48 research outputs found

    Advances in Object and Activity Detection in Remote Sensing Imagery

    Get PDF
    The recent revolution in deep learning has enabled considerable development in the fields of object and activity detection. Visual object detection tries to find objects of target classes with precise localisation in an image and assign each object instance a corresponding class label. At the same time, activity recognition aims to determine the actions or activities of an agent or group of agents based on sensor or video observation data. It is a very important and challenging problem to detect, identify, track, and understand the behaviour of objects through images and videos taken by various cameras. Together, objects and their activity recognition in imaging data captured by remote sensing platforms is a highly dynamic and challenging research topic. During the last decade, there has been significant growth in the number of publications in the field of object and activity recognition. In particular, many researchers have proposed application domains to identify objects and their specific behaviours from air and spaceborne imagery. This Special Issue includes papers that explore novel and challenging topics for object and activity detection in remote sensing images and videos acquired by diverse platforms

    A False-alarm-controllable Modified AdaBoost Wake Detection Method Using SAR Images

    Get PDF
    A false-alarm-controllable modified AdaBoost-based method is proposed for detecting ship wake from sea clutter in synthetic aperture radar (SAR) images. It reformulates the wake detection problem as a binary classification task in the multifeature space. The update strategy of the sample weights in the original AdaBoost is modified for wake detection. First, a detection result confidence factor is designed to deal with class imbalance between sea clutter and ship wake; then, the AdaBoost is further modified as a false alarm rate (FAR) controllable detector by introducing penalty parameters to adjust weights update strategies for the sea clutter. Meanwhile, the multifeature space is spanned by a novel frequency peak height ratio (FPHA) feature and four salient features. FPHA is proposed to enhance the separation between the wake and sea clutter, which is computed from the amplitude spectrum peak of the image after the Fourier transform. Experimental results show that the proposed detector can tackle the imbalanced data problem and flexibly control FAR by adjusting penalty parameters. Moreover, improved detection probability is also achieved compared with existing methods

    Sea-Surface Object Detection Based on Electro-Optical Sensors: A Review

    Get PDF
    Sea-surface object detection is critical for navigation safety of autonomous ships. Electrooptical (EO) sensors, such as video cameras, complement radar on board in detecting small obstacle sea-surface objects. Traditionally, researchers have used horizon detection, background subtraction, and foreground segmentation techniques to detect sea-surface objects. Recently, deep learning-based object detection technologies have been gradually applied to sea-surface object detection. This article demonstrates a comprehensive overview of sea-surface object-detection approaches where the advantages and drawbacks of each technique are compared, covering four essential aspects: EO sensors and image types, traditional object-detection methods, deep learning methods, and maritime datasets collection. In particular, sea-surface object detections based on deep learning methods are thoroughly analyzed and compared with highly influential public datasets introduced as benchmarks to verify the effectiveness of these approaches. The arti

    Performance Analysis of Different Optimization Algorithms for Multi-Class Object Detection

    Get PDF
    Object recognition is a significant approach employed for recognizing suitable objects from the image. Various improvements, particularly in computer vision, are probable to diagnose highly difficult tasks with the assistance of local feature detection methodologies. Detecting multi-class objects is quite challenging, and many existing researches have worked to enhance the overall accuracy. But because of certain limitations like higher network loss, degraded training ability, improper consideration of features, less convergent and so on. The proposed research introduced a hybrid convolutional neural network (H-CNN) approach to overcome these drawbacks. The collected input images are pre-processed initially through Gaussian filtering to eradicate the noise and enhance the image quality. Followed by image pre-processing, the objects present in the images are localized using Grid Guided Localization (GGL). The effective features are extracted from the localized objects using the AlexNet model. Different objects are classified by replacing the concluding softmax layer of AlexNet with Support Vector Regression (SVR) model. The losses present in the network model are optimized using the Improved Grey Wolf (IGW) optimization procedure. The performances of the proposed model are analyzed using PYTHON. Various datasets are employed, including MIT-67, PASCAL VOC2010, Microsoft (MS)-COCO and MSRC. The performances are analyzed by varying the loss optimization algorithms like improved Particle Swarm Optimization (IPSO), improved Genetic Algorithm (IGA), and improved dragon fly algorithm (IDFA), improved simulated annealing algorithm (ISAA) and improved bacterial foraging algorithm (IBFA), to choose the best algorithm. The proposed accuracy outcomes are attained as PASCAL VOC2010 (95.04%), MIT-67 dataset (96.02%), MSRC (97.37%), and MS COCO (94.53%), respectively

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    ν›ˆλ ¨ 자료 μžλ™ μΆ”μΆœ μ•Œκ³ λ¦¬μ¦˜κ³Ό 기계 ν•™μŠ΅μ„ ν†΅ν•œ SAR μ˜μƒ 기반의 μ„ λ°• 탐지

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (석사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : μžμ—°κ³Όν•™λŒ€ν•™ μ§€κ΅¬ν™˜κ²½κ³Όν•™λΆ€, 2021. 2. 김덕진.Detection and surveillance of vessels are regarded as a crucial application of SAR for their contribution to the preservation of marine resources and the assurance on maritime safety. Introduction of machine learning to vessel detection significantly enhanced the performance and efficiency of the detection, but a substantial majority of studies focused on modifying the object detector algorithm. As the fundamental enhancement of the detection performance would be nearly impossible without accurate training data of vessels, this study implemented AIS information containing real-time information of vessel’s movement in order to propose a robust algorithm which acquires the training data of vessels in an automated manner. As AIS information was irregularly and discretely obtained, the exact target interpolation time for each vessel was precisely determined, followed by the implementation of Kalman filter, which mitigates the measurement error of AIS sensor. In addition, as the velocity of each vessel renders an imprint inside the SAR image named as Doppler frequency shift, it was calibrated by restoring the elliptic satellite orbit from the satellite state vector and estimating the distance between the satellite and the target vessel. From the calibrated position of the AIS sensor inside the corresponding SAR image, training data was directly obtained via internal allocation of the AIS sensor in each vessel. For fishing boats, separate information system named as VPASS was applied for the identical procedure of training data retrieval. Training data of vessels obtained via the automated training data procurement algorithm was evaluated by a conventional object detector, for three detection evaluating parameters: precision, recall and F1 score. All three evaluation parameters from the proposed training data acquisition significantly exceeded that from the manual acquisition. The major difference between two training datasets was demonstrated in the inshore regions and in the vicinity of strong scattering vessels in which land artifacts, ships and the ghost signals derived from them were indiscernible by visual inspection. This study additionally introduced a possibility of resolving the unclassified usage of each vessel by comparing AIS information with the accurate vessel detection results.μ „μ²œν›„ 지ꡬ κ΄€μΈ‘ μœ„μ„±μΈ SARλ₯Ό ν†΅ν•œ μ„ λ°• νƒμ§€λŠ” ν•΄μ–‘ μžμ›μ˜ 확보와 해상 μ•ˆμ „ 보μž₯에 맀우 μ€‘μš”ν•œ 역할을 ν•œλ‹€. 기계 ν•™μŠ΅ κΈ°λ²•μ˜ λ„μž…μœΌλ‘œ 인해 선박을 λΉ„λ‘―ν•œ 사물 νƒμ§€μ˜ 정확도 및 νš¨μœ¨μ„±μ΄ ν–₯μƒλ˜μ—ˆμœΌλ‚˜, 이와 κ΄€λ ¨λœ λ‹€μˆ˜μ˜ μ—°κ΅¬λŠ” 탐지 μ•Œκ³ λ¦¬μ¦˜μ˜ κ°œλŸ‰μ— μ§‘μ€‘λ˜μ—ˆλ‹€. κ·ΈλŸ¬λ‚˜, 탐지 μ •ν™•λ„μ˜ 근본적인 ν–₯상은 μ •λ°€ν•˜κ²Œ μ·¨λ“λœ λŒ€λŸ‰μ˜ ν›ˆλ ¨μžλ£Œ μ—†μ΄λŠ” λΆˆκ°€λŠ₯ν•˜κΈ°μ—, λ³Έ μ—°κ΅¬μ—μ„œλŠ” μ„ λ°•μ˜ μ‹€μ‹œκ°„ μœ„μΉ˜, 속도 정보인 AIS 자료λ₯Ό μ΄μš©ν•˜μ—¬ 인곡 지λŠ₯ 기반의 μ„ λ°• 탐지 μ•Œκ³ λ¦¬μ¦˜μ— μ‚¬μš©λ  ν›ˆλ ¨μžλ£Œλ₯Ό μžλ™μ μœΌλ‘œ μ·¨λ“ν•˜λŠ” μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ•ˆν•˜μ˜€λ‹€. 이λ₯Ό μœ„ν•΄ 이산적인 AIS 자료λ₯Ό SAR μ˜μƒμ˜ μ·¨λ“μ‹œκ°μ— λ§žμΆ”μ–΄ μ •ν™•ν•˜κ²Œ λ³΄κ°„ν•˜κ³ , AIS μ„Όμ„œ μžμ²΄κ°€ κ°€μ§€λŠ” 였차λ₯Ό μ΅œμ†Œν™”ν•˜μ˜€λ‹€. λ˜ν•œ, μ΄λ™ν•˜λŠ” μ‚°λž€μ²΄μ˜ μ‹œμ„  μ†λ„λ‘œ 인해 λ°œμƒν•˜λŠ” λ„ν”ŒλŸ¬ 편이 효과λ₯Ό λ³΄μ •ν•˜κΈ° μœ„ν•΄ SAR μœ„μ„±μ˜ μƒνƒœ 벑터λ₯Ό μ΄μš©ν•˜μ—¬ μœ„μ„±κ³Ό μ‚°λž€μ²΄ μ‚¬μ΄μ˜ 거리λ₯Ό μ •λ°€ν•˜κ²Œ κ³„μ‚°ν•˜μ˜€λ‹€. μ΄λ ‡κ²Œ κ³„μ‚°λœ AIS μ„Όμ„œμ˜ μ˜μƒ λ‚΄μ˜ μœ„μΉ˜λ‘œλΆ€ν„° μ„ λ°• λ‚΄ AIS μ„Όμ„œμ˜ 배치λ₯Ό κ³ λ €ν•˜μ—¬ μ„ λ°• 탐지 μ•Œκ³ λ¦¬μ¦˜μ˜ ν›ˆλ ¨μžλ£Œ ν˜•μ‹μ— λ§žμΆ”μ–΄ ν›ˆλ ¨μžλ£Œλ₯Ό μ·¨λ“ν•˜κ³ , 어선에 λŒ€ν•œ μœ„μΉ˜, 속도 정보인 VPASS 자료 μ—­μ‹œ μœ μ‚¬ν•œ λ°©λ²•μœΌλ‘œ κ°€κ³΅ν•˜μ—¬ ν›ˆλ ¨μžλ£Œλ₯Ό μ·¨λ“ν•˜μ˜€λ‹€. AIS μžλ£Œλ‘œλΆ€ν„° μ·¨λ“ν•œ ν›ˆλ ¨μžλ£ŒλŠ” κΈ°μ‘΄ λ°©λ²•λŒ€λ‘œ μˆ˜λ™ μ·¨λ“ν•œ ν›ˆλ ¨μžλ£Œμ™€ ν•¨κ»˜ 인곡 지λŠ₯ 기반 사물 탐지 μ•Œκ³ λ¦¬μ¦˜μ„ 톡해 정확도λ₯Ό ν‰κ°€ν•˜μ˜€λ‹€. κ·Έ κ²°κ³Ό, μ œμ‹œλœ μ•Œκ³ λ¦¬μ¦˜μœΌλ‘œ μ·¨λ“ν•œ ν›ˆλ ¨ μžλ£ŒλŠ” μˆ˜λ™ μ·¨λ“ν•œ ν›ˆλ ¨ 자료 λŒ€λΉ„ 더 높은 탐지 정확도λ₯Ό λ³΄μ˜€μœΌλ©°, μ΄λŠ” 기쑴의 사물 탐지 μ•Œκ³ λ¦¬μ¦˜μ˜ 평가 μ§€ν‘œμΈ 정밀도, μž¬ν˜„μœ¨κ³Ό F1 scoreλ₯Ό 톡해 μ§„ν–‰λ˜μ—ˆλ‹€. λ³Έ μ—°κ΅¬μ—μ„œ μ œμ•ˆν•œ ν›ˆλ ¨μžλ£Œ μžλ™ 취득 κΈ°λ²•μœΌλ‘œ 얻은 선박에 λŒ€ν•œ ν›ˆλ ¨μžλ£ŒλŠ” 특히 기쑴의 μ„ λ°• 탐지 κΈ°λ²•μœΌλ‘œλŠ” 뢄별이 μ–΄λ €μ› λ˜ ν•­λ§Œμ— μΈμ ‘ν•œ μ„ λ°•κ³Ό μ‚°λž€μ²΄ μ£Όλ³€μ˜ μ‹ ν˜Έμ— λŒ€ν•œ μ •ν™•ν•œ 뢄별 κ²°κ³Όλ₯Ό λ³΄μ˜€λ‹€. λ³Έ μ—°κ΅¬μ—μ„œλŠ” 이와 ν•¨κ»˜, μ„ λ°• 탐지 결과와 ν•΄λ‹Ή 지역에 λŒ€ν•œ AIS 및 VPASS 자료λ₯Ό μ΄μš©ν•˜μ—¬ μ„ λ°•μ˜ 미식별성을 νŒμ •ν•  수 μžˆλŠ” κ°€λŠ₯μ„± λ˜ν•œ μ œμ‹œν•˜μ˜€λ‹€.Chapter 1. Introduction - 1 - 1.1 Research Background - 1 - 1.2 Research Objective - 8 - Chapter 2. Data Acquisition - 10 - 2.1 Acquisition of SAR Image Data - 10 - 2.2 Acquisition of AIS and VPASS Information - 20 - Chapter 3. Methodology on Training Data Procurement - 26 - 3.1 Interpolation of Discrete AIS Data - 29 - 3.1.1 Estimation of Target Interpolation Time for Vessels - 29 - 3.1.2 Application of Kalman Filter to AIS Data - 34 - 3.2 Doppler Frequency Shift Correction - 40 - 3.2.1 Theoretical Basis of Doppler Frequency Shift - 40 - 3.2.2 Mitigation of Doppler Frequency Shift - 48 - 3.3 Retrieval of Training Data of Vessels - 53 - 3.4 Algorithm on Vessel Training Data Acquisition from VPASS Information - 61 - Chapter 4. Methodology on Object Detection Architecture - 66 - Chapter 5. Results - 74 - 5.1 Assessment on Training Data - 74 - 5.2 Assessment on AIS-based Ship Detection - 79 - 5.3 Assessment on VPASS-based Fishing Boat Detection - 91 - Chapter 6. Discussions - 110 - 6.1 Discussion on AIS-Based Ship Detection - 110 - 6.2 Application on Determining Unclassified Vessels - 116 - Chapter 7. Conclusion - 125 - κ΅­λ¬Έ μš”μ•½λ¬Έ - 128 - Bibliography - 130 -Maste

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    An Evaluation of Deep Learning-Based Object Identification

    Get PDF
    Identification of instances of semantic objects of a particular class, which has been heavily incorporated in people's lives through applications like autonomous driving and security monitoring, is one of the most crucial and challenging areas of computer vision. Recent developments in deep learning networks for detection have improved object detector accuracy. To provide a detailed review of the current state of object detection pipelines, we begin by analyzing the methodologies employed by classical detection models and providing the benchmark datasets used in this study. After that, we'll have a look at the one- and two-stage detectors in detail, before concluding with a summary of several object detection approaches. In addition, we provide a list of both old and new apps. It's not just a single branch of object detection that is examined. Finally, we look at how to utilize various object detection algorithms to create a system that is both efficient and effective. and identify a number of emerging patterns in order to better understand the using the most recent algorithms and doing more study

    Application of Multi-Sensor Fusion Technology in Target Detection and Recognition

    Get PDF
    Application of multi-sensor fusion technology has drawn a lot of industrial and academic interest in recent years. The multi-sensor fusion methods are widely used in many applications, such as autonomous systems, remote sensing, video surveillance, and the military. These methods can obtain the complementary properties of targets by considering multiple sensors. On the other hand, they can achieve a detailed environment description and accurate detection of interest targets based on the information from different sensors.This book collects novel developments in the field of multi-sensor, multi-source, and multi-process information fusion. Articles are expected to emphasize one or more of the three facets: architectures, algorithms, and applications. Published papers dealing with fundamental theoretical analyses, as well as those demonstrating their application to real-world problems

    Harmonic Analysis and Machine Learning

    Get PDF
    This dissertation considers data representations that lie at the interesection of harmonic analysis and neural networks. The unifying theme of this work is the goal for robust and reliable machine learning. Our specific contributions include a new variant of scattering transforms based on a Haar-type directional wavelet, a new study of deep neural network instability in the context of remote sensing problems, and new empirical studies of biomedical applications of neural networks
    corecore