4,822 research outputs found

    Automated classification of three-dimensional reconstructions of coral reefs using convolutional neural networks

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hopkinson, B. M., King, A. C., Owen, D. P., Johnson-Roberson, M., Long, M. H., & Bhandarkar, S. M. Automated classification of three-dimensional reconstructions of coral reefs using convolutional neural networks. PLoS One, 15(3), (2020): e0230671, doi: 10.1371/journal.pone.0230671.Coral reefs are biologically diverse and structurally complex ecosystems, which have been severally affected by human actions. Consequently, there is a need for rapid ecological assessment of coral reefs, but current approaches require time consuming manual analysis, either during a dive survey or on images collected during a survey. Reef structural complexity is essential for ecological function but is challenging to measure and often relegated to simple metrics such as rugosity. Recent advances in computer vision and machine learning offer the potential to alleviate some of these limitations. We developed an approach to automatically classify 3D reconstructions of reef sections and assessed the accuracy of this approach. 3D reconstructions of reef sections were generated using commercial Structure-from-Motion software with images extracted from video surveys. To generate a 3D classified map, locations on the 3D reconstruction were mapped back into the original images to extract multiple views of the location. Several approaches were tested to merge information from multiple views of a point into a single classification, all of which used convolutional neural networks to classify or extract features from the images, but differ in the strategy employed for merging information. Approaches to merging information entailed voting, probability averaging, and a learned neural-network layer. All approaches performed similarly achieving overall classification accuracies of ~96% and >90% accuracy on most classes. With this high classification accuracy, these approaches are suitable for many ecological applications.This study was funded by grants from the Alfred P. Sloan Foundation (BMH, BR2014-049; https://sloan.org), and the National Science Foundation (MHL, OCE-1657727; https://www.nsf.gov). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Deep learning for the early detection of harmful algal blooms and improving water quality monitoring

    Get PDF
    Climate change will affect how water sources are managed and monitored. The frequency of algal blooms will increase with climate change as it presents favourable conditions for the reproduction of phytoplankton. During monitoring, possible sensory failures in monitoring systems result in partially filled data which may affect critical systems. Therefore, imputation becomes necessary to decrease error and increase data quality. This work investigates two issues in water quality data analysis: improving data quality and anomaly detection. It consists of three main topics: data imputation, early algal bloom detection using in-situ data and early algal bloom detection using multiple modalities.The data imputation problem is addressed by experimenting with various methods with a water quality dataset that includes four locations around the North Sea and the Irish Sea with different characteristics and high miss rates, testing model generalisability. A novel neural network architecture with self-attention is proposed in which imputation is done in a single pass, reducing execution time. The self-attention components increase the interpretability of the imputation process at each stage of the network, providing knowledge to domain experts.After data curation, algal activity is predicted using transformer networks, between 1 to 7 days ahead, and the importance of the input with regard to the output of the prediction model is explained using SHAP, aiming to explain model behaviour to domain experts which is overlooked in previous approaches. The prediction model improves bloom detection performance by 5% on average and the explanation summarizes the complex structure of the model to input-output relationships. Performance improvements on the initial unimodal bloom detection model are made by incorporating multiple modalities into the detection process which were only used for validation purposes previously. The problem of missing data is also tackled by using coordinated representations, replacing low quality in-situ data with satellite data and vice versa, instead of imputation which may result in biased results

    Deep Cytometry: Deep learning with Real-time Inference in Cell Sorting and Flow Cytometry

    Get PDF
    Deep learning has achieved spectacular performance in image and speech recognition and synthesis. It outperforms other machine learning algorithms in problems where large amounts of data are available. In the area of measurement technology, instruments based on the photonic time stretch have established record real-time measurement throughput in spectroscopy, optical coherence tomography, and imaging flow cytometry. These extreme-throughput instruments generate approximately 1 Tbit/s of continuous measurement data and have led to the discovery of rare phenomena in nonlinear and complex systems as well as new types of biomedical instruments. Owing to the abundance of data they generate, time-stretch instruments are a natural fit to deep learning classification. Previously we had shown that high-throughput label-free cell classification with high accuracy can be achieved through a combination of time-stretch microscopy, image processing and feature extraction, followed by deep learning for finding cancer cells in the blood. Such a technology holds promise for early detection of primary cancer or metastasis. Here we describe a new deep learning pipeline, which entirely avoids the slow and computationally costly signal processing and feature extraction steps by a convolutional neural network that directly operates on the measured signals. The improvement in computational efficiency enables low-latency inference and makes this pipeline suitable for cell sorting via deep learning. Our neural network takes less than a few milliseconds to classify the cells, fast enough to provide a decision to a cell sorter for real-time separation of individual target cells. We demonstrate the applicability of our new method in the classification of OT-II white blood cells and SW-480 epithelial cancer cells with more than 95% accuracy in a label-free fashion

    Efficient Microalgae Species Identification using Compact Convolutional Neural Network

    Get PDF
    In this study, we propose a novel approach for microscopic algae species classification by implementing a compact Convolutional Neural Network (CNN) model. Our methodology was tested on a diverse dataset consisting of 18 distinct species of microscopic algae, demonstrating a remarkable classification accuracy exceeding 99%. The outstanding performance of this model is attributed to its compact architecture which maintains high precision while minimizing computational resources, making it a feasible option for real-time applications. Furthermore, we incorporated advanced data augmentation techniques to enhance the generalization capability of our model. By artificially expanding the training dataset, we effectively increased the model's robustness to variance in input data, which significantly contributed to the model's high classification accuracy. The research findings underscore the potential of compact CNN models coupled with data augmentation strategies in high-precision microscopic algae classification tasks, paving the way for future innovations in the field of aquatic microbiology and environmental monitoring

    Deep Learning in Label-free Cell Classification.

    Get PDF
    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells

    A review of recent machine learning advances for forecasting harmful Algal Blooms and shellfish contamination

    Get PDF
    Harmful algal blooms (HABs) are among the most severe ecological marine problems worldwide. Under favorable climate and oceanographic conditions, toxin-producing microalgae species may proliferate, reach increasingly high cell concentrations in seawater, accumulate in shellfish, and threaten the health of seafood consumers. There is an urgent need for the development of effective tools to help shellfish farmers to cope and anticipate HAB events and shellfish contamination, which frequently leads to significant negative economic impacts. Statistical and machine learning forecasting tools have been developed in an attempt to better inform the shellfish industry to limit damages, improve mitigation measures and reduce production losses. This study presents a synoptic review covering the trends in machine learning methods for predicting HABs and shellfish biotoxin contamination, with a particular focus on autoregressive models, support vector machines, random forest, probabilistic graphical models, and artificial neural networks (ANN). Most efforts have been attempted to forecast HABs based on models of increased complexity over the years, coupled with increased multi-source data availability, with ANN architectures in the forefront to model these events. The purpose of this review is to help defining machine learning-based strategies to support shellfish industry to manage their harvesting/production, and decision making by governmental agencies with environmental responsibilities.CEECINST/00102/2018/ UIDB/04516/2020/ UIDB/00297/2020/ UIDB/50021/2020/ UID/Multi/04326/2020info:eu-repo/semantics/publishedVersio

    Deep learning detection of types of water-bodies using optical variables and ensembling

    Get PDF
    Water features are one of the most crucial environmental elements for strengthening climate-change adaptation. Remote sensing (RS) technologies driven by artificial intelligence (AI) have emerged as one of the most sought-after approaches for automating water information extraction and indeed. In this paper, a stacked ensemble model approach is proposed on AquaSat dataset (more than 500,000 images collection via satellite and Google Earth Engine). A one-way Analysis of variance (ANOVA) test and the Kruskal Wallis test are conducted for various optical-based variables at 99% significance level to understand how these vary for different water bodies. An oversampling is done on the training data using Synthetic Minority Oversampling Technique (SMOTE) to solve the problem of class imbalance while the model is tested on an imbalanced data, replicating the real-life situation. To enhance state-of-the-art, the pros of standalone machine learning classifiers and neural networks have been utilized. The stacked model obtained 100% accuracy on the testing data when using the decision tree classifier as the meta model. This study has been cross validated five-fold and will help researchers working in in-situ water bodies detection with the use of stacked model classification

    An Integrative Remote Sensing Application of Stacked Autoencoder for Atmospheric Correction and Cyanobacteria Estimation Using Hyperspectral Imagery

    Get PDF
    Hyperspectral image sensing can be used to effectively detect the distribution of harmful cyanobacteria. To accomplish this, physical- and/or model-based simulations have been conducted to perform an atmospheric correction (AC) and an estimation of pigments, including phycocyanin (PC) and chlorophyll-a (Chl-a), in cyanobacteria. However, such simulations were undesirable in certain cases, due to the difficulty of representing dynamically changing aerosol and water vapor in the atmosphere and the optical complexity of inland water. Thus, this study was focused on the development of a deep neural network model for AC and cyanobacteria estimation, without considering the physical formulation. The stacked autoencoder (SAE) network was adopted for the feature extraction and dimensionality reduction of hyperspectral imagery. The artificial neural network (ANN) and support vector regression (SVR) were sequentially applied to achieve AC and estimate cyanobacteria concentrations (i.e., SAE-ANN and SAE-SVR). Further, the ANN and SVR models without SAE were compared with SAE-ANN and SAE-SVR models for the performance evaluations. In terms of AC performance, both SAE-ANN and SAE-SVR displayed reasonable accuracy with the Nash???Sutcliffe efficiency (NSE) > 0.7. For PC and Chl-a estimation, the SAE-ANN model showed the best performance, by yielding NSE values > 0.79 and > 0.77, respectively. SAE, with fine tuning operators, improved the accuracy of the original ANN and SVR estimations, in terms of both AC and cyanobacteria estimation. This is primarily attributed to the high-level feature extraction of SAE, which can represent the spatial features of cyanobacteria. Therefore, this study demonstrated that the deep neural network has a strong potential to realize an integrative remote sensing application
    corecore