent with

observations reported in the literature, for example [Gubb 82, Vins 87, Axel 11], namely

that PCP disturbance was reported in cells distal to fz- clones, whereas the disturbance
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Figure 5.15: BFXFz model, cumulative signal for a representative of cells distally adjacent
to the fz- clone, relating to Figure 5.11.

is on the proximal side of Vang- clones. The cause of this disturbance is indicated by

the cumulative plots for these cells, where there is a lack of an orienting signal in the

distal neighbours to the fz- clone (see Figure 5.15), and the near-zero values in the distal

compartments for the proximal neighbours to the Vang- clone (see Figure 5.18).

Other clones, e.g. fmi, dsh, pk, were also modelled using BFX model. Simulated the

clone of cells lacking dsh function results in the disruption of polarity within the mutant

cells, but only shows a mild effect on cells outside of the clone. The nearly, though not fully

cell autonomous phenotype is similar to that which was observed experimentally [Adle 04],

despite allusions in the literature to a fully cell autonomous phenotype for dsh. Clones of

cells lacking all pk function show only a very subtle phenotype, consistent with the data

obtained from this work and published reports ([Adle 01]).

Table 5.1 summarises simulation results of distributions of all core proteins using BFX

model, and the results are highly concordant with the available published experimental
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Figure 5.16: BFXFz model, cumulative signal for a representative of cells proximally
adjacent to the fz- clone, relating to Figure 5.12.

observations.

Clone Simulation results Experimental observations
fmi- No Polarity in both clone and neighbouring wild-type cells Ref [Amon 05, Usui 99]
fz- Distal domineering nonautonomy Ref [Gubb 82]

vang- Proximal domineering nonautonomy Ref [Tayl 98]
dsh- Polarity disruption inside of the mutant clone Ref [Kili 94, Thes 94]
pk- No polarity reversal Ref [Adle 01] [Amon 05]
pk+ Distal domineering nonautonomy Ref [Bast 03]

Table 5.1: Comparison of simulated and experimental protein localisation. For loss
of function and overexpression clones obtained from BFX model. By systematically
comparing the simulations to available experimental results, in nearly all cases, the
simulations closely approximate the experimental results.

Remarks Other HCPN models were also analysed following the same approach as

demonstrated above in this section. The findings suggest that this approach can satisfy the

need to analyse and check multi-scale models in both human and machine compatible ways.

In addition, by analysing the simulation results, BFX model is able to provide the most
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Figure 5.17: BFXVang model, cumulative signal for a representative of cells distally
adjacent to the vang- clone, relating to Figure 5.13.

promising description of PCP by reproducing nearly all biological observations reported in

literature compared to other models. Therefore, it was used as the example to present the

analysis and model checking approach above.

Some of the logic statements can be used as classifier over different clusters, for

example, the query describes that the concentration of FFD is always zero:

P=?[G(P1 = 0) ∧G(P2 = 0) ∧G(P3 = 0) ∧G(D1 = 0) ∧G(D2 = 0) ∧G(D3 = 0)]

In the case of the fz- clone, MC2 returns P=1 (true) only to cells in the clone, while

P=0 (false) for other cells. This query thus can be considered as a classifier to characterise

a particular kind of behaviour.
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Figure 5.18: BFXVang model, cumulative signal for a representative of cells proximally
adjacent to the vang- clone, relating to Figure 5.14.

5.7 Discussion

This section discusses insights into domineering nonautonomy by comparing the family

of HCPN models constructed based on different hypotheses, and subsequent experiments

supporting model predictions.

5.7.1 Insight into domineering nonautonomy

The analysis of each HCPN model provides a clear view of the model itself, whether it can

reproduce characteristic PCP phenotype and how much it can recapitulate those biological

observations. However, in order to understand the possible mechanisms of PCP signalling,

it is necessary to compare different models to have insights into nonautonomy. Therefore,

the family of HCPN models were studied by comparing their effects on the strength of the

signalling.
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In order to discover model(s) which would be able to capture most biological

observations, all models were used to create an in-silico tissue of 800 cells imposed in

a 40 by 40 rectangular grid, where introducing 80 mutant cells lacking of fz, respectively.

After simulating each model, a score Sfz (the penalty defined in Section 4.5.3.2 in Chapter

4) for each model was calculated. As reported in literature, PCP disturbance occurs in cells

distal to fz- clones, indicating that FFD in the distal membrane should be higher than that

in the proximal membrane in those cells. Thus it is expected that Sfz would be greater than

zero in cells distally neighbouring to the fz- clone, while smaller than zero in wild-type cells

far away from the clone. The results show that simulations obtained from BFXFz model

is most consistent with biological observations (see Figure 5.19), and show the strongest

polarising signal among those models which can correctly reproduce the PCP phenotype.

This is the reason that BFX model was used as a representative to illustrate the analysis

approach in this chapter. This result somehow support the point that the feedback loop

acts to both amplify the global directional cue and relay the signal to neighboring cells

[Axel 01, Axel 11, Tree 02a]. More results can be found in Appendix B.

5.7.2 pk-engrailed overexpression pattern

When originally formulating the feedback loop models, it was found that pk overexpression

in the posterior wing domain enhanced the accumulation of FFD at cell boundaries, and

it was proposed that this reflected an enhancement of accumulation at the opposing cell

surface through the feedback mechanism [Tree 02a]. However, that the mechanism would

show this property was not obvious. To examine this more rigorously, this experiment was

modelled in a 15 by 15 array comprising 112 cells with a clone of mutant cells variably

overexpressing Pk in a band of 15 cells. Consistent with experiments overexpressing pk
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Figure 5.19: Score Sfz for representative cells in models with fz- clone. As reported in
literature [Gubb 82, Vins 87], the fz- clone produces a distal domineering nonautonomy.
In the model, this can be translated as follows: (i) Sfz > 0 in cells distally next to the fz-
clone; (ii) Sfz < 0 in other wild-type cells in the background.

in the engrailed (en) domain in the posterior of the wing ([Tree 02a]), FFD are seen to

accumulate to higher levels in the region overexpressing pk than in the wild-type region

(use middle distal compartment D2 as representation, see Figure 5.20). Therefore, despite

the cell autonomous inhibition of FFD complex formation, the feedback loop causes the

system to respond to excess Pk by maintaining high levels of membrane bound Dsh, Fz,

and Pk.

5.7.3 Predicting additional phenotypes

Until now, results haven been shown reproducing known characteristic PCP phenotypes. It

is not expected that the models would necessarily reproduce additional mutant conditions

without additional training of the model parameters. However, the model could be

expected to predict combinations of the conditions that were used in selecting the model

parameters. Three such mutant conditions were observed in the Drosophila abdomen

[Lawr 04, Lawr 10] (see Table 5.2). The models were developed and trained on the
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Figure 5.20: BFXPk+ model, continuous simulation for middle distal compartment (D2) in
two representative cells: (i) cells with overexpressing Pk (labelled in pink); (ii) wild-type
cells in background (labelled in blue).

- fz- clone in a pknull background
- overexpressing fz and vang- clone
- overexpressing fz clone in a fz- background

Table 5.2: Three mutant conditions observed in the Drosophila abdomen

Drosophila wing, but the polarity of hairs on the fly abdomen behave similarly to those

on the wing, and the same core polarity signalling components have been implicated in

establishing planar polarity in the abdomen. These conditions were simulated using the

same parameter set previously identified, and it was found that the simulation results

corresponded well with the published results. Note all simulations were run over an

in-silico tissue based on a honeycomb grid imposed on an underlying 30 × 30 rectangular

grid comprising 450 cells, with mutant clone(s) in a circle-like shape with 30 mutant cells.

When fz- clones appear in a pknull background (no Pk protein exists in the tissue),

the simulation predicts that cells surrounding the clone repolarise to point toward the
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Figure 5.21: Clustering for continuous simulation of BFX model: fz- clone in a pknull

background. Cells surrounding the clone repolarise to point towards the fz- clone, and
pknull background cells show very little asymmetry. Compared with Ref. [Lawr 04].

fz- clone (see Figure 5.21). The remaining pknull background cells show very little

asymmetry, and variation in the direction of these hairs would be predicted for an actual

wing. This is consistent with data from the abdomen, where nonautonomous repolarisation

of surrounding pk null background cells was observed [Lawr 04, Lawr 10]. This serves as

another example where the feedback loop mechanism can lead to nonautonmous behavior

despite the global absence of one of the feedback loop signalling components, pk.

Simulations of fz overexpression (Fz+) in a vang- clone (see Figure 5.22) look similar

to results obtained when simulating Vang- clones, resulting in a nonautonomous polarity

reversal in wild-type cells proximal to the clone. In the interior of the clone, polarity

is reduced, predicting a randomised hair pattern in this region. These predictions are

consistent with results described for the abdomen [Lawr 04, Lawr 10], although they do

not observe the ordered polarity of cells within the clone that touch the clone border as

predicted by the simulation. A possible explanation for this discrepancy, consistent with
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Figure 5.22: Clustering for continuous simulation, BFXFz+Vang- model (a mutant clone
comprising of fz+ and vang-). The simulations look similar to results obtained when
simulating vang- clones, resulting in a nonautonomous polarity reversal in wild-type cells
proximal to the clone. In the interior of the clone, polarity is reduced similar to experiment
of Vang- clone (see Figure 5.10). Described but not shown in Ref. [Lawr 04], also described
in Ref. [Lawr 10].

observations from the following simulation case, is that final distributions of Vang or Pk

may also play a role in directing the site of prehair initiation, and so the loss of Vang

function inside the clone may disrupt polarity to a greater extent than is predicted by the

simulation.

When fz is overexpressed in a clone of cells within a fz- background, the overexpressing

cells are predicted to polarise (see Figure 5.23). The data from the abdomen show a single

row of cells outside of the overexpressing cells that have also been repolarised to align

with the fz overexpressing cells [Lawr 04]. The simulation results show a repolarisation of

some of the proteins within cells adjacent to the fz overexpressing cells that is consistent

with the abdomen data for these cells, but in the absence of Fz, there is no mechanism for

the accumulation of Dsh to the membrane to in turn direct the predicted hair polarity of
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Figure 5.23: Clustering for continuous simulation of BFX model: fz+ clone in a fz-
background. This shows that the overexpressing cells are polarised (labelled in red), while
fz- background cells are not (labelled in yellow). Compare with Ref. [Lawr 04].

these cells (therefore the influence of neighbouring cells of the clone in the results obtained

from clustering FFD can not be seen). This suggests that these fz- background cells retain

some ability to interpret the asymmetric accumulation of Pk and Vang to direct the site of

prehair initiation.

5.8 Summary

With the growth of various data resources and urgent need to scale up in systems biology,

proper analysis and visualisation techniques for multi-scale modelling becomes more and

more crucial. In this chapter, the approach comprising clustering with visualisation and

model checking provides the feasibility to analyse and check the models by both human and

machine. The HCPN models have been proven to reproduce well-studied PCP phenotypes,

such as fz- or vang- clone in a wild-type background. The clustering method provides
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a visual speculation of tissue-level behaviour using time-series data obtained from the

intracellular level. The dynamic behaviour of each protein of interest is characterised by

temporal logic statements, and verified by model checking. Some of the logic statements

can be used as classifier over different clusters. Some insights into the mechanisms

underlying PCP have been discussed with the results obtained from the HCPN models.

Moreover, several predictions of combination of mutant clones reported in the Drosophila

abdomen have been made using the BFX model, which would be testable in a biological

laboratory. In addition, the findings have demonstrated that hierarchically as a modelling

formalism permits easy construction of large scale (e.g. multi-scale) models, especially

those with a hierarchical organisation, and allows comparison between model variants.



Chapter 6

Conclusions, future work and open
problems

6.1 Conclusions

This chapter briefly summarises the efforts of developing and analysing multi-scale models,

the key results from the multi-scale models of PCP, and points out some general directions

for extending the model that may yield additional insight. Several open problems in

multi-scale modelling of PCP signalling and other such systems are later described, along

with some thoughts on how some of these problems may be addressed.

The complexity and diversity of biological phenomena, the range of spatial and

temporal scales over which they act, and the intricate way in which they are interwoven,

make practically unfeasible the understanding of living systems through intuition alone.

Therefore, multi-scale modelling approaches are essential tools in the quest for a

quantitative understanding of living systems. This thesis has presented the application

of hierarchically coloured Petri net techniques to construct a family of multi-scale

computational models in order to explore the mechanisms that drive Planar Cell Polarity

in Drosophila wing tissue. Results have shown that the family of models recapitulate

132
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signalling phenomena known to occur in wild-type and mutant clones. The approach

has involved developing sophisticated patterns of communication over hierarchically

organised components. The thesis demonstrated the power of the new concept of

hierarchically coloured Petri nets (HCPN) introduced in [Gao 12] to model multi-scale

systems, especially those with a hierarchy structure, and associated analysis approach

(cluster analysis and simulative model checking of primary and secondary data) which

has been developed in [Gao 11, Gao 12]. The computational experiments have been over

very large underlying models each comprising over 150,000 ODEs. The issues highlighted

in the efforts of modelling include

• Illustrating how colours can be used to encode both space and hierarchy

• Computational challenges due to the fact that currently simulations must be

performed at the unfolded level rather than at the coloured level. The largest

model that has been constructed so far consists of 800 cells, each with 7 virtual

compartments, comprising 19 places and 23 transitions as a CPN model which when

unfolded yields 164,0000 places (biochemical entities, each of which is described by

an ODE) and around 210,000 transitions (reactions). Unfolding takes 2.5mins, while

simulation takes up to several hours to run on a dual core computer (see Table 4.5).

• Fitting the multi-scale model to data, where problems are due to (i) the lack of

reliable time-series data for concentrations of key biochemical entities because the

time period being modelled is during the pupal stage when it is difficult to obtain such

data; (ii) data of hair orientation is at the tissue level whereas the kinetic parameters

being fitted are at the biochemical level in the virtual compartments; (iii) these data

are at one time point (the adult state - i.e. the final state); (iv) the complexity of the
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model as it takes hours to run each simulation of a large-size model, e.g. a model of

800 cells, whereas simulation is iteratively repeated in the fitting procedure.

Much work remains in order to have a full understanding of PCP signalling, but

with the development of a family of multi-scale computational models of PCP, progress

has been made in linking observations about individual signalling components and

hypotheses about their interactions to the system behaviours that are ultimately of interest.

Further development of these model can also continue to motivate, integrate, and test

new experimental findings and hypotheses, making the multi-scale models an integral

component in exploring the mechanisms that drive PCP signalling in Drosophila wings.

A family of multi-scale computational models of PCP in the Drosophila wing have

been developed based on hypotheses derived from experimental results. First hypothesis,

which relies on local feedback loop acting at the cell membrane, can adequately account

for the autonomous and nonautonomous phenotypes of various mutant clones has been

the source of some controversy in the field, and some have argued that it cannot account

for some observed phenotypes [Adle 02, Stru 02d]. Second hypothesis, cells responses

to an initial cue by producing and secreting a diffusible second factor (Factor X) whose

graded distribution determines polarity [Adle 00, Adle 00, Fant 03, Lawr 99, Lawr 02,

Stru 97a, Stru 02a, Wehr 98, Zeid 99]. The third is that the transport of core proteins,

Fmi, Fz and Dsh, are oriented by controlling the polarity of microtubule cytoskeleton

[Olgu 10]. By modelling the feedback loops, Factor X and polarised vesicle transport of

the three core proteins, the family of multi-scale models were constructed using HCPN.

BFX model was able to reproduce in simulation all of the most characteristic PCP

phenotypes, demonstrating the feasibility of the underlying biological model as a PCP

signalling mechanism. Simulation results from the models suggested it highly possible
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that the early aspect of PCP establishment requires a global directional cue to orient cell

polarity in which feedback loop directs Fz accumulation as amplifier, which yields results

consistent with literature [Axel 11]. In addition, BFX model was also able to predict

combinations of the conditions, in which simulation results corresponded well with the

published results[Lawr 04, Lawr 10].

6.2 Future work

The multi-scale models presented thus far serve as a starting point, from which may be

continuously used to refine the understanding of PCP signalling and incorporate additional

knowledge to explain new experimental observations. Many signalling components known

to be involved in PCP signalling have not been included in the multi-scale models, because

their roles remains largely unclear. One natural extension to the models, however, would

be the inclusion of Diego (Dgo) [Feig 01], which promotes the maintenance of apical

localisation of Fmi [Das 04]. This function of Dgo is redundant with Pk and Strabismus

(Stbm), and only appreciable in double mutant tissue [Das 04, Jenn 05]. The initial

membrane association of Dgo depends on Fz, and Dgo physically interacts with Pk and

Stbm through its Ankyrin repeats, while Dgo and Pk compete with one another for Dsh

binding, thereby modulating Fz/Dsh activity and ensuring tight control over Frizzled PCP

signalling [Jenn 05]. A mathematical model that includes Dgo may yield some insight

into whether or not Diego is in a direction dependent fashion. This may discover how

the initial localisation of PCP signalling proteins maintained, i.e. if Dgo stabilises the

initial multiprotein complex, either a direct effect of Dgo and Pk or mediated through

their effect on Fmi affects the localisation of Dsh. Another possible extension to the

models would be the inclusion of downstream of core components. For example, the
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small GTPase RhoA and its associated kinase Drok, known regulators of actin dynamics,

contribute to organising distal actin assembly and prehair formation [Stru 97b, Wint 01].

The FH3-domain protein Multiple Wing Hairs and the membrane proteins Inturned (In)

and Fuzzy (Fy) act cell autonomously on the proximal side and appear to be involved in

restricting the site of wing hair initiation [Park 96, Coll 97, Stru 08]. This may give more

insight into the downstream control of PCP signalling to direct wing hair formation.

Parameter optimisation for the ODE model was performed using essentially small

regular hexagonal arrays. Better agreement between simulation results from the ODE

model and experimental data may be achieved by instead measuring and fitting on larger

cell geometries and hair angles from clones of the mutant conditions listed in Table 5.1.

This is especially true for mutant conditions that result in domineering nonautonomy, where

the extent to which wild-type cells near a clone are repolarised can be used to train the

mathematical models to achieve the same degree of nonautonomy. The parameters selected

thus far have not used this information, and so they currently only qualitatively reproduce

PCP phenotypes. The collection of time series data, such as quantitative measurements of

protein localisation at various stages during PCP signalling, may be used to better fit the

dynamic behavior of the mathematical models. Currently, only the final protein localization

state is used, and so there is no basis for training and verifying the dynamic behavior of the

mathematical model. Temperature-sensitive alleles of fz may also permit experiments in

which the effect of turning the signalling on and off at various times during the development

of the wing can be measured. Simulating the same conditions may also permit to train and

validate the dynamic behavior of the mathematical models.

As experimental methods continue to be developed and refined, it may soon be practical

to continuously capture images of a developing wing. By extending the model to allow for



137

simulations on time-evolving cell geometries, the mathematical models may be able to

account for the time and geometry dependence of the feedback loop.

6.3 Open problems

The relationship between the feedback loop and the remaining tiers of the signalling

hierarchy is not well understood and represents a challenge that multi-scale modeling may

help address. For instance, only the upstream asymmetry input signal was included in this

thesis. Therefore, an important direction for future work would be to extend the multi-scale

models to explicitly include these upstream signalling components and further elucidate

their precise roles in PCP signalling.

Little is also known about the signalling components that convert the asymmetric

localisation of the core polarity proteins at the end of PCP signalling into the site of

prehair initiation, e.g. extending the models to include downstream signalling components

to drive additional experiments to better understand how the core polarity genes interact

with downstream signalling components to direct hair polarity.

An increasingly important and open problem in systems biology is the identification of

mathematical model parameters that describe robust biological systems. The parameter

optimisation method that has used are concerned primarily with demonstrating the

feasibility of the mathematical model to reproduce some observed behaviour of the

biological system. Only after a parameter set has been identified can the resulting model

be verified if it is not overly sensitive to parameter variations and reflects a plausible

representation of the system. It would be interesting to incorporate the knowledge of the

robustness properties of these systems into the parameter optimisation process itself, so

that the resulting parameter set yields a more valid representation of the system, and so
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that the computational effort of verifying the robustness of the mathematical model can

be combined with the computational effort of parameter optimisation. Given the great

uncertainty that often characterises models of complex biological systems, understanding

and measuring the robustness properties of a system may give some indication of the

validity of a model.

In search for a proper modelling formalism perhaps the most important aspect to

consider is the balance between simplicity and expressiveness. There is a price to pay for

the amount of features provided by a formalism, which may come at the cost of increased

model complexity. The complexity of the representation and the number of parameters

determines the amount of experimental data required for model construction. This concern

is most critical when not only the parameters but also the network structure are unknown.

This is even more critical for selecting an appropriate multi-scale modelling formalism as

the natural growth of complexity in such a biological system. In addition, availability of

suitable modelling frameworks and simulation environment are likely be one of the most

important factor in the wider adoption of multi-scale modeling in systems biology. Most

of the present modelling and simulation tools are developed for single scale modelling and

alone not sufficient for multi-scale modelling. Some may still play major roles in the new

emerging frameworks of multi-scale modelling as simulation of multi-scale models will

probably involve assembly of different simulators in an integrative manner, each individual

being used in its own area of specialisation, e.g. linking different formalisms to create

integrative one model.

Similarly searching for suitable approaches to analyse and check multi-scale models

is very challenging due to: (i) the output of such biological systems is semi-quantitative

experimental data; (ii) the level of behaviour which can be observed in the model is
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different from the level which can be observed in experimental data; (iii) the need to

consider the physiological geometries (one, two or three dimensions) as well as pattern

formation.

HCPN is a generic modelling formalism imposing a hierarchical structure over colours

to reflect the hierarchy inherent in a system being modelled. This hierarchically structured

colouring allows locality to be encoded in colours, for example, a tuple (x,y) or (x,y,z)

representing two or three dimensions geometry. It can also be employed to model

multi-scale systems (Chapter 4 gives a detailed example, also see [Gao 12]), where a

hierarchy is encoded as (nested) tuples of tuples, e.g. ((x1, y1), (x2, y2)) representing a

2-dimensional grid (x2, y2) within a larger 2-dimensional grid (x1, y1).
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Appendix A

Details of the ODE models

Parameter Value Parameter Value Parameter Value
[Prot]0 2 [Fz]0 1 [FmiV ang]0 0
[Fmit]0 0 [Dsh]0 1 [FFD]0 0
[Fzt]0 0 [Pk]0 1 [FV P ]0 0
[Dsht]0 0 [V ang]0 1 [complex]0 0
[Pkt]0 0 [Ld]0 1 [Fz†]0 0

[V angt]0 0 [FmiFmi]0 0 [mutant]0 0
[Fmi]0 1 [FmiFz]0 0

Table A.1: Initial concentration set for the ODE models.

Parameter Value Parameter Value Parameter Value
k1 5.47 kf1 3.9e-1 kp5 1.3e-3
kd1 9.7e-3 kf2 8.5e-1 kt1 9.6e-3
k2 9.65 kf3 8.0 kt2 8.0e-3
k3 9.65 kf4 4.1 kt3 7.7e-3
k4 9.59 kp1 9.6e-3 kt4 6.6e-3
kd4 6.6e-2 kp2 8.0e-3 kt5 1.3e-3
k5 9.57 kp3 7.7e-3 kx 5.0
kd5 4.9e-2 kp4 6.6e-3 kamutant 0

Table A.2: Selected parameter set for the ODE models underlying BFX model.
a the rate for knock-out reactions.
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Model Description
Unbiased includes no biasing mechanisms, such as feedback loop,

factor X and polarised vesicle transport. Proteins
are symmetrically distributed along the cell membrane
[Stru 01]

BF includes feedback loop, which mediates the proximal-distal
competition among signalling components, as a result cells
tend to align their polarity such that each cell accumulates
high levels of Fz on the same side of the cell and high levels
of Vang on the opposite side [Axel 01, Axel 11, Gubb 82,
Gubb 99, Tree 02a]

BX includes a global directional clue (factor X), which was
reported to be required to orient cell polarity with respect
to the tissue axes [Adle 00, Fant 03, Lawr 99, Axel 11]

BT includes polarised transport, where the preferential
transport of Fmi, Fz and Dsh towards the distal cell
membrane have been reported in [Shim 06]

BFX includes both feedback loop and factor X
BFT includes both feedback loop and polarised transport

BFXT includes feedback loop, factor X and polarised transport
BXT includes both factor X and polarised transport

Table A.3: Details of the HCPN models

Mutant clone Description and implementations
fmi- cells in the clone lack of Fmi. In the model, [Fmi]0 equals

zero and the transport of Fmi is set to zero
fz- cells in the clone lack of Fz. In the model, [Fz]0 equals zero

and the transport of Fz is set to zero
dsh- cells in the clone lack of Dsh. In the model, [Dsh]0 equals

zero and the transport of Dsh is set to zero
vang- cells in the clone lack of Vang. In the model, [V ang]0 equals

zero and the transport of Vang is set to zero
pk- cells in the clone lack of Pk. In the model, [Pk]0 equals zero

and the transport of Pk is set to zero
pk+ cells in the clone consist of overexpressed Pk. In the model,

[Fmi]0 is set to 10 times of the original value used in other
models

Table A.4: Incorporating the mutant clones into the models



Appendix B

Detailed results of BF and BFXT models
in one-to-two neighbourhood

The following provides the simulation and clustering results for BF and BFXT models as

reference to the comparison of different HCPN models discussed in Chapter 5.
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Figure B.1: Clustering for continuous simulation of BFWt and BFXTWt models.
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Figure B.2: Clustering for continuous simulation of BFFz and BFXTFz models.
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Figure B.3: Clustering for continuous simulation of BFVang and BFXTVang models.
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Figure B.4: BFWt and BFXTWt models: continuous simulation for a representative of
wild-type cells cells, BFWt model (top left); cumulative signal for a representative of
wild-type cells cells, BFWt model (top right); continuous simulation for a representative of
wild-type cells cells, BFXTWt model (bottom left); cumulative signal for a representative
of wild-type cells cells, BFXTWt model (bottom right). Cluster 3 in Figure B.1.
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Figure B.5: BFFz and BFXTFz models: continuous simulation for a representative of
wild-type cells away from the clone, BFFz model (top left); cumulative signal for a
representative of wild-type cells away from the clone, BFFz model (top right); continuous
simulation for a representative of wild-type cells away from the clone, BFXTFz model
(bottom left); cumulative signal for a representative of wild-type cells away from the clone,
BFXTFz model (bottom right). Cluster 3 in Figure B.2.
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Figure B.6: BFFz and BFXTFz models: continuous simulation for a representative of cells
distally adjacent to the clone, BFFz model (top left); cumulative signal for a representative
of cells distally adjacent to the clone, BFFz model (top right); continuous simulation
for a representative of cells distally adjacent to the clone, BFXTFz model (bottom left);
cumulative signal for a representative of cells distally adjacent to the clone, BFXTFz model
(bottom right). Cluster 10 in Figure B.2.
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Figure B.7: BFFz and BFXTFz models: continuous simulation for a representative of
cells proximally adjacent to the clone, BFFz model (top left); cumulative signal for a
representative of cells proximally adjacent to the clone, BFFz model (top right); continuous
simulation for a representative of cells proximally adjacent to the clone, BFXTFz model
(bottom left); cumulative signal for a representative of cells proximally adjacent to the
clone, BFXTFz model (bottom right). Cluster 9 in Figure B.2.
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Figure B.8: BFVang and BFXTVang models: continuous simulation for a representative
of wild-type cells away from the clone, BFVang model (top left); cumulative signal
for a representative of wild-type cells away from the clone, BFVang model (top right);
continuous simulation for a representative of wild-type cells away from the clone,
BFXTVang model (bottom left); cumulative signal for a representative of wild-type cells
away from the clone, BFXTVang model (bottom right). Cluster 3 in Figure B.3.
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Figure B.9: BFVang and BFXTVang models: continuous simulation for a representative
of cells distally adjacent to the clone, BFVang model (top left); cumulative signal for a
representative of cells distally adjacent to the clone, BFVang model (top right); continuous
simulation for a representative of cells distally adjacent to the clone, BFXTVang model
(bottom left); cumulative signal for a representative of cells distally adjacent to the clone,
BFXTVang model (bottom right). Cluster 12 in Figure B.3.
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Figure B.10: BFVang and BFXTVang models: continuous simulation for a representative
of cells proximally adjacent to the clone, BFVang model (top left); cumulative signal
for a representative of cells proximally adjacent to the clone, BFVang model (top right);
continuous simulation for a representative of cells proximally adjacent to the clone,
BFXTVang model (bottom left); cumulative signal for a representative of cells proximally
adjacent to the clone, BFXTVang model (bottom right). Cluster 11 in Figure B.3.
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Figure B.11: BFVang and BFXTVang models: continuous simulation for a representative
of mutant cells at the distal boundary of the clone, BFVang model (top left); cumulative
signal for a representative of mutant cells at the distal boundary of the clone, BFVang model
(top right); continuous simulation for a representative of mutant cells at the distal boundary
of the clone, BFXTVang model (bottom left); cumulative signal for a representative of
mutant cells at the distal boundary of the clone, BFXTVang model (bottom right). Cluster
14 in Figure B.3.
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Figure B.12: BFVang and BFXTVang models: continuous simulation for a representative
of mutant cells at the proximal boundary of the clone, BFVang model (top left); cumulative
signal for a representative of mutant cells at the proximal boundary of the clone, BFVang
model (top right); continuous simulation for a representative of mutant cells at the
proximal boundary of the clone, BFXTVang model (bottom left); cumulative signal for
a representative of mutant cells at the proximal boundary of the clone, BFXTVang model
(bottom right). Cluster 13 in Figure B.3.
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