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Chapter 1: Preliminaries: Network-based Feature Representations

This dissertation considers data representations that lie at the intersection of

harmonic analysis and neural networks. The unifying theme of this work is the

desire for robust and reliable machine learning. Our specific contributions include a

new variant of scattering transforms based on a Haar-type directional wavelet, a new

study of deep neural network instability in the context of remote sensing problems,

and new empirical studies of biomedical applications of neural networks.

Deep neural networks (DNNs), which generate data representations by learn-

ing from data, have recently commanded a prominent role in the machine learning

(ML) community. Despite the their unquestionably good performance and the vast

amount of research attention, DNNs are still not completely understood from a

mathematical perspective. Even relatively simple feedforward convolutional neu-

ral networks lack a complete mathematical characterization. At the other end of

the design spectrum, there is a long and rich history of manually designed filters

whose mathematical properties are comparatively well understood. One path to-

ward bringing added mathematical rigor to network-based representations lies in the

scattering transform framework devised by Stéphane Mallat. This framework brings

together mathematical properties of designed filters within a network-based archi-
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tecture reminiscent of feed forward neural networks. The underlying motivation is

to explicitly systemize desirable properties of feature representations, a task which

DNNs seem to be able to do implicitly but in a manner that is not well understood

nor guaranteed.

Part of our motivation for studying these representations is a desire for ro-

bust and reliable ML. Questions about generalization performance and robustness

are not new in the ML community; however the prominence of deep learning to-

gether with recent observations that these networks may lack robustness to certain

designed perturbation in the signal input space have elevated their attention of late.

So-called adversarial examples have raised a number of questions about what is and

is not being captured by neural networks. While the landscape of neurally-inspired

architectures will undoubtedly continue to evolve (e.g. the capsule networks re-

cently advocated by Hinton [131]) there are currently open and exciting research

opportunities in understanding the behavior of these deep neural networks.

This thesis makes a contribution to this broader topic by the introduction

of two new algorithms and associated empirical studies. Our first algorithmic ex-

ploration embeds a composite Haar-type directional wavelet within a scattering

transform framework. We find that a scattering transform when equipped with

this Haar-type wavelet demonstrates good performance on benchmark image clas-

sification problems involving signals with fine, edge-like structure. However, they

underperform scatterings based on wavelets traditionally employed for this kind of

signal (e.g. Morlet wavelets). Follow-on experiments involving different signals (not

dominated by fine edge structure) closes this performance gap somewhat. Due to

2



their geometric underpinnings, the Haar-type wavelets are also capable of generating

images with certain aesthetic properties. This work is the topic of Chapter 2.

Our second study proposes an algorithm to construct adversarial examples

(AE) which capture physical considerations that arise in remote sensing settings.

This venue for AE has not yet been well explored, and ours is one of the first ever

studies to consider this problem explicitly. We identify key issues and explore how

the support of designed perturbations is related to the attack success rate. Our

study lays a foundation for future work which incorporates practical domain con-

straints into the AE optimization problem. Our final application involves biomedical

imaging; in particular, retinal image analysis. These applications are the topics of

Chapter 3 and Chapter 4.
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Chapter 2: Modern Applications of Crystallographic Wavelets

This chapter explores modern applications of a particular class of directional

Haar-type wavelets whose mathematical properties are well understood but whose

possible practical applications have not been widely studied. At the same time

we also observe that there exist in the literature a number of scattering transform

frameworks which are designed to provide a possible bridge between wavelet frames

and modern deep neural nets. Therefore, our primary goals in this chapter are to

(a) obtain insight into the performance characteristics of these Haar-type wavelets

relative to more popular directional techniques (such as shearlets) and (b) to explore

possible roles for these Haar-type wavelets within scattering transform frameworks,

with an eye towards future possible synergies with neural network techniques.

Before proceeding, we pause to mention that the field of wavelets is quite broad

and encompasses a great deal of work that has been developed since its origins in

the 1980s. A comprehensive summary of this field is simultaneously beyond the

scope of this document and the credentials of the author; however, the interested

reader is encouraged to consult [83] for an extensive collection of papers covering

the early development of wavelets assembled by leading experts in the field. There

are similarly many too many fine books on wavelets to list them all; we mention
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[14, 15, 84, 113, 138].

In this chapter we will be especially interested in Composite Dilation Wavelets

(CDW) [77, 79, 80] which construct representations for L2(Rn) by means of a pair

of dilation operators coupled with a suitable notion of translation (either discrete

or continuous). The use of a pair of dilation operators distinguishes CDW from

more traditional wavelets which relied upon a single dilation operator. Generaliza-

tion to multiple dilation operators provides greater flexibility to capture anisotropic

characteristics of signals. The CDW framework includes as special cases a number

of popular wavelet systems, including ridgelets [32], curvelets [33], and shearlets

[46, 47, 78, 93].

Many of these CDW systems confer desirable mathematical properties. For

example, Candés and Donoho proved that, for a “cartoon-like” function f (i.e. piece-

wise continuous functions with discontinuities along C2 curves), the best M−term

curvelet approximation fM of f converges quadratically [34]

||f − fM ||2 ≤ CM−2(log2M)3.

This is in contrast to traditional (tensor product) wavelet expansions which only

provide an O(M−1) approximation error rate [113]. Furthermore, it has been shown

that this quadratic convergence rate is essentially optimal, assuming one is using

a non-adaptive wavelet system. Analogous results have been developed for other

CDW systems, such as shearlets [76].

However, images dominated by edge-like structures do not necessarily satisfy

5



the “cartoon-like” property for which the aforementioned CDW systems yield opti-

mal results. Furthermore, many of these systems (e.g. shearlets and curvelets) are

compactly supported in the frequency domain. For images dominated by disconti-

nuities in the time domain it is natural to ask whether wavelets explicitly designed

to localize features in the time domain may provide some representational benefit.

This desire to capture oriented structure in signals motivates our study of a

somewhat less well-known variant of CDW, the Crystallographic Haar-type Com-

posite Dilation Wavelets (CHCDW), originally developed by [96] and subsequently

extended by various authors, including [19, 115]. CDW are deemed to be “Haar-

type” when they satisfy the following two properties:

1. There exists an associated multi-resolution analysis (MRA);

2. The scaling function (and therefore the wavelets) associated with the MRA

are constructed by linear combination of characteristic functions.

The first property is fairly standard and stems from a goal to analyze signals at mul-

tiple resolutions; a concise definition is provided in Definition 2.1.2 and the theory

of MRA is by now well-established (many details can be found in references such as

[83, 84, 113]). However, the second requirement, that the scaling function ϕ be a

linear combination of characteristic functions, is a less conventional property. Intu-

itively this constraint on the support of the scaling function suggests that Haar-type

systems may be especially well-suited for localizing discrete or piecewise-constant

features in the time domain. Of course, the celebrated Heisenberg uncertainty prin-

ciple [16] suggests that this comes at the cost of good frequency localization and

6



therefore Haar-type systems should be less effective at representing signals with

strong oscillatory components.

However, detailed empirical studies into the practical performance of these

systems is generally lacking. Noteworthy exceptions include: [98] where the authors

compare Haar-type CDW to curvelets and contourlets in the context of image de-

noising applications, [97] where the authors compare Haar-type CDW to classical

Haar wavelets for image denoising, and [50] where the authors demonstrate the ad-

vantage of Haar-type CDW over shearlets for inpainting binary images when used

within a total variation minimization framework.

In this chapter we describe in detail the CHCDW framework, with a focus on

the discrete setting and associated computational considerations. This begins with a

detailed description of an algorithm developed by Dr. Benjamin Manning to imple-

ment the CHCDW. We then describe a new implementation of this algorithm that

provides a substantial improvement in runtime performance, the benefits of which

are best appreciated when the underlying signal is non-trivial in size. Using this

algorithm, we conduct a study of directional sensitivity by comparing CHCDW to

other wavelets systems in a number of signal processing applications where edge-like

structure dominates. These experiments are new but their motivation is inspired, in

part, by the novel analysis of directional structures for shearlets that was originally

presented in [145]. We then present numerical experiments related to classification

problems. In addition to exploring practical applications of this wavelet, our end

objective is to place this wavelet in the context of a larger discussion regarding stable

and reliable feature representations for signal processing problems. To this end we

7



will also explore integration with scattering transform frameworks and ultimately

towards synergies with neural network techniques.

2.1 Composite Dilation Wavelets: Overview

Before defining composite dilation wavelets and their variants, we must intro-

duce some basic building blocks. Note that no new results are presented in this

section and much of the introductory material is adapted from [19].

Since our interest is ultimately in processing discrete signals, the underly-

ing structure of a lattice plays a key role. Given m linearly independent vectors

v1, . . . , vm ∈ Rn the associated lattice L is the collection of vectors obtainable by

means of the linear combinations

L(v1, . . . , vm) = {x1v1 + x2v2 + . . .+ xmvm |x1, x2, . . . , xm ∈ Z} . (2.1)

Equivalently, if V is the n×m matrix whose columns are {vi}mi=1, the lattice can be

expressed in matrix form

L(V ) = {V x : x ∈ Zm}.

The matrix V is said to be the generating matrix of L and the lattice L is said to be

full rank if m = n. Note that lattices are not associated with a unique generating

matrix. We also recall a useful result regarding equivalences between lattices. A

matrix U is called unimodular if it is a square integer matrix with determinant equal

to 1 or −1.
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Theorem 2.1.1 ([57] Theorem 3.2). Matrices A and B generate the same lattice

L, that is L(A) = L(B), if and only if A = BU where U is a unimodular matrix.

We can now define the two fundamental operations necessary to construct

wavelets: translation and dilation. Let f ∈ L2(Rn) and define translation Tk :

L2(Rn) → L2(Rn) of f by k ∈ L as Tkf(x) = f(x − k). Note that, by defining

translation as a fully discrete operator, we are distinguishing this framework from

the semi-discrete wavelet setting1 which is also quite common in the literature. Let

f ∈ L2(Rn) and c be an invertible matrix; then dilation Dc : L2(Rn)→ L2(Rn) of f

by c is defined to be the operation Dcf(x) = | det c |−1/2f(c−1x).

With these basic definitions, we can now define our wavelet system of interest.

Let a be an expanding matrix (i.e. a matrix whose eigenvalues all have modulus

greater than 1) and let A = {aj : j ∈ Z} denote an associated collection of expanding

matrices. Let B be a subgroup of GLn(R), L be a full rank lattice, and Ψ =

{ψ1, . . . , ψL} ⊂ L2(Rn) a collection of functions. A composite dilation wavelet

(CDW) is defined as follows:

Definition 2.1.1 ([19] Definition 1). The collection of functions Ψ = (ψ1, ψ2, . . . , ψL) ⊂

L2(Rn) is a composite dilation (multi-)wavelet if there exists a collection of expand-

ing matrices A, a group of invertible matrices B, and a full rank lattice L such that

the collection of functions

Aa,B,L(Ψ) = {DaDbTkψi : a ∈ A, b ∈ B, k ∈ L, i = 1, . . . , L}, (2.2)

1By which we mean the setting where dilation is discrete and translation is continuous; some-
times called “semi-continuous” or just “continuous” if the discrete nature of dilation is irrelevant.
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forms a an orthonormal basis of L2(Rn).

A few comments about Definition 2.1.1 are in order. While ideal for our pur-

poses, this definition is neither the first proposed in the literature nor the most

general definition possible. CDW were originally introduced by Guido Weiss and

his collaborators [77, 79, 80] and generalizations of Definition 2.1.1 typically involve

extensions to Parseval frames (e.g. [18]). It is also worth mentioning that the CDW

framework includes a number of familiar wavelet settings as special cases. For ex-

ample, a standard (one-dimensional) wavelet is obtained by setting n = 1, a = 2 and

L = Z. Alternatively, in higher dimensions if B is the one-element group consisting

of the identity matrix, then one recovers the standard multiwavelet definition. As

mentioned previously, shearlets are a special case of CDW; one example uses the

(infinite cardinality) group of integer shear matrices for the dilation group B:

B =


 1 j

0 1

 : j ∈ Z

 .

An important concept in wavelet theory is the analysis of signals at multiple

scales by means of a multiresolution analysis (MRA). This notion of an MRA applies

naturally to CDW as well [80]:

Definition 2.1.2. The collection {Vj}j∈Z of closed subspaces of L2(Rn) is an (a,B,L)-

multiresolution analysis if all of the following conditions are satisfied:

M.1 Vj ⊂ Vj+1, where DaVj+1 = Vj;

M.2 Closure(
⋃
j∈Z Vj) = L2(Rn);
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M.3
⋂
j∈Z Vj = {0};

M.4 There exists a function ϕ ∈ V0 such that {DbTkϕ : b ∈ B, k ∈ L} is an
orthonormal basis for V0.

The function ϕ from Item M.4 is called the (composite) scaling function of

the given MRA and plays a key role in constructing the corresponding wavelets. For

classical wavelets this might be accomplished via the Smith-Barnwell equation (see

e.g. [83] for details); however, we will defer discussing explicit constructions until

after we further specialize CDW in Section 2.1.1.

In addition to MRA, there are other properties of wavelet systems that are of

interest, such as compact support, regularity (i.e. smoothness), and accuracy. In

this context, accuracy of a function f is the highest degree p such that all multivari-

ate polynomials with degree less than p are exactly reproducible from translates of f

on some lattice [31]. When the wavelet scaling function has accuracy, this provides

additional information on classes of functions that can be represented exactly. We

mention accuracy and regularity for completeness, but will not focus on them further

as they are outside the scope of this thesis. However, we do mention that, for crys-

tallographic wavelets (which will be introduced in Section 2.1.1), the work of [115]

provides the theoretical machinery necessary to develop crystallographic wavelets

with given accuracy and also presents numerical results for one dimensional signals.

We also mention a result by P. Houska, who proved that, if one seeks compactly

supported MRA with regularity, then B must be a finite group [87].

Compactly supported wavelets are desirable from a computational standpoint,

especially when the support is simple (e.g. as opposed to the fractal “twin-dragon”
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structure described in [115] which arises from wavelets employing a single quincunx

dilation). One such class of wavelets are the minimally supported frequency (MSF)

composite dilation wavelet which are constructed from characteristic functions of

compact sets in the frequency plane [77, 80]. These wavelets provide excellent lo-

calization in the frequency domain at the cost of performance in the time domain.

Analogously, a wavelet is termed Haar-type if it is constructed from characteris-

tic functions in the time domain. A further specialization developed by [96] is the

following:

Definition 2.1.3. A wavelet system is called a Haar-type composite dilation wavelet

if its multiwavelets ψi are constructed from linear combinations of characteristic

functions in the time domain and there is an associated MRA.

In the next section we will explore a specific Haar-type CDW whose properties

are further modified by a lattice assumption.

2.1.1 Crystallographic Haar-type CDW

Even after specializing to a Haar-type CDW, there still remain a number of

degrees of design freedom available in (2.2), including the specific structure of the

group B, the choice of dilation matrix a, and the specific composition of the scaling

function used to realize the MRA. Motivated by the discrete lattice-based setting

upon which our digital signals are supported, an additional property of substantial

interest is the crystallographic condition

Definition 2.1.4 ([19] Definition 3). A group of invertible matrices G and a full
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rank lattice L satisfy the crystallographic condition if L is invariant under the action

of G, i.e. G(L) = L.

Intuitively, it makes sense that lattice preservation would enter into the picture;

otherwise, one may have to resort to interpolation or other approximations in the

course of computing the wavelet transform (beyond the approximations involved

in initially digitizing the signal). For example, the lattice-preserving properties of

shearing operators have been cited as an advantage of shearlets over curvelets; the

latter rely upon rotations to capture directional information, and these rotations do

not preserve the integer lattice [101].

Crystallographic Haar-like wavelets arise from the dual desire for Haar-type

CDW together with a group B that is lattice-preserving. In particular, the desire

for an orthogonal system together with B and L that satisfy the crystallographic

condition enforces a special structure upon these groups which is specified by The-

orem 2.1.2.

Theorem 2.1.2 ([19] Theorem 1). Suppose {DbTkφ(x) : b ∈ B, k ∈ L} is an

orthogonal system. If B(L) = L, then B is a finite subgroup of SLn(R) and Γ :=

B n L is a crystallographic group.

The group operation associated with B n L in Theorem 2.1.2 is that of a

standard semi-direct product

(b1, k1) · (b2, k2) = (b1b2, b
−1
2 k1 + k2). (2.3)
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That this outer product is a crystallographic group implies that |B| is finite since

Definition 2.1.5 ([19] Definition 4). Let G be a group of orthogonal transformations

and L be a full rank lattice for Rn. Then G is a crystallographic group if L is a

subgroup of G and the quotient group (also called the point group) G/L is finite.

With these additional restrictions on B,L one can take a slightly different

perspective on the elements of (2.2). Since the elements of B are unitary, the

expanding matrix a will be solely responsible for providing control over scaling.

Conceptually, the dilation group B can now be thought of as a way to enrich the

notion of translation by means of its action together with the underlying lattice L.

In particular, the lattice L can be thought of in a group-theoretic sense as

isomorphic to the abelian group of integers Zn whose elements correspond to all

possible ways of “shifting” the wavelets ψi. In the crystallographic CDW setting,

the group Γ = B n L gives rise to a new, more general way to “shift” wavelet

supports. Each γ = DbTk ∈ Γ is defined pointwise on Rn as

γ(x) = b(x− k), (2.4)

whose inverse

γ−1 = Db−1T−bk, (2.5)

follows from (2.3)

(b, k) · (b−1,−bk) = (bb−1, bk − bk) = (I, 0).

14



One then defines the generalized shift operator Lγ : L2(Rn)→ L2(Rn) as Lγf(x) =

f(γ−1(x)). Then the CDW definition (2.2) can be written in an equivalent form

that highlights this notion of a generalized translation

Aa,Γ(Ψ) = {DaLγψi : a ∈ A, γ ∈ Γ, i = 1, . . . , L}. (2.6)

We now have a specialization of CDW where the commutative group of translations

Zn has been replaced with a new (non-commutative) group Γ whose elements γ are

the wavelet shifting parameters.

We also introduce a number of assumptions on the scaling matrix a which,

while not strictly necessary to guarantee the existence of a wavelet system, ad-

mit some simpler conditions for proving existence of an MRA. In a classical (non-

composite) wavelet system, it is common to make the assumption that a(L) ⊂ L, a

kind of “closure” property with respect to the lattice. After going through all the

trouble to ensure B is lattice-preserving, it would be a pity to fall off the lattice in

the process of applying the scaling operator. Therefore, in our CHCDW setting, we

also assume a(L) ⊂ L. One also makes the additional “normalizing” assumption

that aBa−1 = B. A simple consequence of these two assumptions is that aΓa−1 is

then a subgroup of Γ.

Lemma 2.1.1. If a scaling matrix satisfies a(L) ⊂ L and aBa−1 ⊂ B, then aΓa−1

is a subgroup of Γ.

Proof. We demonstrate this using the one-step subgroup test. First we observe that
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aΓa−1 is a non-empty subset of Γ since for any γ ∈ Γ

aγa−1(x) = ab(a−1x− k),

= aba−1x− aba−1ak,

= aba−1(x− ak),

= b̃tak(x),

where b̃ ∈ B. Now it remains to show that for all g1, g2 ∈ aΓa−1 we also have

g1g
−1
2 ∈ aΓa−1. From a direct calculation we observe

(aba−1, ak) · (ac−1a−1, a`) = (aba−1ac−1a−1, (ac−1a−1)−1ak + a`)

= (abc−1a−1, ack + a`)

= (ab̃a−1, a˜̀),

where b̃ ∈ B and ˜̀∈ L.

More substantial results (and ones which directly motivates the above assump-

tions on the scaling matrix a) are given by Lemma 2.1.2, which provides conditions

for an orthonormal system, and Theorem 2.1.3 which provides a sufficient condition

for constructing a crystallographic wavelet with an associated MRA. Before stating

these theorems, it is first necessary to introduce the notion of a tiling set.

Definition 2.1.6 ([19] Definition 5). Let G be a group of invertible matrices and

let R and W be measurable sets in Rn. Then R is called a G-tiling set of W if W
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is a disjoint union of the images of R under the action of G, i.e.

W =
⋃
g∈G

gR with µ(g1R ∩ g2R) = 0 for all g1 6= g2 ∈ G.

We designate a special tiling set, R ⊂ Rn, called a fundamental region of the

crystallographic group B n L if R is a (B n L)-tiling set of Rn. We can now state

a useful sufficient condition for showing that the action of generalized translation

produces an orthonormal system

Lemma 2.1.2 ([19] Lemma 4). Suppose B(L) = L, R is a B-tiling set of S, and

ϕ = |µ(R)|−1/2χR. If S = ∪b∈BbR is a L-tiling set of Rn then {DbTkϕ : b ∈ B, k ∈

L} is an orthonormal system.

This is intimately related to MRA condition Item M.4 and, in addition to

being interesting in its own right, is also a useful piece used to prove a useful sufficient

condition for producing a crystallographic MRA

Theorem 2.1.3 ([19] Theorem 2). Suppose B(L) = L. Let ϕ = |µ(R)|−1/2χR and

V0 = span{DbTkϕ : b ∈ B, k ∈ L}. Let a ∈ GLn(R) be an expanding matrix with

| det(a) | = L+ 1. Furthermore, suppose the following three conditions also hold:

(i) S =
⋃
b∈B bR is a L-tiling set of Rn,

(ii) a(L) ⊂ L and normalizes B, i.e. aBa−1 = B,

(iii) There exist b0, . . . , bL ∈ B and k0, . . . , kL ∈ L such that

aR =
L⋃
i=0

(biR + biki). (2.7)
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Then the sequence of subspaces {Vj := D−ja V0}j∈Z is an MRA for L2(Rn) and ϕ is

a composite scaling function for this MRA.

Thus, Theorem 2.1.3 tells us that to build a Haar-type scaling function for

CHCDW it is sufficient to find a fundamental region R of B n L and a suitably

well-behaved expanding matrix a that jointly satisfy Item (iii). A concrete example

which leverages this theorem will be provided in Section 2.2.1.

2.2 A Discrete Wavelet Transform for Crystallographic CDW

In addition to a principled way to represent multiscale signals, an advantage

of wavelets with an associated MRA is that they admit efficient implementations.

In this section we discuss a “cascade algorithm” proposed by [50] to implement a

discrete wavelet transform for CHCDW. Ultimately, our goal is to analyze a function

f by computing inner products of f with the collection of functions Aa,B,L(Ψ) from

Definition 2.1.1. To implement this calculation efficiently, we will exploit properties

of the MRA associated with the CHCDW. As part of our exposition we provide

some additional (but straightforward) details that were not included in the original

reference. We also describe briefly a new implementation of the transform devel-

oped by this author which demonstrates the practical computational benefits of the

original algorithm.

A consequence of the MRA is that the scaling function ϕ from Item M.4 is
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refinable, which means there exists {cγ}γ∈Γ ⊂ C so that

ϕ(x) =
∑
γ∈Γ

cγϕ(γax), (2.8)

where the series converges in L2 norm. The coefficients {cγ}γ∈Γ are typically referred

to as the low pass filter or the refinement mask. Since the wavelets {ψi}Li=1 reside

in the MRA function space V1, there also exist high pass filters {diγ}γ∈Γ such that

∀i = 1, . . . , L ψi(x) =
∑
γ∈Γ

diγϕ(γax). (2.9)

These filters will allow us to implement wavelet analysis and synthesis. Of primary

interest will be the case where ϕ is compactly supported and all but finitely many

of the {cγ}γ∈Γ and {diγ}γ∈Γ are zero. This implies that each ψi is also compactly

supported and one can create a discrete composite wavelet transform (DCWT) that

allows for fast multiscale signal decomposition.

We pause to present a few useful relations. For refinable functions, dilating
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both sides of (2.8) by a gives the relation

Daϕ(x) = Da

∑
γ∈Γ

cγϕ(γax)

=
∑
γ∈Γ

cγDaLγ−1ϕ(ax)

=
∑
γ∈Γ

| det a |−1/2cγLγ−1ϕ(a−1ax)

= | det a |−1/2
∑
γ∈Γ

cγLγ−1ϕ(x)

= | det a |−1/2
∑
γ∈Γ

cγϕ(γx).

(2.10)

It is also helpful to observe how the dilation and generalized translation oper-

ators “commute”:

DaLη−1f(x) = | det a|−1/2f(η(a−1x))

= | det a|−1/2f(ba−1x− bk)

= | det a|−1/2f(a−1aba−1x− a−1abk)

= Daf(a(ba−1x− bk))

= Daf(aηa−1(x))

= Laη−1a−1Daf(x).

(2.11)

Let f ∈ L2(Rn) be a signal we wish to process and let ϕ ∈ L2(Rn) be the

scaling function associated with a CHCDW. For j ≥ 0 and η ∈ Γ the we define the
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scaling coefficients at scale j

sj(η) = 〈f,DajLη−1ϕ〉. (2.12)

Similarly, the wavelet coefficients at scale j are defined to be

tij(η) = 〈f,DajLη−1ψi〉, i = 1, . . . , L. (2.13)

The CHCDW representation for f will then consist of the collection of sequences

{ti1, . . . , tiJ , sJ}i, that is the union of the wavelet coefficients at scales 1, . . . , J to-

gether with the scaling coefficients at scale J .

The inner products in (2.12),(2.13) will be implemented iteratively by enlisting

the aid of (2.8),(2.9). In particular, the idea is to construct an operator that pro-

duces the sequences sj+1 and tj+1 directly from the sequence sj. A direct calculation,
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which utilizes the linearity of dilation and (2.10),(2.11), gives that

sj+1(η) = 〈f,Daj+1Lη−1ϕ〉

= 〈f,DajDaLη−1ϕ〉

= 〈f,DajLaη−1a−1Daϕ〉

= 〈f,DajLaη−1a−1(| det a|−1/2
∑
γ∈Γ

cγLγ−1ϕ)〉

= 〈f, | det a|−1/2
∑
γ∈Γ

cγDajLaη−1a−1γ−1ϕ〉

= | det a|−1/2
∑
γ∈Γ

c̄γ〈f,DajLaη−1a−1γ−1ϕ〉

= | det a|−1/2
∑
γ∈Γ

c̄γ〈f,DajL(γaηa−1)−1ϕ〉

= | det a|−1/2
∑
γ∈Γ

c̄γ sj(γaηa
−1).

(2.14)

Note that, since aηa−1 ∈ Γ (recall Lemma 2.1.1), the term γaηa−1 is the product

of two elements of Γ and therefore the above expression is well-defined. Re-writing

(2.14) in operator form one defines the approximation operator H to be

Hsj(η) = | det a|−1/2
∑
γ∈Γ

c̄γsj(γaηa
−1) = sj+1(η). (2.15)

An analogous procedure yields the detail operators Gi

Gis(η) = | det a|−1/2
∑
γ∈Γ

d̄iγs(γaηa
−1) = tj+1(η) ∀i = 1, . . . , L. (2.16)

Equations (2.15) and (2.16) are analogous to the approximation and detail operators
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for the classical discrete wavelet transform, suitably modified by [50] for the CHCDW

setting. Their adjoints are

H∗s(η) = | det a|−1/2
∑
γ∈Γ

s(γ−1)cηaγa−1 , G∗i s(η) = | det a|−1/2
∑
γ∈Γ

s(γ−1)diηaγa−1 .

(2.17)

Thus, (2.15), (2.16), (2.17) provide a mathematical recipe for computing signal

synthesis and analysis for CHCDW. There remain a few outstanding questions, such

as how to obtain s0(η) = 〈f, Lη−1ϕ〉 (i.e. the zeroth level scaling coefficients needed

to initiate the cascade algorithm) and how to obtain the filter coefficients. For the

latter, the process is somewhat involved and we refer to [50] for some additional

discussion regarding the conditions for perfect signal reconstruction as well as [115]

for some discussion on identifying filter coefficients in one dimension. A concrete

instance of a CHCDW design will be explored in more detail in Section 2.2.1.

As for s0, in [50], the authors propose committing the usual “wavelet crime”

[138]. Indeed,

s0(η) = 〈f, Lη−1ϕ〉 ≈ f(η−1(0))

provides a reasonable approximation for these zeroth level coefficients. Note that

this means s0 consists of |B| (i.e. the order of B) copies of the input signal since

f(η−1(0)) = f(b−1(0 + bk)) = f(k).

The computational complexity of the CHCDW cascade algorithm is driven by

the cost of the filtering operations (2.15),(2.16), (2.17). To implement a convolution
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Runtime # Calls Line Code

17.510 172800 89 x = circshift(s(:,:,bc_i), -delta_row, 1);

17.360 172800 90 x = circshift(x’, -delta_col, 1)’;

33.038 172800 92 out(:,:,c_i) = out(:,:,c_i) + c_gamma * x;

Table 2.1: The three most expensive lines of code from profiling CHCDW software
(when performing 100 trials of an analysis task).

of the form (2.15) for an N×N image we must compute |B|N2 scalar multiplications

for each nonzero filter coefficient in the collections {cγ}γ∈Γ and {diγ}γ∈Γ,i=1,...,L. If

one assumes the number of nonzero filter coefficients is constant and independent

of image size (e.g. it is 3 or less in all our experiments) the computational cost

for a single layer of the CHCDW transform is O(N2). The number of stages in

the transform is a function of the scaling matrix; for a dyadic scaling matrix a =

2I, where I is the identity, there are log2 steps in the transform yielding a total

algorithm cost of O(N2 log2(N)). For a two-dimensional quincunx scaling matrix

with | det a | = 2, the number of steps in the transform doubles (as the image width

and height are reduced alternately by a factor of 2) but the order of the computation

remains the same.

There are two implementations of the CHCDW algorithm the author is aware

of, both implemented in the MATLAB programming language. The first is the

original (not explicitly optimized) version written by Dr. Benjamin Manning; the

second, a newer implementation created by this author which makes careful use

of data structures to more efficiently represent signals in the case where all wavelet

coefficients can be explicitly retained in main memory using a dense (i.e. non-sparse)

representation. Profiling our new implementation (see Table 2.1) demonstrates that
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the bulk of the calculations indeed correspond to filtering operations; in particular,

they represent the (periodic) translation on the lattice by k and the multiplication

and summation entailed by the approximation and detail operators. Runtime from

these three lines represents approximately 85 percent of the total algorithm runtime

for an image of size 512× 512 (computed over 100 trials).
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Figure 2.1: Runtimes for various wavelet algorithms (CPU-only implementations)
as a function of image size. The y-axis depicts average runtime per image taken over
100 trials (lower is better; note the log scale). Our implementation, CHCDW-12, is
among the best performers in this set and performs especially well for larger image
size.

Figure 2.1 shows a comparison of runtime performance for various wavelet

analysis algorithms. In particular, we compare the unoptimized CHCDW trans-

form (designated DCWT-12) and the new CHCDW implementation (designated

CHCDW-12) both using the same 12 element group B and a dyadic scaling matrix

a = 2I. For reference, we also provide runtimes for a two dimensional wavelet trans-

25



form included with the scatnet [137] software package and a shearlet transform [59]

. In the case of the wavelet transform, we include results for Morlet wavelets with

six and twelve angular parameters. For the shearlet transform, we configure the

transform to compute 8 directions at each scale (note that the shearlet codes prefer

images that are at least 64× 64 pixels in size, hence we omit the data point for the

32× 32 case). The figure shows the average runtime to compute an analysis trans-

form for a two-dimensional grayscale image as a function of the image dimension

(i.e. the N in an N ×N image). All algorithms were implemented in MATLAB and

utilize only CPU operations (although we note the authors of the shearlet transform

do have a GPU version of their codes available; for fairness, we consider only CPU

implementations). All runtimes were computed on a MacBook Air with an Intel i5

CPU with 2 cores (a fairly limited platform for processing). The figure indicates our

implementation has a favorable runtime profile. In particular, the difference between

the unoptimized and optimized CHCDW algorithm implementations is greater than

factor of 10 in the case of images with dimensions 256× 256 (mean runtimes of 3.12

vs. 0.15 seconds per image). There are many techniques for improving the efficiency

of the convolution operator in general (e.g. see [123]) and it is quite possible that

our runtime performance could be further improved; however, given the relatively

good performance of our current algorithm it is likely that other factors pose more

substantial obstacles to the adoption of CHCDW for practical applications.
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2.2.1 An Example Crystallographic Wavelet

In this section we describe a particular CHCDW, developed by Dr. Benjamin

Manning and introduced in [50], whose application will be the focus of our subse-

quent experiments. As mentioned in [50], this wavelet is analogous to (but distinct

from) the final example appearing in [96]. For this wavelet, one takes a = 2I and

B to be isomorphic to the 12 element dihedral group D12 that has the standard

presentation

〈x, z | a6 = x2 = e, xax = a−1〉. (2.18)

One departure from [96] is that, unlike the typical realization of D12, one defines the

elements of B to incorporate shears to facilitate the mapping of hexagonal lattices

to canonical lattices. The individual group elements are

b1 = I b2 = rotate−90 · sheary, b3 = rotate−90 · shearx, b4 = rotate180,

b5 = rotate90 · sheary, b6 = rotate90 · shearx, b7 = flipy · sheary, b8 = flipy=x,

b9 = flipx · shearx, b10 = flipx · sheary, b11 = flipy=−x, b12 = flipy · shearx

With respect to (2.18) the identity matrix b1 is of course the group identity element

e; elements b2 and b7 play the roles of a and x, respectively. A visual representation

of the action of the elements B on a unit square is provided in Figure 2.2. In the

remainder we will refer to this particular CHCDW as “CHCDW-12”, although we

observe that it is not the only CHCDW that can be derived from group B with

twelve elements (Table 2 in [19] provides a complete taxonomy).
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(a) b1χS (b) b2χS (c) b3χS

(d) b4χS (e) b5χS (f) b6χS

(g) b7χS (h) b8χS (i) b9χS

(j) b10χS (k) b11χS (l) b12χS

Figure 2.2: The unit square χS (black and red lines) and the action of elements of
B on this region (green and red lines).
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While the unit square is useful to gain an intuition regarding the action of

elements of B, it is also instructive to consider the specialized subsets of Rn as-

sociated with Theorem 2.1.3. Consider the candidate fundamental region R =

{(0, 0), (1
2
, 0), (1

3
, 1

3
)}. The left panel of Figure 2.3 depicts both R (the triangle la-

beled b1R) and also the set S =
⋃
b∈B bR. The right panel of the same figure shows

nine lattice translates k ∈ [−1, 0, 1] × [−1, 0, 1] of S. From inspection it is clear

that the complete set of translates of S by L will result in a tiling of R2 as required

by Theorem 2.1.3 Item (i). For the choice of dyadic scaling matrix a = 2I the

normalization property follows immediately since

aba−1 = (2I)b(2−1I) = b.

We also observe that the lattice Z2 is trivially preserved by dyadic scaling and

hence Theorem 2.1.3 Item (ii) holds. For the choices {b1, b5, b7, b12} and associated

translations {(0, 0)T , (0, 1)T , (1,−1)T , (1, 0)T} we demonstrate that (2.7) is indeed

satisfied numerically; see Figure 2.4. Thus, we have demonstrated (if somewhat

informally) that the conditions of Theorem 2.1.3 all hold and therefore the CHCDW

has an associated MRA. That this CHCDW has an associated MRA was of course

known by the authors of [50] (it was constructed to have this property); here we

have merely made explicit the theoretical justification.

The structure of fundamental region provides insight into the local spatial

structure of signals that are likely to be well-captured by this wavelet representa-

tion. A demonstration that further illustrates how the geometry of the fundamental
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Figure 2.3: Visualizing S =
⋃
b∈B bR0 and its L-tiling property.

Figure 2.4: Supports for the three multiwavelets ψi are denoted by blue triangles
(left); each multiwavelet takes a constant value on each blue region. Also shown is
a visual demonstration that Theorem 2.1.3 Item (iii) holds (right).
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Figure 2.5: Image reconstructions using block-sparse wavelet coefficients.

region plays a role is possible by reconstructing a few images using only the coarse

scale coefficients. Figure 2.5 shows two few canonical images (left) and their recon-

structions from only the wavelet coefficients at or above scale 25 and 24 respectively.

The resulting “Picasso-ification” of the images arises from the structure of the fun-

damental region. While perhaps not quite as striking as neural network procedures

for style transfer (e.g. [68]) the figure does suggest that the Haar-like properties of

the transform provide some natural mechanism for introducing a kind of “style” by

construction (e.g. vs data-driven techniques as in deep learning).
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hyperplane barbara cameraman polygons1 thin-rectangle
Coefficients (256× 256) (512× 512) (256× 256) (256× 256) (256× 256)

ti−1(η) 0.24 0.58 0.53 0.98 3.15
ti−2(η) 0.23 0.53 0.50 0.98 3.30
ti−3(η) 0.28 0.63 0.88 1.58 6.97
ti−4(η) 0.25 0.73 1.37 3.16 15.46
ti−5(η) 0.17 1.14 1.66 6.20 18.03
ti−6(η) 0.10 1.80 2.43 11.33 23.21
ti−7(η) 0.05 2.69 3.20 15.45 13.75
ti−8(η) 0.03 2.22 3.72 23.78 9.38
ti−9(η) 3.15

s−J(η) 98.66 86.53 85.71 36.53 6.74

Total 100.00 100.00 100.00 100.00 100.00

Table 2.2: Distribution of energy across CHCDW-12 coefficients at each scale for
various test images. Numbers in table indicate a percentage relative to the scaling
coefficients at scale j = 0, i.e. ||s0(η)||2.

That the CHCDW transform is orthogonal follows from its MRA property. As

an empirical confirmation of this fact, we present a Table 2.2 where, for a variety of

images, we compute the energy (i.e. || · ||2) for the wavelet coefficients at each scale

{tij}i as well as the scaling coefficients sJ . It is interesting to note that, for the natural

images, the bulk of the wavelet energy is captured by the scaling coefficients sJ . In

contrast, for the binary images of simple geometric shapes the wavelet coefficients

capture a relatively larger portion of the orignal signal energy. This suggests that,

for algorithms are based on properties of the wavelet coefficients tij(η), the CHCDW

may be at a relative disadvantage for natural images. We will explore this insight

in more detail in Section 2.3.
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2.3 Applications

In this section we explore a few practical applications for CHCDW. For all of

our experiments we use the CHCDW-12 wavelet introduced in Section 2.2.1.

2.3.1 Directional Analysis

Anisotropic methods, that is, those whose properties differ according to the

direction of measurement, have long been of interest in harmonic analysis. For

example, in image processing applications the ability to localize structural features

(such as edges, segments, corners, etc.) is highly desirable. Classically, continuous

wavelet transform (CWT) techniques were employed for these analysis tasks, with

discrete, dyadic wavelets typically reserved for synthesis tasks (such as denoising

and data compression) [8]2. In the CWT, angle, scale, and position localization is

obtained by filtering signals with the collection of functions

AA,R(Ψ) = {DaDrTyψ : a ∈ A, r ∈ R, y ∈ R2}, (2.19)

where R is a collection of rotation matrices and A is a collection of scaling matrices.

This can be seen as a continuous variant of (2.2) where there is more flexibility in

selecting the dilations and the function ψ (typical requirements are that ψ be rea-

sonably well-localized in space and frequency and satisfy the minimal admissibility

2Even more recently, Mallat elected to use a CWT technique when devising his scattering
transform framework instead of a discrete wavelet system, which is telling as he is a pioneer of the
latter technique.
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requirements for a wavelet [9]). Features S(a, θ, b) are computed by taking inner

products of AA,R with a signal/image (analogous to (2.13)).

In this framework, the properties of ψ and the choices for A,R drive directional

and positional sensitivity. Defining precisely what constitutes good directionality

can be somewhat application dependent. One precise definition proposed by [8]

that a wavelet ψ is directional if the effective support of its Fourier transform ψ̂

is contained in a convex cone whose apex is at the origin of frequency space. In

particular, this implies that the frequency support of ψ̂ should be away from zero.

One canonical example, the 2-D Marr (or “mexican hat”) wavelet

ψH(u) = (2− uTAu) exp

(
−1

2
uTAu

)
,

has its frequency support centered at the origin regardless of how one chooses the

anisotropy matrix A and therefore fails to satisfy this definition. Indeed, empirical

studies have confirmed that this wavelet is better suited for detecting point singu-

larities than oriented edges [9]. In contrast, a prototypical anisotropic tool is the

2-D Morlet wavelet, which is constructed by taking the product of a plane wave and

a Gaussian envelope

ψMorlet(u) = exp(ik0 · u) exp

(
1

2

(
ε−1x2 + y2

))
+ C. (2.20)

The parameter k0 ∈ R2 is a wave vector and ε ≥ 1 is an anisotropy parameter

which stretches the Gaussian envelope along the x-axis; together, these two pa-
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rameters control the sensitivity to discontinuities along the x-axis. The constant

C is a correction term used to ensure the wavelet satisfies the admissibility con-

dition ψ̂Morlet(0) = 0 (here, the wavelet is assumed to be suitably regular e.g.

ψ ∈ L1(R2) ∩ L2(R2)). This wavelet indeed satisfies the above notion of direc-

tionality and has also demonstrated excellent angular sensitivity empirically [9].

Note that failing to satisfy the above definition of directionality does not mean a

wavelet cannot be used to productively analyze directional content. For example, [8]

describe gradient wavelets designed to detect corners in images which do not satisfy

this strict definition. Empirical analysis therefore has a role to play in characterizing

wavelet behavior.

One method used to quantify the resolving power of a wavelet is to analyze

the transforms of particular signals. For example, [8] recommend to analyze the

perfomance of ψ with three general types of tests:

1. Evaluating the impulse response of ψ by evaluating a Dirac delta function.

2. Using the autocorrelation of ψ to evaluate the correlation length in each vari-

able a, θ, b,

K(a, θ, y|1, 0, 0) = 〈ψa,θ,b|ψ〉 =
1

a

∫
ψ(x)ψ

(
1

a
r−θ(x− y)

)
dx.

3. For testing specific properties, such as the ability to detect a discontinuity or

angular selectivity in a particular direction, one may use custom benchmark

signals to characterize wavelet performance.
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Detailed examples of these analyses for the Morlet and Marr wavelets can be found

in [9].

A number of more recent directionally sensitive methods fall under the um-

brella of CDW systems, such as ridgelets [32], curvelets [33], directional Gabor

systems [73, 117], and shearlets [78]. Of these methods, shearlets have proven par-

ticularly popular in applications. While provably optimal for the class of cartoon-like

functions, there remains interest in understanding their directional analysis proper-

ties. For example, [145] provides new insight into the representational efficiency of

shearlets in the special case of discontinuities taking the form of two-dimensional

hyperplanes and [90] considers angular sensitivity and resolution of various wavelets

in the context of digital mammography images. These can be seen as instances of

the “benchmark” signal analysis suggested by [8].

For the CHCDW-12 wavelet, we do not have quite the same flexibility as

compared to some of the classical CDW methods. For example, the structure of

the group B limits to some extent how explicitly one can parameterize a notion

of angle beyond what is inherently captured by the elements of B. Additionally,

the orthogonality property of CDW suggests that autocorrelation analysis will not

be productive. Finally, the Haar-like structure of the scaling function in the time

domain indicates that this wavelet will not have a frequency domain profile that will

be well contained within a cone as required by the Definition of [8]. Nevertheless,

performance on benchmark signals is still of relevance and may even be particu-

larly interesting since the expected results are not entirely clear from the outset

(unlike the Morlet wavelet, where k0 and ε from (2.20) have a slightly more intu-
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itive interpretation when it comes to detecting discontinuities). In the remainder of

this section we ask what kind of directional capabilities might be possible with the

CHCDW-12, despite the relatively strong constraints upon its construction.

2.3.1.1 Empirical Studies

In this section we consider a “benchmarking” experiment in the spirit of [8].

However, we take a slightly different approach in that we investigate angular sensi-

tivity relative to globally pooled representations derived from CDW wavelets. This

pooling operation averages over spatial location information in the spirit of the

translationally invariant representations described in [26]. Our goal is to obtain in-

sight into the behavior of CHCDW-12. To do so, we will compare it with two other

directional representations: shearlets and Morlet wavelets. While the benchmarking

study we pursue here may not be ideal for these latter two systems (for which we

may have additional analytical understanding of their directional sensitivities) the

ultimate motivation is to understand the relative behavior of CHCDW-12.

Fix a benchmark signal, and let xi ∈ Rd, i = 1, . . . , N be the digital represen-

tation of rotations of the benchmark by angles yi ∈ R, i = 1, . . . N (i.e. N is the

number of angles considered). For example, Figure 2.6 shows an example where the

benchmark signal is a thin rectangle designed to emulate a simple edge-like struc-

ture. The goal is to estimate yi from pooled CDW features derived from xi. Let ψj

be a wavelet associated with a CDW system (e.g. CHDW-12). Then we define an

associated pooled wavelet representation for each image via ci,j = ||xi ? ψj||1. The
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motivation for this particular representation is two-fold: marginalizing over spatial

parameters distills the representation down to features most closely associated with

directional properties of interest and this representation is directly related to a first-

order scattering transform (one that is maximally translation-invariant as it does

not compute any local descriptors). As observed by [26] this is a fairly crude signal

representation; however, our goal here is to gain understanding about directional

sensitivity and not to optimize the solution of a particular problem.

As a model of the relationship between the ci,j and the yi, we frame a LASSO [142]

regression

(α̂, β̂) = arg min


N∑
i=1

(
yi − α−

∑
j

βjci,j

)2
 subject to

∑
j

|βj| ≤ λ,

where α̂, β̂ = (β̂1, . . . , β̂d) are regression coefficients and λ is a tuning parameter.

We then use as a metric for “angular sensitivity” the mean square error (MSE) of

the residual,

MSE(y, ŷ) =
1

N

N∑
i=1

(yi − ŷi)2,

where ŷi = α+
∑

j βjci,j. In all our experiments the choice of λ is determined by a 10-

fold crossvalidation procedure; we use the largest value of λ where the corresponding

estimate is within one standard error of the minimum MSE computed over a range

of possible values.

Benchmark signals for these experiments consist of simple geometric shapes

that have been rotated about the center of the image. All images are binary and
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(a) 0 degrees (b) 15 degrees (c) 30 degrees

Figure 2.6: Examples of rotating a benchmark signal (here, an edge-like structure).
The task is to estimate the rotation angle from a globally pooled wavelet represen-
tation.

128 × 128 pixels in size. For the wavelet and shearlet systems we use the same

implementations referenced in Section 2.2, namely the Morlet wavelets included

as part of the ScatNet scattering transform framework [137] and the 2D shearlet

implementation of [59]. For the Morlet wavelet systems we employ systems with

4, 6, and 12 equally spaced angles and each having log2(128) = 7 scales. For the

shearlet system, we employ systems with 8, 16, and 32 angles each having 3 scales.

In the case of the shearlet system, the number of angles must be a power of two

and we use the largest number of scales supported by the software for images of

128 × 128 pixels. For CHCDW-12, we use our own implementation as described

in Section 2.2. When reporting results we provide, for each system, the number

of dimensions in the associated representation (recall we marginalized over the two

spatial dimensions) and the mean square error (MSE) for each feature/signal pair.

Edge-like Signals For our first experiment, we focus on benchmark signals with

edge-like structure. We begin with the thin edge-like rectangles depicted in Fig-

ure 2.6, which we then rotate from 0 through 135 degrees and solve the aforemen-
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Wavelet System # feature dimensions MSE

Morlet-4 28 1.55
Morlet-6 42 1.75
Morlet-12 84 1.74

Shearlet-8 25 1.81
Shearlet-16 49 1.71
Shearlet-32 97 1.84

CHCDW-12 84 2.88

Table 2.3: Mean square prediction errors for the edge-like benchmark signal shown
in Figure 2.6. The naming convention“a-b” indicates that CDW system a was con-
figured to use b “directions”. We observe generally low reconstruction error for all
three algorithms, but observe that CHCDW-12 appears less well suited compara-
tively.

tioned LASSO problem. The results are summarized in Table 2.3. While all CDW

systems demonstrated a good ability to capture directional information for this

benchmark signal, it appears that CHCDW-12 is least-well adapted of the three to

this signal type. This is perhaps unsurprising as the Morlet wavelets in particular

were originally designed to capture fine edge-like structures.

As a generalization to less synthetic edge-like signals, we also ran a similar

experiment where the benchmark signals are now digits from the MNIST data set.

In this case, we have grayscale images which have been resized from the native

dimensions of 28× 28 to 32× 32 pixels (to accomodate wavelet systems that prefer

images with dimensions that are a power of 2). The results are summarized in

Table 2.4. In general, these results are consistent with those from the thin rectangle

experiment described previously. We also remark that this relative performance on

MNIST is qualitatively consistent with findings involving a fundamentally different

Haar-type wavelet in the context of a scattering network [39].
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MNIST digit
Feature Type 0 1 2 3 4 5 6 7 8 9

CHCDW-12 0.76 0.66 0.70 0.73 0.70 0.71 0.72 0.73 0.74 0.73
Morlet-4 0.67 0.65 0.68 0.65 0.69 0.66 0.66 0.68 0.64 0.67
Morlet-6 0.70 0.63 0.66 0.64 0.68 0.66 0.66 0.69 0.66 0.69
Morlet-12 0.71 0.65 0.69 0.69 0.69 0.70 0.70 0.68 0.71 0.70
Shearlet-4 10.81 1.43 2.30 4.14 1.47 2.44 2.60 2.91 7.22 2.80
Shearlet-8 3.25 0.87 0.97 1.59 0.97 1.20 1.68 1.33 2.26 1.11

Table 2.4: Mean MSE for angular regression on MNIST digits. Again, while perfor-
mance is reasonable throughout, results suggest that the Morlet wavelet may have a
slight advantage in this setting. Note also the relatively small sizes of these images
(rescaled to 32× 32 pixels) is not ideally suited for the shearlet codes.

Geometric Signals in Noise For our second set of experiments, we general-

ize beyond edge-like structure to signals with more substantial spatial support. In

particular, we will now consider rotations of a square object in isolation and in

the presence of certain kinds of noise; the first noise model introduces a confuser

square which circumscribes the target square and the second noise model introduces

randomly drawn edges which are overlaid in the scene. Examples of images asso-

ciated with these three models are presented in Figure 2.7 and Table 2.5 provides

the corresponding regression results. Before discussing the results, we first pause

to mention that for more traditional noise models (e.g. additive Gaussian noise

or “salt-and-pepper” binary noise) the CHCDW-12 system performs quite poorly

compared to the more conventional shearlet and wavelet systems. Some of our

empirical explorations suggested that the CHCDW-12 tends to perform better for

signals characterized by piecewise constant elements with non-trivial spatial sup-

port. These informal observations motivated the exploration into these somewhat

less conventional noise settings. Our first noise model therefore considers a situa-

tion where there is an interesting overlap between piecewise constant signals and our
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(a) No noise. (b) Distractor object. (c) Overlaid lines.

Figure 2.7: Visualization of noise models used in our angular regression experiments.
The goal is to estimate the rotation angle of the square in the center of the image
(shown here with 0 rotation). All images are binary and 128× 128 pixels in size.

second experiment considers settings where fine edge-like structure may act as a dis-

tractor rather than the primary signal of interest. For example, one might imagine

this as a very crude approximation of cluttered LIDAR scenes where weaker returns

from nearby obstacles introduce edge-like noise.

Based on Table 2.5 it appears that when equipped with a sufficient number of

directions, all wavelet systems do a reasonable job solving this regression problem.

The shearlet system appears to struggle in the setting where there is a distractor

object and the Morlet system appears to be misled when fine edge-like structure is

a distractor rather than the signal of interest. In all of these settings, the CHCDW-

12 system seems to be relatively robust. One might naturally ask whether these

results generalize across scales. Figure 2.8 shows results for experiments where the

dimension of the target square varies. A similar overall trend is evident; overall,

these empirical studies suggest that there may be certain signal “regimes” for which

unconventional wavelets can potentially provide some value relative to the more

commonly studied directional systems.
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Wavelet System # dims No noise Distractor object Overlaid lines

CHCDW-12 84 0.72 6.06 79.36

Morlet-7-4 28 312.49 350.97 ≥ 475
Morlet-7-6 42 9.55 56.75 ≥ 475
Morlet-7-12 84 2.21 11.71 ≥ 475

Shearlet-3-8 25 9.97 292.32 221.78
Shearlet-3-16 49 1.90 144.18 197.23
Shearlet-3-32 97 0.78 59.00 127.49

Table 2.5: Mean square error for our angular regression problem under the noise
models shown in Figure 2.7). Error estimates are for an angular regression problem
where the object of interest is rotated from 0◦ to 75◦ degrees.

(a) No noise. (b) Distractor object. (c) Overlaid lines.

Figure 2.8: MSE for estimating rotation angles of squares as a function of the target
shape size. The three panels correspond to the shapes depicted in Figures 2.7a
to 2.7c. The CHCDW-12 wavelet is generally among the best performer across all
scales in these three scenarios.
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Conclusions In summary:

1. These experiments suggest that, while all three systems provide good perfor-

mance for edge-like structure, the Morlet system may have a slight advantage

in this regard. This is not an absolute statement, however, and other consid-

erations (image size, global pooling, etc).

2. Our noise model experiments hint that there may be some advantage in certain

settings, e.g. where fine edge-like structure is not a feature of interest but

rather a source of noise.

3. Not shown explicitly here were experiments with more traditional noise models

(e.g. additive Gaussian noise) for which CHCDW-12 appears to be entirely

ill-suited. This suggests that the practical applications of this wavelet may be

somewhat specialized.

2.3.2 Classification via Scattering Transforms

2.3.2.1 Overview

Scattering transforms, originally devised by Stéphane Mallat [26, 114], are

a framework for generating signal representations inspired, in part, by the recent

widespread success of deep neural networks (DNNs). Despite their unquestionably

good performance and the vast amount of research attention [104], DNNs are still not

completely understood from a mathematical perspective. Even the relatively simple

feedforward convolutional neural networks lack a complete mathematical character-
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ization and this task becomes even more challenging as architectural complexities

are added (recurrence, dropout, exotic normalizations, etc.). Designing DNNs and

tuning their hyperparameters (e.g. number of layers, learning rates, filter sizes) is

non-trivial and requires some combination of numerical experimentation and manual

craftwork. Scattering transforms start with the cascade of filtering and nonlinear

operators that lie at the heart of DNNs and seek to place this structure on firmer

mathematical footing. In particular, the goal is to provide a setting where principled

statements can be made about the properties of the resulting representation.

Unlike DNNs, scattering frameworks (in their original incarnation) make use

of filters that are designed a-priori, rather than learned from data. In essence, they

are cascades of directional wavelet filters interleaved with pointwise nonlinearities.

The underlying mathematical motivation is to eliminate uninformative variability

from the feature representation for the signal processing problem at hand. In image

classification problems, for instance, affine transformations such as rotation and

scaling typically do not change the underlying signal content but have substantial

impact to the resulting Euclidean signal representations. In the classical handwritten

digit classification problems such as MNIST, translating a digital image of a digit

does not change its class but there is a large `2 distance between the original and

translated digital signals. Such variability is not helpful to a downstream classifier;

this motivates a mathematical desire to produce feature representations that are

invariant to these actions.

Of course not all variability is irrelevant. There is other (often nonlinear) vari-

ability in signal representations whose magnitude can be expected to impact the
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signal content proportionally. Back to the handwritten digit classification setting,

small elastic distortions do not change the signal content (digit type) but larger

deformations could represent a fundamental change in the underlying signal (e.g.

deforming a digit 1 into a 7). Thus, one does not desire invariance to such defor-

mations, but instead prefers a representation which is stable to the deformation,

meaning it linearizes the elastic deformation so that any variability can be more

readily adjudicated by a classifier.

Under certain assumptions related to the filter banks, Mallat is able to show

that his scattering tranform feature representations exhibit translation invariance (in

a limiting sense), stability to diffeomorphisms, and an energy preservation property

that ensures the resulting representation is non-trivial. However, Mallat’s scatter-

ing transform framework is designed for continuous (or semi-discrete) transforms

and the associated guarantees require the underlying wavelets satisfy a very specific

admissibility criterion that is not readily satisfied by most modern wavelet systems.

Thus, the original scattering is a beautiful mathematical accomplishment but one

that entails relaxation and approximations in order to realize a digital implementa-

tion.

In an attempt to make scattering transforms more practical, Bölcskei and

Wiatowski introduced their own variant of Mallat’s scattering that provide separate

notions of translation invariance and stability [146, 147, 148]. While it does not

provide exactly the same guarantees, their framework imposes fewer requirements

on the underlying wavelet system and also introduces additional constructs rele-

vant to DNNs, such as explicit notions of inter-layer pooling. In particular, as long
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as the wavelet is suitably bounded (which will always be true in the discrete set-

ting), the nonlinearities are mild (Lipschitz-continuous), and the pooling operations

satisfy mild conditions, then one obtains a notion of translation invariance which

varies as the network grows deeper and Lipschitz continuity of the feature extractor.

These requirements are sufficiently benign that it opens the door to devising hybrid

representations consisting of both learned and hand-crafted filters.

A number of other extensions to these scattering transforms have been explored

in the litereature as well. This include different wavelet systems, such as Gabor

systems [48, 49, 53, 108, 109], roto-translation groups [119], and time-frequency

scatterings [7]. There has also been prior work with scattering Haar wavelets [39, 40];

however, instead of building directly upon composite dilation wavelets this work

considers hierarchies of additions, subtractions, and absolute values over pairs of

coefficients. The specific pairings used in a given network are selected by various

optimization strategies, whereas in our setting the MRA determines the structure

of the calculations. Scattering transforms have also been generalized to Lipschitz

systems [13] and hybrid representations that include both learned and manually

crafted wavelets [120].

Our primary interest is in (fully) discrete wavelets and numerical implemen-

tations thereof. Even if one sets aside this computational perspective temporarily,

the CHCDW wavelet system does not satisfy the wavelet admissibility criterion as-

sociated with Mallat’s scattering transform and it would require some non-trivial

modifications to the construction in order to better localize the frequency. Therefore,

our focus in the remainder is upon CHCDW and the discrete scattering framework
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of Bölcskei and Wiatowski. We begin by describing more precisely the scattering

framework itself, which is fairly consistent between the two systems. Then we pro-

vide some additional details regarding the discrete scattering framework and briefly

conform that CHCDW is indeed compatible with this framework. Finally we present

our main contribution, which is a comparative analysis of CHCDW with two other

popular directional composite dilation wavelets.

2.3.2.2 Discrete Scattering Transforms

Both the scattering transforms of Mallat and of Bölcskei and Wiatowski are

based on cascades of filtering and nonlinear operations whose cascades are arranged

in a tree-like structure. This architecture is depicted in Figure 2.9. While both share

the same general framework, the two approaches differ in terms of requirements upon

the operations and the resulting guarantees they provide. For reasons mentioned in

the previous section, we will limit our focus on the discrete framework of [148] and

adopt the corresponding notation in the remainder.

The core building block of the discrete scattering transform is a triple (or

module) denoted by (Ψm, ρm, Pm) where Ψm is a bank of filters used to implement

a convolutional transform, ρm is a pointwise nonlinearity, and Pm is a pooling op-

eration; the subscript m denotes that these operations are used at layer m of the

scattering tree. The complete collection of these operations (i.e. for the entire scat-

tering tree) is termed a module sequence and is denoted Ω := ((Ψm, ρm, Pm)0≤m≤M).

The precise definitions and conditions upon these components is described below.
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The filter bank Ψm: To be admissible in the sense of Bölcskei and Wiatowski,

the filter bank used to implement the convolutional operations must satisfy a frame

property. Let IN := {0, . . . , N−1} be a finite index set and let HN := {f : Z→ C :}

denote the set of N -periodic discrete-time signals Let Λ be a finite index set. Then

a collection of filters A collection of filters ΨΛ = {gλ}λ∈Λ is called a convolutional

set with Bessel bound B ≥ 0 if

∑
λ∈Λ

||f ? gλ||22 ≤ B||f ||22, ∀f ∈ HN . (2.21)

As observed in [148], this condition is equivalent to

∑
λ∈Λ

|ĝλ[k]|2 ≤ B, ∀k ∈ IN . (2.22)

and hence every finite set {gλ}λ∈Λ is a convolutional set with Bessel bound B? =

maxk∈IN
∑

λ∈Λ. The core requirement upon the filter banks Ψm is that they are

convolutional sets with Bessel bounds; clearly this condition is very mild and opens

the door to a number of interesting opportunities. Since the CHCDW-12 system is

constructed from a finite linear combination of compactly supported signals (recall

Equations (2.15) and (2.16)) this condition holds. As it is an orthonormal system,

we also know that the Bessel bound B = 1. The only detail is the original condi-

tion is stated in terms of N -periodic signals, which we accomodate in our digital

implementation by working with the periodization of all signals (following [50]).
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Figure 2.9: Scattering transform framework. Figure 2 in [26].

Non-linearities ρm: The non-linearity ρm : C→ C is a function which transforms

points locally. In particular, to be a module sequence requires that act pointwise

and satisfy the Lipschitz property |ρ(x) − ρ(y)| ≤ L|x − y| for all x, y ∈ C and

for some scalar L > 0. A number of candidate functions satisfy this requirement;

of particular interest to us is the modulus non-linearity ρ(x) = |x| which is clearly

pointwise and has Lipschitz constant 1. This is the nonlinearity we will use in all of

our scattering experiments.

Pooling Operator P : Let P : HN → HN/S denote a pooling operator where

N,S ∈ N, N/S ∈ N denote the size of the index set and the “pooling” factor which

governs the rate of dimension reduction. As in neural network architectures, pooling

operations within scattering networks act to reduce dimensionality. For a module

sequence the requirement is the pooling operation be Lipschitz, i.e.. ||Pf −Pg||2 ≤

R||f − g||,∀f, g ∈ HN for some scalar R > 0. Of particular interest to us is the

subsampling pooling operator (Pf)[k] = f [Sk] which has Lipschitz constant 1. This
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is the pooling operator we will use in all our scattering experiments (usually with

S = 1, i.e. no pooling).

These three conditions are all relatively mild and there is no substantial work

required to confirm that for reasonable choices of pooling and downsampling oper-

ators the CHCDW-12 system is readily admitted into this framework. In a semi-

discrete (i.e. continuous) setting the admissibility condition is slightly more complex;

however, a number of composite directional systems, including shearlets, have been

demonstrated to fit into this framework [146].

A module acts upon a signal x via the operator Um[λm]

Um[λm]x := Pm(ρm(x ? gλm)), (2.23)

that is, one convolves the signal with an element from the filter bank, applies an

pointwise nonlinearity, and then optionally downsamples via the pooling operation.

The ultimate signal representation is built from cascades of these operations corre-

sponding to different combinations of filtering operations along a “path”

q = (λ1, λ2, . . . , λm) ∈ Λ1 × Λ2 × . . .× Λm.

In particular, the overall operator along such a path is denoted

U [q]x = U [(λ1, λ2, . . . , λd)]x

= Ud[λd] . . . U2[λ2]U1[λ1]x.

(2.24)
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These operators U correspond to nodes in the scattering tree Figure 2.9.

As in Mallat’s original scattering transform, these U [λ] represent intermediate

calculations but not the ultimate representation. Instead, the there is a separate

filter χm which is responsible for extracting the output representation from each

node

S[λ1, . . . , λm]x := (U [λ1, . . . , λm]x) ? χm.

Since wavelets are covariant (not translation invariant) part of the role of the feature

extraction operator is to add local translation invariance by averaging.

The final signal representation for x from an M -layer scattering, denoted

Φm
Ω (x), is simply the union of the outputs S[λ], i.e.

Φm
Ω (x) :=

M−1⋃
m=0

{S[q]x}q∈Λm
1

In return for adopting the above framework and assumptions, one gains a

number of benefits. For example, one can obtain a global stability results A global

result

Theorem 2.3.1 (Theorem 1 from [148]). Let the admissible module sequence Ω =

((Ψm, ρm, Pm))0≤≤M−1 have a Bessel bound Bm > 0 and Lipschitz constants Lm >

0, Rm > 0 that satisfy

max
0≤m≤M−1

max{Bm, BmR
2
mL

2
m} ≤ 1.

52



Then the feature extractor ΦΩ is Lipschitz-continuous with constant LΩ = 1, i.e.

|||ΦΩ(f)− ΦΩ(h)||| ≤ ||f − h||2,

for all f, h ∈ HN where the norm in feature space is defined as

|||ΦΩ(f)|||2 :=
M−1∑
m=0

∑
q∈Λm

1

||S[q]f ||22.

Other results include a global energy constraint on the resulting features, a

deformation sensitivity result, and more refined results for the space of cartoon-like

functions. Since our goal here is not to further refine any of these bounds, we do

not elaborate further and instead refer the reader to [146] for complete details and

discussion.

2.3.2.3 Empirical Studies

Now we consider empirical performance of a discrete scattering tranform frame-

work equipped with the CHCDW-12 wavelet. Our scattering transform (termed here

“HaarNet”) uses the CHCDW-12 system at all depths, i.e. for Ψd = Aa,Γ{Ψ} from

(2.6). For the pointwise nonlinearity we use ρd(x) = |x| and we use a “no pool-

ing” pooling operator (Pf)[k] = f [k] (although we also experimented with dyadic

downsampling in other studies not reported here).

In all our experiments we confine the depth of our scattering tree to at most

m = 2 and we report results on the MNIST data set [103]. Our reason for focusing
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on MNIST is twofold: first, it is a well-established baseline and both main scat-

tering frameworks in the literature report classification results using this dataset.

Second, it is of sufficiently modest size that it does not require extensive computa-

tional resources to evaluate. We also observe that, based on our directional analysis

from Section 2.3.1.1, we might expect that the edge-like nature of MNIST puts the

CHCDW-12 scattering at a comparative disadvantage. While our experiments will

bear this out to some degree, we will also describe settings under which the picture

may be somewhat different.

As another caveat, we point out that dimension reduction is a key practi-

cal aspect of realizing a scattering transform. In the seminal application paper

for Mallat-style scattering the authors leverage the observation that certain paths

along the scattering tree tend to carry minimal energy. These “frequency decreasing

paths” provide opportunities for on-the-fly dimension reduction, an idea analyzed

empirically in detail in [26]. As of this writing we do not have a direct analog

of these frequency decreasing paths for the CHCDW-12 framework, and develop-

ing this idea further is something we are actively pursuing. Consequently, while

we have a few heuristics for helping to control the dimensionality, a more complete

dimenstion reduction program is a necessary and logical next step.

Here we will compare our scattering on MNIST with those of the ScatNet

framework based on Mallat-style scattering [2, 136] as well as FrameNet which is

made available by the authors of [146]. In order to facilitate comprison, we attempt

to eliminate some variables which might confound the results. In particular, we

omit post-scattering dimension reduction and we also use only linear SVMs for our
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classification experiments. We observe that this setting does not necessarily lead

to state-of-the-art performance on MNIST (e.g. [26] obtain slightly better overall

results by employing nonlinear SVMs and PCA-based dimension reduction). How-

ever, for the purposes of comparing frameworks, such additional sophistication is

unhelpful. For the SVM implementation we used the popular LIBSVM package [37]

and used standard k−fold crossvalidation techniques to select the box constraint hy-

perparameter. All of our experiments were conducted using the MATLAB software

package.

Since many wavelet implementations (including ours) require inputs whose

sizes are a power of two, as a preprocessing step we first resized all MNIST digits

from their native 28×28 shape to 32×32. We also note that the individual scattering

framworks had the ability to resize these images “under the hood”; we do not do

so for our CHCDW-12 scattering and instead work at the native resolution of the

input. Algorithm 1 summarizes the evaluation procedure.

Table 2.6 shows classification results for the MNIST data set. Reported are

overall error rates as a function of number of training examples. All results are

based on a linear SVM with no post-scattering dimension reduction. The baseline

configurations for Morlet and Shearlet reflect defaults based on existing publica-

tions/software. We also attempted a number of different configurations, but empir-

ically observed those reported by the original authors to be superior. In geneaal, all

algorithms exhibit reasonable performance on this data set, with the Morlet/ScatNet

configuration delivering the best overall performance. This is not surprising given

our earlier experiments in directional analysis. Note also that the CHCDW-12 scat-
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Algorithm 1 Procedure used to generate results in Tables 2.6 and 2.7.

1: procedure classify mnist(mnist, m, n feats max, do blur)
2: . Pre-processing
3: mnist32 = imresize(mnist, [32,32], ’bilinear’)
4: if (do blur) then
5: mnist32 = imgaussfilt(mnist32,5)
6: end if
7: . Feature Extraction
8: x morlet = ScatNet(mnist32.x, m)
9: x shearlet = FrameNet(mnist32.x, m)

10: x chcdw = HaarNet(mnist32.x, m)
11: . Classification
12: for x algo in {x morlet, x shearlet, x chcdw} do
13: x = normalizeFeatures(x algo, [-1,1])
14: c svm = selectHypers(trainSubset(x), n train=300, k=3)
15: for n train = 300, 500, ..., 5000 do
16: model = libsvmTrain(trainSubset(x), n train, c svm)
17: y hat = libsvmTest(testSubset(x), model, c svm)
18: end for
19: end for
20: end procedure

tering transforms are not improving with added depth; this is likely due to a lack

of on-the-fly dimension reduction mentioned previously. Addressing this is an area

for future research.

It is important to note that FrameNet, when configured with a different (non-

shearlet) wavelet and more training examples, has demonstrated state-of-the-art

performance on MNIST (described in full detail in [148]). Any relative under-

performance here is due to the shearlet configuration (which is not ideally suited for

small images like MNIST) . and is not a flaw of the framework itself.

Table 2.7 shows results from a second experiment where we apply a Gaussian

blur (with standard deviation σ = 5) to the MNIST data as a preprocessing step

to emulate a particular kind of noise. While the severe blurring has degraded the

performance of all three algorithms relative to the original data set, it appears that
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# Train FrameNet ScatNet HaarNet

300 21.2 13.20 7.69 8.67 11.93 13.09
500 13.63 7.59 5.85 3.79 6.59 7.57
700 10.97 5.99 5.03 3.23 5.55 5.99
1000 10.12 5.12 4.42 2.70 4.91 4.63
2000 8.27 4.07 3.08 2.03 3.59 3.30
5000 6.28 2.84 2.11 1.41 2.52 2.41

Wavelet Shearlet Morlet CHCDW-12
Scattering order 1 2 1 2 1 2
# dimensions 1089 9801 400 3856 12288 20352

Table 2.6: MNIST scattering experiments. Reported are overall error rates as a
function of number of training examples. All results are based on a linear SVM
with no post-scattering dimension reduction.

for these parameter settings the CHCDW-12 demonstrates slightly more robustness

for small training data set sizes. The difference between the performance of Morlet

and CHCDW-12 for the Gaussian blurring case is significant and a McNemar’s test

[132] rejects the null hypothesis that the classifier performances are equivalent at

the 5% level. As with our previous studies of directional analysis, this suggests that

there may be classes of signals for which the Haar-type wavelet can provide some

form of advantage.

2.4 Conclusions

This chapter considered new applications of Haar-type directional wavelets for

supervised signal processing problems. Our investigations are completely new in

this regard; past investigations of practical applications of this wavelet have been

confined to denoising applications. As part of this investigation, we embedded

this wavelet into a scattering transform framework and conduct numerical exper-
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# Train Morlet CHCDW Shearlet

300 31.52 27.90 31.8
500 - 19.42 25.03
700 - 16.55 21.22
1000 19.05 14.05 17.77
2000 11.75 11.19 13.47
5000 8.74 8.79 10.44

num. dimensions 400 12288 1089

Table 2.7: Blurred MNIST scattering experiments for m = 1 and a linear SVM.
Reported are overall error rates as a function of number of training examples. Note
that baseline configurations for Morlet and Shearlet reflect defaults known to work
well for this problem based on publications/software. However, there is a large
discrepancy in the number of dimensions used by each approach and additional
hyper-parameter tuning of these results could change the outlook.

iments. We demonstrate good, but not best-of-breed, classification performance

on the MNIST data set and identify different signal types where the Haar-based

scattering may be more effective. We also identify a few potential future research

directions where this technique might provide unique advantages. While our focus

has been largely upon characterizing performance for a given signal processing task,

this work fits into a broader research agenda to develop robust data representations

that relate to state-of-the-art algorithms such as deep learning. The importance

of a robust representations becomes especially important in large scale data-driven

tasks; in Chapter 3 we will explore in detail one particular motivating example.
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Chapter 3: Practial Implications of Instability

A key theme of Chapter 2 is the desire to characterize mathematical proper-

ties of feature representations used for machine learning. The energy preservation

properties of frames and the theoretical stability of scattering transforms are two

examples. To help motivate the potential value of such properties, we explore in this

chapter a particular class of undesirable behavior which has been observed within

data-driven deep neural networks. These so-called adversarial examples (AE) [139]

demonstrate that modern deep learning algorithms are not robust to certain small

magnitude perturbations in the signal input space. We present here a new analysis

of AE in the context of remote sensing applications. Unfortunately, the CHCDW

wavelets investigated in Chapter 2 are not well-suited for the type of images that

arise naturally in this setting; as a result, we do not explore the direct application

of CHCDW wavelets in this study. However, adapting the fundamental ideas of

stability to this setting remains a fertile direction for future work.

In the rest of this chapter we consider physically-realizable attacks against ma-

chine learning algorithms used in remote sensing applications. In particular, we focus

on AE in the context of satellite image classification problems. This setting intro-

duces a number of subtle challenges that are not fully addressed by current research

59



focused on ground-based natural image data. Our research goal is to investigate

these unique aspects. Using a recently curated data set and associated classifier, we

provide a preliminary analysis of adversarial examples in settings where the targeted

classifier is permitted multiple observations of the same location over time. While

these experiments are purely digital, the problem setup explicitly incorporates a

number of practical considerations that an attacker would need to take into account

when physically realizing AE. This chapter makes the following novel contributions:

(1) as far as the authors are aware, this is first empirical study of AE for satellite

imagery, (2) we propose an approach for digitally designing physically realizable AE

by explicitly incorporating remote sensing metadata directly into the optimization

process, (3) we consider the implications of attacking signals whose fundamental

characteristics are changing over time (e.g. as might occur in land use classification

problems), and (4) we empirically demonstrate the importance of physical scale to

the attack success rate when perturbations are limited in physical extent. In par-

ticular, contributions 2-4 also suggest a number of promising directions for future

work.

The content in this chapter also appears in [51, 52], which is joint work with

Wojciech Czaja, Neil Fendley, Christopher Ratto, and I-Jeng Wang. This author’s

own contribution to these works consisted of co-developing the experimental design,

conducting the numerical experiments, and co-authoring the resulting publications.
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3.1 Background

3.1.1 Adversarial Examples

3.1.1.1 Overview

Many modern deep learning systems exhibit a lack of stability to specially-

designed “small” perturbations to the signal input space. While what precisely

constitutes a “small” perturbation varies by application, it is generally understood

to be a modification that leaves the (human-perceived) signal content unchanged

while inducing a fundamental change in the output of the targeted machine learn-

ing system. Signals containing perturbations designed in this manner are termed

adversarial examples (AE) [35, 70, 100, 121, 139].

AE (and their potential real-world implications) have been a topic of substan-

tial recent interest. Despite widespread attention, however, there remain many open

questions. For example, while analyses into the mathematical properties of AE have

been conducted (e.g. [61, 63, 64]), a complete theoretical understanding of this phe-

nomenon remains elusive. On the more applied end of the spectrum, it is unclear

how consistently AE can mislead real-world systems. This question of applicability

is broad and depends upon many factors such as a priori knowledge of the targeted

system, how and where perturbations can be injected in the signal processing chain,

what constraints are placed upon the perturbation, and the required level of robust-

ness to variabilities in signal acquisition (variations in viewpoint, lighting, signal

preprocessing, etc).
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A number of studies of AE in physical settings have recently been performed,

including [11, 60, 99]. These experiments involve earth-based sensing in the visible

spectrum at relatively close ranges, e.g. within the sensing range of the camera on

an autonomous vehicle or a facial recognition system. There continues to be some

debate regarding the practicality of fielding such attacks in real-world settings. For

example, in [112] the authors concluded that AE are not a concern for autonomous

vehicles since many AE generated from a single anticipated perspective did not pre-

serve their adversarial properties when perceived from other viewpoints. However,

[11] subsequently demonstrated that, by explicitly accounting for the anticipated

distribution of viewpoints (and other variations in the sensing process), it is indeed

possible to construct robust AE and therefore the phenomenon merits considera-

tion. Explicit defense against adversarial attacks has also been considered in the

literature with varying degrees of success; for a few examples see [10, 12, 35] and

references therein.

Developing physically-realizable AE for remote sensing (RS) modalities (e.g.

satellite imagery, multi-spectral data, LIDAR, and SAR) have not yet been well-

studied, despite the fact that deep learning is being considered for a variety of remote

sensing applications (e.g. see [150]). Since the digital manifestation of these signals

is typically image-like, much of the existing work in AE is applicable. However,

fundamental differences between RS and ground-based sensing introduce important,

unique considerations when one considers physical realizations of AE. For example,

the relatively large physical scales involved in RS suggests that an attacker may

be severely limited in terms of how the underlying signal can be perturbed. And
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of course it is not simply that images cover a large spatial extent, but that signal

processing algorithms exploit this context (see [116] for one example and a discussion

of the importance of context). Temporal scale and material properties also provide

their own unique challenges in this domain.

AE are designed to mislead a signal processing algorithm (typically a deep

learning-based algorithm) and in the remainder we will refer to this as an “attack”

on the signal processing system. However, whether the AE itself is being employed

in an offensive or defensive capacity in the broader context depends upon one’s

perspective. From the viewpoint of the entity who is fielding the RS system, an AE

can be seen as an attack while, from the perspective of the observed entity, realizing

an AE might be viewed as a defensive mechanism. In the remainder we simply

refer to an AE as an attack on a signal processing algorithm and remain agnostic

regarding the relative roles in any broader context.

3.1.1.2 Techniques

In this section we briefly review techniques for generating adversarial examples.

The space of AE techniques is rapidly evolving; here we focus on a few of the more

canonical approaches. Additional details related to AE are available in [64] and the

associated references. In the remainder we will consider attacks against classification

problems for image-like data, however it should be noted that the notion of AE

generalizes to other settings as well.

Let f : Rd → {0, . . . , k − 1} denote a classifier which maps d-dimensional
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images to a discrete label set of cardinality k. For a given input x ∈ [0, 1]d (an

image with pixels scaled to be between 0 and 1) and a target label ` ∈ {0, . . . , k−1}

let r ∈ Rd denote a perturbation designed to cause the classifier to predict label

`; i.e. f(x + r) = `. We then refer to r as an adversarial perturbation and the

resulting signal x+ r as an adversarial example. An underlying assumption is that

f(x) 6= ` since it makes little sense to speak of a perturbation whose intent is to

leave a classifier’s original prediction unchanged. The goal to induce a particular

prediction f(x+ r) = ` is termed a targeted attack. An alternative is a non-targeted

attack where the adversary’s goal is merely to change the original prediction, i.e.

f(x + r) 6= f(x). Note that adversarial examples can also be considered in non-

classification tasks; however, this is outside the scope of the present discussion. If

all details of the classifier f are known by the adversary, this is often referred to as a

white-box attack. When details of the classifier are not directly known and must be

guessed or estimated via query, this is referred to as a black-box attack. Generally

speaking, white-box attacks tend to be the most difficult to defend against [10].

The seminal paper on adversarial examples proposed the following optimiza-

tion problem [139]

r∗ = min
r∈Rd
||r||2 subject to f(x+ r) = `, x+ r ∈ [0, 1]d.

The second constraint serves to ensure that the adversarial example x+r has admis-

sible pixel values while the || · ||2 penalty on r encourages the perturbation to be un-

obtrusive (the `2 norm is used as a surrogate for visual subtlety). The same authors
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also considered penalty function methods that utilize the classifier’s loss function

J(x, y, θ), which is a function that penalizes prediction errors. Typically the loss

function is used to train a predictor; in the context of AE, it is used as a mechanism

to guide the design of a perturbation. In our notation for J , x ∈ Rd denotes a signal,

y ∈ R the corresponding target/desired prediction, and θ ∈ Rp the parameters asso-

ciated with a function f which produces predictions ŷ = f(x; θ). The specific form

of a loss function J depends upon the problem at hand. For example, in regression

problems [81] one might use the a loss of the form J(x, y, θ) = (y − f(x, θ))2 or

J(x, y, θ) = |y − f(x, θ)|.

For binary classification problems (including neural networks) a popular choice

is the cross-entropy loss

J(x, y, θ) = −(y log(ŷ) + (1− y) log(1− ŷ)),

or, in the K-class setting where y ∈ RK [81],

J(x, y, θ) = −
K∑
i=1

yi log(ŷi).

For more details on loss functions and associated classical results in machine learning

see [81]; for details on training modern deep learning algorithms see [71]. For a given

J , Szegedy and his collaborators proposed another optimization-based approach to
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design the adversarial perturbation r

r∗ = min
r∈Rd

c‖r‖2 + J(x+ r, `, θ) subject to x+ r ∈ [0, 1]d.

Here, c is a scalar coefficient used to trade the relative influence of the two soft

constraints and ` continues to denote the classification label one wishes to induce

via the perturbation r.

Subsequently a number of alternative approaches have been explored in the

literature. The fast gradient sign (FGS) method [70] is a computationally thrifty

heuristic for untargeted attacks subject to an `∞ constraint on the perturbation. It

uses the gradient of the classifier loss function J to take a single step of magnitude

ε in a direction that (locally) leads to the greatest increase in loss

r = ε sign(∇xJ(x, y, θ)).

Iterative variants of FGS were presented in [99]. Highly effective attacks for a variety

of p-norm constraints upon the perturbation magnitude were presented in [36].

The aforementioned methods all implicitly assume the adversary can manip-

ulate all pixels in the scene. Another interesting source of constraints arises when

an attack can only modify a subset of the image support. In [122] the authors

use a greedy iterative method to generate sparse perturbations that modify only a

subset of pixels in the input space. In [25] the authors consider adding relatively

modest-sized “patches” into natural image scenes in order to defeat whole-image
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classification algorithms. Analogously, [38, 60] seek to defeat street sign classifica-

tion and detection by designing physical perturbations whose supports are explicitly

constrained to coincide with that of the object in question (in these cases, restricted

to the surface of a stop sign). In these physical settings, the aforementioned au-

thors seek to develop attacks that are effective over a range of possible locations,

rotations, and scalings. To achieve robustness to these possible variabilities, the au-

thors leverage the idea of optimizing over a collection of potential transformations,

an idea introduced by [11] and termed expectation over transformation (EOT). In

this setting, the idea is to constrain the effective distance δ between adversarial and

original inputs over a distribution of transformation functions T

δ = Et∼T [d(t(x)− t(x+ r))] , (3.1)

where d is some suitable distance metric (e.g. a p-norm) and t ∈ T denotes a specific

transformation. The distribution T can capture a variety of transformations, such

as scaling, translation or additive noise. Once a suitable T has been determined,

adversarial perturbations are generated by solving an optimization problem. The

authors of [11] proposed a problem of the form

arg min
r∈Rd

Et∼T [− log P(y|t(x+ r))] + λ δ, (3.2)

where P(y|x) is the classifier’s probability estimate for label y given image x and λ

is a scalar weighting coefficient.
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The EOT framework is quite general and therefore applicable to many settings.

Of course, for attacks that are ultimately to be realized in the physical world, the

question of designing T so that it is sufficiently representative of the physical setting

is non-trivial. In most cases, precisely modeling all possible physical phenomena is

unrealistic. Thus, each new domain and sensing modality introduces new challenges

and opportunities for analysis as one adapts T , the constraints, and the optimization

procedure for the specific problem at hand.

3.1.2 Remote Sensing Considerations

In this section we describe salient aspects of the remote sensing problem which

must be accounted for when considering a physical attack, i.e. the creation of AE

by manipulation of the physical world. While scenarios exist under which digital

attacks might be possible (e.g. via cyber intrusion into the sensing pipeline), the

physical domain is the most readily accessible.

Let Lsλ(x1, x2) : R3 → R denote the total at-sensor solar radiance observed by

a sensing system for wavelength λ and spatial coordinates (x1, x2). For example,

the total at-sensor radiance can be modeled as the sum of three sources: energy

reflected from Earth’s surface and not scattered by the atmosphere (su), energy

reflected from Earth’s surface and scattered by the atmosphere (sd), and a spatially-

invariant molecular scattering term which varies with wavelength (sp) [133]

Lsλ(x1, x2) = Lsuλ (x1, x2) + Lsdλ (x1, x2) + Lspλ . (3.3)
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Figure 3.1: At-sensor radiance; Figure 2-3 in [133].

A cartoon representation of these terms appears in Figure 3.1. One natural way

to realize a perturbation is by adding or removing materials or changing the sur-

face texture so as to manipulate Lsuλ . Of course a RS signal processing algorithm

is unlikely to deal directly with raw radiance values, and instead will operate on

some digital representation thereof. Figure 3.2 provides one depiction of relevant

components in this discretization process. With these processes in mind, we identify

a number of ways the RS setting can impact AE design.

1. Physical Scale

The scale of a satellite image is typically orders of magnitude larger than

an image taken on the Earth’s surface. For example, images taken from the

IKONOS satellite can span up to 11.3 km across [56] at sub-meter resolution.
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Figure 3.2: Sensing model which maps at-sensor radiance and platform attitude into
discrete images (digital numbers (DN)); Figure 3-1 in [133].

The large scale of these scenes imposes a significant challenge upon designing

AE with so-called “small” perturbations, especially if they are to be designed

in the physical realm. Approaches that subtly perturb entire images are im-

plausible; instead, a practical AE will likely be restricted to perturbing a few

regions of modest physical dimension. Constraints on the physical support of

AE have been considered already in the context of natural images and local

sensing problems (e.g. [25, 60]); however, the potentially vast scale coupled

with material constraints adds a subtle but important twist to this consider-

ation.

2. Viewpoint Geometry

Remote sensing imagery is influenced by many geometric properties of the

sensing process, such as satellite orbit, platform attitude, scanner properties,

and earth rotation and shape [133]. While there is some commonality with

ground-based sensing modalities, the scale of the RS environment does in-

troduce new considerations. For near-nadir observations from a satellite in
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low-Earth orbit, variations in range to various objects in the scene are likely

to be modest. Nevertheless, AE robustness to scale is an important issue

and we will capture this source of variability in our experiments. While the

full three-dimensional geometry of the problem is quite relevant, we will as-

sume for the purposes of this initial study that all objects lie entirely in the

ground plane (i.e., the elevation above sea level for each pixel is zero) and

that the off-nadir angle is modest. Therefore, any occlusions or shadows im-

posed by varying elevations of scene elements are ignored. With sufficiently

high-resolution metadata providing the satellite ephemeris at the time the

imagery was collected, future studies might entertain using an advanced pro-

jection/transformation of the images to the ground plane (where each pixel is

mapped to a latitude/longitude/elevation).

We observe, however, that the mild off-nadir angle assumption may not be

totally egregious since, in many applications, large off-nadir angles may in-

herently confound image analysis due to the degradation in pixel resolution.

Therefore, an adversary may be fundamentally unmotivated to generate at-

tacks for regimes where the targeted algorithm already performs poorly.

3. Temporal Variability

Remote sensing data also has a temporal aspect that is distinct from video.

An orbiting satellite’s ground track will pass through the same spot on the

Earth’s surface according to a regular schedule (usually several days), enabling

it to collect imagery over the same scene. For example, satellite systems such
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Figure 3.3: Scene with class label “crop field” exhibits substantial variability over
time, due in large part to changes in ground vegetation. Images are from the fMoW
data set.

as Sentinel-1 image the entire Earth over a period of days which increases

the importance of temporally-aware algorithms [150]. However, the elements

of the scene and the environmental conditions surrounding it may change

between revisits (e.g. seasonal changes in vegetation, human patterns of life,

and weather). For example, Figure 3.3 shows one example of how ground

conditions can vary dramatically over time. Algorithms that exploit remote

sensing data, including AE, must be robust to changing conditions such as

these. In our experiments, we use a data set where the sensing system makes

multiple but relatively infrequent passes over a given scene and we measure

the effectiveness of an attack across the entire sequence.

4. Material/Signature Properties

Material and sensor properties also influence how an adversary may be able

to manipulate a scene. For example, in multi/hyperspectral imaging, one

may not be able to arbitrarily modify the spectral signature of a given pixel.

Instead, material mixture models may determine the admissible set of per-

turbations that can be realized. Alternatively, in multi-modal settings (e.g.
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LIDAR+EO), there are practical constraints upon how a subset of the scene

can be modified jointly in each modality. These challenges present opportu-

nities to consider more sophisticated formulations for adversarial attacks. For

this foray into AE attacks on remote sensing, we will limit our experiments

to the visual spectrum; however, note that that the data set we employ also

includes multispectral signatures which could be used in future work.

5. Atmospheric Effects

Unlike machine learning algorithms applied to imagery taken from the surface

of the Earth, the performance of algorithms in remote sensing applications is

highly susceptible to environmental and atmospheric effects (e.g. illumination,

clouds, haze; see Chapter 2 in [133] for more details) and the properties of

physically realized AE will be affected by these phenomena as well.

3.2 Methods

3.2.1 Digitally Emulating Physical Attacks

Our goal is to develop adversarial perturbations consisting of opaque material

“patches” that, when placed within remotely sensed scenes, degrade the performance

of whole image classification algorithms. While our experiments are purely digital,

we propose an approach that captures salient aspects of the physical setting where

attacks would ultimately be realized.

Inspired by (3.3) we let P : R3 → R represent the space of physical signals. An
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adversary generates a physical perturbation rsuλ (x1, x2) and uses a mixture function

m : P × P → P which governs how the perturbation modifies the physical scene

Ls
′

λ = m(Lsuλ , r
su
λ )(x1, x2) + Lsdλ (x1, x2) + Lspλ . (3.4)

There are a number of possible models for m; here we will assume that (1) rsuλ is

compactly supported on Ω ⊂ R2 and (2) that the physical perturbation completely

replaces/obscures the original scene, i.e.

mΩ(Lsuλ , r
su
λ )(x1, x2) =


rsuλ (x1, x2) on Ω,

Lsuλ (x1, x2) on R2 \ Ω.

One of our first simplifications is to ignore the atmospheric scattering terms for the

time being and set

Ls
′

λ ≈ mΩ(Lsuλ , r
su
λ )(x1, x2).

We next assume the existence of an observation function t : P → O, where O

represents the space of digital images, that is the input space of the RS signal

processing algorithms. In the remainder we assume RGB images with m1 rows and

m2 columns, i.e. O = R3×m1×m2 . Note the observation function t is subject to

uncertainty since the precise sensing conditions may not be known a-priori; even if

they were, the sensing process is sufficiently complicated such that t will typically

have some associated modeling error which also contributes to the uncertainty.

Finally, we define D to be an abstract design space which parameterizes our
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r ∈ D rsuλ ∈ P

Ls
′
λ ≈ mΩ(Lsuλ , r

su
λ ) (t ◦mΩ)(Lsλ, r

su
λ ) ∈ O.

Lsλ ∈ P

D The space of adversarial designs
P The space of physical signals
O The space of digital images

Ω ⊂ R2 The spatial support of the perturbation

mΩ: The perturbation “mixing” function P × P → P
t: The observation function from P → O

r: The adversarial perturbation design
rsuλ : Physical realization of the adversarial perturbation
Lsλ: The original physical signal; also denoted by x

Figure 3.4: Model for designing physical AE.

adversarial perturbation; keeping with the convention of Section 3.1.1.2 we denote

the parameterization of the adversarial perturbation by r ∈ D. The overall frame-

work is summarized graphically in Figure 3.4. This model is compatible with the

spaces assumed in the EOT framework (described in Section 3.1.1.2); however, we

take pains to spell it out in order to make clear the approximations being made in

our approach.

At this point the setting is fairly general and we now proceed to describe addi-

tional assumptions and simplifications we make in order to develop a concrete algo-

rithm. For D, we assume a model whereby perturbations consist of a single opaque,

flat, compactly-supported, piecewise-constant perturbation that will be physically

placed within the sensed scene. In particular, we assume this perturbation consists
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of a square n× n “checkerboard” of opaque material. We further assume the phys-

ical dimensions of each element (i.e. each square in the “checkerboard”) are fixed

apriori as some number of meteres square. In the current work we focus on the

visible spectrum and each design element is associated with a three-channel RGB

value that is tuned during optimization. Thus, we take D = R3×n×n. We further

assume in our initial approach that the perturbation will be placed in the center of

each observed scene; together with the spatial dimensions of the perturbation this

defines Ω. The number (3n2) and the size, in meters, of the perturbation’s elements

are parameters that are fixed prior to learning the perturbation.

In our experiments, we do not attempt to implement a simulation of t and

instead rely on sensed data to design our perturbations. For example, if x ∈ P is

a source signal to perturb, we will do so by working directly with collected data

t(x) ∈ O. To this end we make a key simplifying assumption that the observed

digital signal can be partitioned such that each pixel represents a contribution from

either the original signal or the perturbation, i.e.

(t ◦mΩ)(Lsλ, r
su
λ ) = (t ◦mΩ)(0, rsuλ ) + (t ◦mΩ)(Lsλ, 0),

= t(rsuλ ) + (t ◦mΩ)(Lsλ, 0),

=: t(rsuλ ) + t(xΩ̄),

where xΩ̄ denotes the subset of the original signal Lsλ supported on R2 \ Ω. This

is obviously an oversimplification which essentially ignores any possible overlap or

edge effects at the interface between the original signal and the perturbation.
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Of course, t is subject to uncertainty and, as mentioned in Section 3.1.1.2, the

typical approach is to average over a distribution of transformation functions T . A

complementary notion, which we explore here, is to use metadata associated with

multiple observations t1(x), t2(x), . . . , tm(x) and approximate T by means of these

explicit samples from the true underlying distribution. For example, ground sample

distances provide explicit guidance in terms of how a perturbation r (designed in

physical coordinates) must be scaled so that t(rsuλ ) is dimensionally consistent with

t(Lsuλ ). The quality of this approximation will depend upon complexity of the true

sensing process and how much of that complexity the metadata permits one to

incorporate into t.

Another challenge with designing physical attacks in this setting is that, due

to the variations described in Section 3.1.2, the signal x being attacked may itself

change over time (and hence, from one observation to the next). Thus, our approach

must accomodate variations both due to the sensing process and the evolution of

the targeted signals {x1, . . . , xm} ∈ P . We are further assuming that the attacker

is not adapting the perturbation r over time but rather must design a single attack

that is effective across all the variabilities manifested in {t1(x1), . . . , tm(xm)}. This

is subtly different from most prior work in physical attacks where the dominant

source of variability is associated exclusively with the sensing process.

With this in mind we propose the following optimization for digitally designing
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targeted attacks against a sequence of observations

r∗ =arg min
r∈D

m∑
i=1

J (m(ti(xi), ti(r
su
λ )), `, θ) + λ

m∑
i=1

d(ti, xi, r), (3.5)

subject to m(ti(xi), ti(r
su
λ )) ∈ [0, 1]d, i = 1, . . . ,m.

Here m is the number of observations available for designing the perturbation, xi are

the physical scenes to perturb, ` is the classification label the perturbation desires

to elicit, d is a penalty function which encourages visual subtlety, and J, x, θ are

properties of the classifier defined in Section 3.1.1.2. Note that the observations

{ti(xi)}mi=1 used to design the perturbation need not consist of all samples present

in the data set. For example, one may be interested in exploring how well attacks

designed using a subset of samples generalize.

The penalty term d in (3.5) is another important design consideration. In

settings where visual subtlety is desired, one could follow the conventional approach

of realizing d using a suitable p-norm. In this case, this would be asking for a

perturbation that is generally subtle across a range of observational conditions and

variations in {xi}. The feasibility of visual subtlety is therefore somewhat signal

dependent. However, ideally attacks would also be subtle with respect to the 3D

geometry of the scene. For example, if the spatial extent of the patch extends beyond

the roof of a building or spans regions that are partially obscured/in shadow, it

would be preferable that the perturbation r respected these discontinuities. In the

absence of a full 3D model of P another approach would be to segment the scenes

t(x) and incorporate this structure into the attack model. In our current work we
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loosely approximate this by adding a second term to d which encourages the attack

to respect edge-like structure within an image. Let

δ1 = t(x)−mΩ(t(x), t(rsuλ )),

δ2 = t(x)−mE(t(x), t(rsuλ ),

where E is the subset of the scene with strong edge-like structure. Then we imple-

ment d via

d(t, x, r) = λ1||δ1||∞ + λ2||δ2||∞. (3.6)

Obviously there is ample opportunity for future studies that incorporate more

realistic models. Of course, complexity should not be added arbitrarily to these

terms since one must also consider impact to the feasibility of solving the resulting

optimization problem (e.g. gradient based methods will require reasonably well-

behaved functions ∇rt,∇rd).

3.2.2 Data Set

We base our numerical experiments on the Functional Map of the World

(fMoW) data set, a large collection of temporal sequences of satellite imagery de-

signed for evaluating whole image classification problems related to the functional

purpose of land use and buildings [42]. The overall fMoW data set contains over a

million images from 200 countries; our experiments utilize a subset of the validation
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Figure 3.5: Number of (RGB) images per sequence in the fMoW validation split
(median=3, maximum=41).

split (the overall validation split contains approximately 53000 images from 12000

unique scenes). Each image contains at least one bounding box labeled with one of

63 possible classes. Furthermore, the data set includes metadata features pertaining

to location, time, sun geometry, cloud cover, and physical dimensions of the imaged

swath. The fMoW data set has multiple modalities: 4-band or 8-band multispectral

imagery as well as high and low resolution RGB imagery. For our experiments,

we use the high resolution RGB images but observe that the multispectral domain

provides a compelling setting for future study.

We further downsampled the validation subset of fMoW so the resulting se-

quences satisfy a number of desiderata. First, since our interest is in attacking

sequences of nontrivial length, we only consider those with at least 8 views of the

same scene. This eliminates a large number of sequences as many in the validation

set are quite short (see Figure 3.5). We also only consider images that are correctly

classified by the targeted classifier prior to applying any perturbation. Finally,

we also limit our study to relatively benign sensing conditions (recall the previous
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“Viewpoint Geometry” discussion). We only use images with: mild off-nadir angle

(less than 30 degrees), at most modest cloud cover (less than 20 percent of image

chip obscured), and sun elevation angles of at least 60 degrees to eliminate more

extreme variations in illumination. The resulting experiment includes 66 sequences

each having at least 8 admissible frames.

The authors of fMoW also developed and analyzed a number of classification

models, some of which use exclusively image data while others make use of metadata

and/or exploit the sequential nature of the images by using recurrent networks.

Our study considers the one designated “CNN-I”, which is a fine-tuned variant of

DenseNet with no recurrent structure designed for RGB image data. Our choice of

CNN-I is justified in this case since the performance of this network is quite close

to that of the recurrent alternatives (see Table 1 in [42] for more details). However,

extending the analysis to other networks (e.g. those using metadata or that more

explicitly incorporate temporal properties) is another interesting direction for future

work.

The fMoW authors also make available their preprocessing algorithm which

extracts and resizes bounding boxes into a tensors of dimension 229x229x3 suitable

for ingestion by CNN-I/DenseNet. This rescaling has implications for the associated

metatdata. In our study we adopt the fMoW preprocessing strategy so that we

can use CNN-I off-the-shelf; however, as part of the preprocessing we must also

update the metadata so that salient values (e.g. ground sample distance) are still

representative following the rescaling.

There remain a few challenges associated with this data set, however. One
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substantial issue is that the images for a given scene are not precisely registered.

Therefore, while we can use metadata to properly control the scale of a patch, there

is no guarantee that the attack will be translated to the precise same location from

one observation to the next. Thus, our attack will be subjected to some positional

uncertainty.

3.2.3 Software Implementation

Algorithm 2 Procedure used to generate results in Table 3.1.

1: procedure generateAE(fMoW, seq to attack, θCNNI , λ1, λ2, n)
2: for seq in sequences to attack do
3: χe = detectEdges(seq)
4: for ` in {“crop field”, “park”, “office building”, “hospital” } do
5: r∗= minimize (3.5) via SGD
6: end for
7: end for
8: end procedure

For our experiments, we selected 4 target classes from the fMoW taxonomy:

“crop field”, “hospital”, “office building”, and “park”. We do not try every possible

targeted attack in order to control the computational expense of our experiments;

these four classes were selected so as to have some representation of both urban and

rural scenery. This selection was made prior to algorithm evaluation and is therefore

not cherry-picked for performance.

We implemented our experiments in Python using the TensorFlow [3] machine

learning library. We use the typical cross-entropy loss for J and stochastic gradient

descent to minimize (3.5). The function t uses metadata available in fMoW (in

particular, the ground sample distance) to scale the attack patch appropriately for
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Attack Parameters Metrics

num. frames attack success total error
experiment n m/element attacked rate (%) rate (%)

1 60 0.5 1 11.9 38.1
2 80 0.5 1 15.5 43.2
3 100 0.5 1 19.2 50.8

4 60 0.5 4 31.3 51.7
5 80 0.5 4 44.5 61.5
6 100 0.5 4 53.1 67.3

Table 3.1: Success rates for targeted white-box attacks against the fMoW classifier
“CNN-I” for six experiments (id 1-6). Parameters include the number of elements n
in each dimension as well as the size, in meters, of each element (see Section 3.1.1.2).
“attack success rate” indicates the targeted AE success rate (i.e. f(x) = `) while
“total error rate” indicates how frequently AE caused the classifier to make any
mistake (i.e. f(x+ r) 6= f(x)).

each image. As described previously, the penalty function d has two terms: one

which encourages a small `2 distance between the attack and the underlying images

while the second term encourages a small `2 distance between the attack and strong

edge-like structure in the scene. These two terms have an associated weighting

coefficients of λ1 = 1e−3, λ2 = 1e−1. We used the Canny edge detector provided as

part of skimage to determine χe (using a Gaussian width parameter of 2.0) for all

images. Calculations were performed on a GeForce 1080 Ti trained using gradient

descent for 1000 epochs at two different learning rates (100 and 20) which took

approximately 10 minutes per attack (although our code did not optimize CPU to

GPU data transfers).
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Figure 3.6: Targeted attack success rates for experiment 1. The horizontal axis
below the image shows, for each attacked class, the median percentage of the image
the physical attack covered. The intensity of the colormap indicates the overall
attack success rate.

3.3 Results

Overall attack success rates for six different experiments (covering three dif-

ferent physical attack configurations) are shown in Table 3.1. The table shows the

number of parameters used in each dimension of the attack (n) as well as the size

of each element within the patch (m/elt.). The first three rows (experiments 1-3)

provide a baseline result for when an attack is based solely on the first image in a

sequence. Numbers reported are misclassification rates post-attack (note that all

images used in this study were correctly classified by CNN-I pre-attack). Experi-

ments 4-6 show how the overall attack rate improves if the attacker is privy to the

first four images in each sequence.

Figures 3.6 to 3.11 show targeted attack success rates decomposed by sequence

class label and arranged by relative size of scenes. The color of cell mi,j in each heat
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Figure 3.7: Targeted attack success rates for experiment 2.

Figure 3.8: Targeted attack success rates for experiment 3.

Figure 3.9: Targeted attack success rates for experiment 4.
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Figure 3.10: Targeted attack success rates for experiment 5.

Figure 3.11: Targeted attack success rates for experiment 6.

map indicates the success rate of attacking sequences whose original class is j in

scenarios where the target class is i.

Sequences are ordered by size and the horizontal axis denotes the percentage

of the overall scene covered by the fixed-size AE (1.0 indicates the attacker can

perturb all pixels in the scene). Since all images are rescaled to a fixed size by the

fMoW preprocessing and our attacks are designed in physical coordinates, larger

scenes result in fewer available pixels for the attacker to manipulate. A relation-
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(a) original image (b) adversarial example

Figure 3.12: Targeted attack causing the classifier to label a ”place of worship” as
a ”hospital”.

ship between relative attack size and success rate is evident. The hypothesis that

limiting the number of pixels available for an attack may reduce the success rate is

further supported by Figure 3.13 where we overlay distributions for successful and

unsuccessful attacks as a function of number of pixels manipulated. This suggests

that more sophisticated attacks (e.g. multiple, spatially distributed AE) may be

necessary in order to successfully attack larger scenes.

Figure 3.12 provides a visual example of how matching strong edges and shad-

ows is encouraged by our choice of penalty term d (recall (3.5)); also clear, is that

this soft constraint does not provide perfect agreement with the 3D geometry of

the scene. Note that, if additional metadata were available, the constraints on the

spatial support of the attack could be made more realistic. Improving upon these

details is a ripe direction for future work.
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(a) experiment 1, targeted attacks (b) experiment 1, non-targeted attacks

(c) experiment 6, targeted attacks (d) experiment 6, non-targeted attacks

Figure 3.13: Distributions of successful and unsuccessful attacks as a function of
number of pixels the attack manipulated. Attack success rates increase as the attack
is able to manipulate more pixels in the scene (here, corresponds to decreasing
ground sample distances).
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3.4 Conclusions

This chapter has presented new approaches and experiments for developing

adversarial examples in remote sensing applications; in particular, a study of attacks

on satellite imagery which takes into account practical physical considerations. We

describe an approach for simulating physical attacks in the digital space which is

unique in our use of metadata to align the attack with remotely sensed data. These

experiments also highlight the importance of physical scale in the AE design process.

This work only begins to scratch the surface of what is possible; additional ex-

perimentation (e.g. more realistic simulations of the sensing process, more extensive

use of metadata, experimentation on larger sets of data, etc.) are all near-term next

steps which would further enrich the results presented here. Additionally, there is

abundant room to explore the broader space of attack designs, which could include

implementing multiple patch-like attacks (and the corresponding patch location de-

sign problem), more directly accounting for 2D and 3D structure of scenes (e.g.

by combining attacks with segmentation results), incorporating different notions of

visual subtlety, and also exploring the impact of different levels of knowledge about

the targeted system on the part of the adversary. More ambitiously, there are inter-

esting questions regarding extensions to other modalities (multi and hyperspectral

data, SAR, LIDAR, etc.) and also to settings where multiple sensors are utilized

simultaneously. These directions also offer new opportunities for defining relevant

constraints, such as exploiting spectral signature databases and material mixture

models to ensure physically realizable perturbations in multi/hyperspectral settings.
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Attacks to other signal processing algorithms in the remote sensing domain, such

as object detection and change detection, also offer interesting opportunities. More

generally, as the field of adversarial examples continues to mature, new findings

and discoveries may play a role in this setting as well. As mathematical techniques

for developing classifiers with provable desirable properties evolve (e.g. [26]) their

findings may help inform future experiments of robustness in the remote sensing

setting. Finally, there is an obvious need to validate digital experiments physically.
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Chapter 4: Biomedical Applications

The previous chapters focused on the importance of stable features for ma-

chine learning applications. In this chapter we shift gears somewhat and consider

modern applications of deep learning for diagnosing eye-related disorders. Our ap-

plication involves two medical image processing tasks: a fine-grained segmentation

problem and an image classification problem. In the first task, our primary research

objective is to evaluate the efficacy of deep learning methods for the automatic fine-

grained segmentation of optical coherence tomography (OCT) images of the retina.

We compare the performance of our algorithm to that of human annotators and to

existing (non-deep learning) algorithms of record. In the second task our primary

research objective is to explore methods that combine image-based features with

demographic information for detecting age-related macular degeneration (AMD). In

both applications, there is an interesting aspect in that the data and/or the desired

annotations possess some specialized structure. For the segmentation task there is

a smoothness prior associated with the desired estimates while in the latter case the

demographic data is of a fundamentally different nature than the tensor-like image

data. In both cases we propose methods for addressing these structural properties

that involve adding algorithmic components to a deep learning-based feature extrac-
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tor. A future goal is to adapt and more directly incorporate the notions of stability

and invariance from Chapter 2 for the non-image aspects of these problems. For

example, while we presume the Haar-like wavelets of Chapter 2 are not ideally suited

for photographic images of the eye, it is possible that multidimensional extensions

of these wavelets might provide some interesting capabilities for non-image data.

As of this writing, these extensions remain speculative but interesting directions for

future work.

Much of the content from this chapter represents extended versions of [125]

and [86], which is joint work with Neil Bressler, Philippe Burlina, Delia Cabrera

DeBuc, David Freund, Arnaldo Horta, Neil Joshi, Jun Kong, and Katia D Pacheco.

With respect to [124] this author was primarily responsible for the algorithm de-

sign, developing the numerical experiments (with contributions from N. Joshi on

DenseNet), and co-authoring the associated paper. For [86], this author contributed

to the design of the numerical experiments, analyzing the results, and co-authoring

the paper.

4.1 Background

4.1.1 AMD Overview

Age-related macular degeneration (AMD) is a retinal condition induced by

the degeneration of the central area of the retina known as the macula. AMD

(together with glaucoma and diabetic retinopathy) is one of the leading causes of

blindness and visual impairment, especially among individuals 50 years or older in
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the United States [5, 6, 17, 23, 95]. Estimates (circa 2004) put the number people

in the United States with some form of advanced state AMD between 1.75 and 3

million [23]. AMD severity is frequently graded using the four category Age Related

Eye Diseases Study (AREDS) classification scale:

1. No AMD present.

2. Early stage AMD.

3. Intermediate stage AMD, characterized by large-sized or extensive medium-

sized drusen, i.e. accumulations of acellular debris present the basement mem-

brane of the retinal pigment epithelium (RPE) and Bruchs membrane.

4. Advanced AMD, characterized by damage to the macula via the wet form

(characterized by choroidal neovascularization (CNV) caused by the produc-

tion of vascular endothelial growth factor (VEGF)) or the dry form (charac-

terized by geographic atrophy (GA) of the RPE, affecting the center of the

macula).

Early detection of AMD is desirable as daily intake of certain high-dose vita-

mins may slow the progression of intermediate stage AMD (or late stage AMD in

a single eye) [118]. While examination of the retina by an ophthalmologist is the

most effective method of identifying AMD, manually grading fundus images (i.e.

images of the back of the eye) is a time-consuming and expensive process. This

has motivated a number of researchers to explore how automated methods might

be used to expedite retinal image analysis.
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While color fundus images are frequently used to diagnose optical disorders,

other modalities have proven useful as well. Ultrasound techniques have played a

significant role in ophthalmology; two types of devices, known as A-scan and B-scan

ultrasound, have been used for diagnostic purposes since the 1950s. Both tech-

niques are useful for identifying certain classes of lesions; B-scans (or “brightness”

mode) provides high resolution two-dimensional images that can be used to better

differentiate lesions [127]. Optical coherence tomography (OCT) is another comple-

mentary technique which uses scattering of near-infrared energy to produce two- and

three-dimensional images. OCT imaging is a non-invasive, high-resolution technique

capable of capturing micron-scale structure within the human retina. The retina is

organized into layers (see Figure 4.1) and abnormalities in this layered structure have

been associated with a number of ophthalmic, neurodegenerative, and vascular dis-

orders. For example, studies have shown that advanced AMD lesions correlate with

thinning of the outer retina in geographic atrophy as well as underlying choroidal

neovascularization [89].

As a part of the central nervous system (CNS), the retina is also subject to

a number of specialized immune responses similar to those in the brain and spinal

cord; changes in the retinal structure have been associated with CNS disorders

such as stroke, multiple sclerosis, Parkinson’s disease, and Alzheimer’s disease [110].

In particular, thinning of the retinal nerve fiber layer (RNFL) is associated with

the aforementioned neurologic disorders and, in some cases, its thickness corre-

lates directly with the progression of neurological impairment. Furthermore, ocular

manifestations of CNS disorders can sometimes precede symptoms within the brain
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Figure 4.1: OCT B-scan from Spectralis SD-OCT showing the layered retinal struc-
ture; figure reproduced with permission from [141]. Note that eight intraretinal
layer boundaries are delineated with red, yellow, magenta, white, cyan, green, black
and blue solid lines, respectively. The notations are summarized as follows: Red:
internal limiting membrane (ILM), yellow: outer boundary of the retinal fiber layer
(RNFLo), magenta: inner plexiform layer-inner nuclear layer (IPL-INL), white: in-
ner nuclear layer-outer plexiform layer (INL-OPL), cyan: outer boundary of the
outer plexiform layer (OPLo), green: inner segment-outer segment (IS-OS), black:
outer segment-retinal pigment epithelium (OS-RPE), and blue: retinal pigment
epithelium-choroid (RPE-CH).

itself. Since the retinal structure can be imaged relatively easily via OCT, auto-

mated retinal analysis using OCT provides a compelling complement to traditional

CNS detection methodologies. Currently, commercial OCT devices provide a map

to describe the retinal thickness, typically between the surface of the retina and

the retinal pigment epithelial layer of the retina. However, these measurements do

not by themselves extract all of the useful information relating to retinal pathology,

motivating the use of signal processing techniques.

4.1.2 Prior Work

Work in automated retinal image analysis (ARIA) has steadily progressed in

the past two decades as datasets became more plentiful and machine vision and ma-
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chine learning techniques have improved (e.g. [27, 30, 65, 66, 85, 143, 144]). A sub-

stantial part of this research has been directed towards diabetic retinopathy, another

commonly studied retinal disease primarily affecting those with diabetes [45, 75].

Automated detection of AMD remains comparatively less well studied. Most at-

tempts to automate the detection and classification of AMD exploit fundus images,

e.g. [30, 85]; however, there has also been recent work utilizing optical coherence

tomography (OCT) [144]. Early work in fundus image analysis sought to detect

drusen directly using one-class techniques such as support vector data descriptions

(SVDD) [30, 66]. The recent dramatic success of deep learning has inspired a

number of ARIA applications. A number of authors pursued techniques to au-

tomatically detect patients with referable age related macular degeneration from

fundus images [27, 28, 29] or OCT [105]. Studies also demonstrate how deep learn-

ing techniques can achieve significantly better performance relative to classical tech-

niques [4]. Another recent work uses a generalization of the backpropagation method

to generate heatmaps that provide insight into which subset of the image is most

responsible for the deep learning algorithms’ classification result [126].

Great strides have also been made recently in automatic OCT image seg-

mentation. While initial approaches for segmenting OCT images typically utilized

graph-based methods (e.g. [20, 54, 58, 69, 92, 102, 107, 140, 141]) there has been

recent interest in applying machine learning techniques as well. For example, in

one recent study a 7 layer OCT segmentation using kernel regression-based classi-

fication was developed to estimate diabetic macular edema (DME) as well as OCT

layer boundaries. These estimates were combined with a graph-based segmentation
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algorithm; the overall approach was then validated on 110 B-scans and ten patients

with severe DME pathology, yielding DICE coefficient of 0.78 [41]. For extensive

reviews of recent state of practice for OCT segmentation see also [20, 140].

Deep convolutional neural networks (CNNs) have also been applied recently

for OCT segmentation. In particular, so-called semantic segmentation algorithms,

which solve per-pixel classification problems (as opposed to whole image classifi-

cation), are a natural fit for this setting. A popular approach for implementing

semantic segmentation is the U-Net architecture of [130]. One recent study [106]

uses U-Nets to delineate macular edema and obtains an F1 score of 0.91, effectively

providing performance on par with human annotators. Other deep learning-related

studies include [82], which uses U-Nets to demonstrate performance close to that of

a classical approach based on random forests, and [62] who uses a hybrid of CNN

and graph-based method to identify OCT boundary layers.

Of course, data-driven algorithms rely heavily upon access to representative

data sets. Recent efforts at the University of Miami [141] have taken steps to de-

velop publicly available OCT datasets with clinical gold standards for comparing

performance among methods, including a number of OCT segmentation algorithms

of record. In addition to OCT images and ground truth, the publicly available

University of Miami OCT dataset [141] also includes annotations generated by five

commonly used OCT segmentation software packages and/or algorithms of record.

These reference algorithms/implementations are: Spectralis 6.0 [69], IOWA Ref-

erence Algorithm [107], AUtomated retinal analysis tools (AURA) [102], Dufour’s

(Bern) algorithm [58], and OCTRIMA3D [140]. A complete description of these

97



algorithms is available in [141].

As indicated above, deep learning is well suited for working with medical im-

ages that admit a natural tensor structure. However, architectures that explicitly

incorporate less structured information, such as patient demographics, are com-

paratively less well studied. Typically this auxiliary information has much lower

dimensionality relative to the image-like inputs and is often not spatial in nature.

In the following we refer to such data as “side channel” inputs; while the term

may suggest this data is somehow of secondary importance relative to the image

data, this is not necessarily the case. For example, in robotic control problems, side

channel information representing current state and/or vehicle goals are critical to

producing successful outcomes [149]. Combinations of image-like and side channel

information have recently been utilized for fundus image analysis as well. In [67]

the authors combine image meta-data (pertaining to the original aspect ratio and

field of view prior to pre-processing) with image-based features produced by a deep

neural network. Together, these image-like and side channel features comprised the

inputs to a decision tree classifier. In this chapter, we will consider similar architec-

tures; however, the side channel information we employ characterizes properties of

the patient as opposed to that of the image preprocessing mechanism.
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4.2 Application: OCT Image Segmentation

4.2.1 Objective

As described in Section 4.1.1 there is great potential clinical value in being

able to accurately estimate the fine-grained structure of retinal layers. Our goal is

to explore whether modern deep learning-based semantic segmentation techniques,

when coupled with suitable post-processing, can provide an effective mechanism for

estimating boundaries between retinal layers. We use an open-source data set for

which rich baseline results exist; in particular, we have access to both estimates from

“classical” methods (i.e. not based on deep learning) as well as human annotations

which admit a characterization of inter-operator error. As far as we are aware,

our work is the first attempt to apply deep learning to this particular data set.

In addition, we explore whether regression methods can provide added value as a

the post-processing step. In particular, we consider regression-based methods that

permit one to bring some prior knowledge regarding the smoothness of the retinal

surfaces. If successful, this would enable future research efforts whereby clinical

priors can more naturally be incorporated into the estimation procedure. A longer-

term objective would be to combine these models with mathematical properties of

robust network-based features.
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4.2.2 Approach

Our approach for estimating retinal surfaces consists of two primary steps.

The first solves a per-pixel (or ”dense”) classification problem of associating each

pixel in the image with the most likely corresponding retinal layer. These per-pixel

estimates are then post-processed to extract the retinal surfaces (i.e. boundaries

between regions). For this post-processing step, we explored two methods: a hand-

crafted heuristic and a regression procedure which models retinal surfaces as smooth

functions. Note that, while our current experiments involve two-dimensional images,

both steps above extend naturally to three dimensions. Thus, our approach is also

applicable to settings where labeled volumetric data is available. The overall process

is summarized in Algorithm 3; we describe each algorithmic component in further

detail below.

Algorithm 3 OCT Segmentation Pipeline

1: procedure segment(bScans, annotations)
2: for i = 1 . . . nPatients do
3: data = train test split(bScans, annotations, i);
4: . Semantic Segmentation (Section 4.2.2.1)
5: cnnModel = densenet train(data.xTrain, data.yTrain);
6: yHatRaw = densenet predict(cnnModel, data.xTest);
7: . Post-processing: Approach 1 (Section 4.2.2.2)
8: yHatSeg[i] = heuristic repair(yHatRaw);
9: . Post-processing: Approach 2 (Section 4.2.2.2)

10: yHatRawTrain = densenet predict(cnnModel, data.xTrain);
11: gpHypers = select GP hypers(yHatRawTrain, data.yTrain);
12: yHatSegReg[i] = GP regression(gpHypers, yHatRaw);
13: end for
14: return yHatSeg, yHatSegReg
15: end procedure
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4.2.2.1 Semantic Segmentation

For the first step, we use a CNN to generate the per-pixel layer estimates.

Initial studies that generated per-pixel estimates from CNNs utilized a “sliding

window” approach whereby the algorithm is presented with a series of overlapping

regions extracted from the main image and asked to generate classification labels

for the central pixel in each extracted scene (e.g. [44]). However, modern fully con-

volutional neural networks (FCNs) provide computationally efficient alternatives to

sliding window approaches for semantic segmentation problems [111]. FCNs are a

subcategory of CNN that take tensor-like data as input and produce class estimates

having the same spatial dimensions (i.e. per-pixel or per-voxel labels). Processing

the data in this manner avoids unnecessary redundancy in the calculations, which

can provide orders of magnitude improvement in runtime. Therefore, we elected to

use a FCN architecture for this work; in particular, we adopt the DenseNet architec-

ture [88, 91]. DenseNets are characterized by an extensive use of “skip connections”

which permit each layer of the network to directly process the outputs from all

previous layers (see Figure 4.4). This construction makes richer sets of features

available at each layer of the network while also providing a mechanism to alleviate

the vanishing gradient problem which can when training the network via back-

propagation. This is in contrast to earlier network architectures where each layer

operates solely upon the output of the previous layer. Other FCN architectures,

such as U-Nets [130], also include skip connections; however these intra-layer con-

nections are less abundant relative to the DenseNet architecture. While we initially
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experimented with U-Nets in this study, we found that the DenseNet architecture

ultimately provided superior classification performance (perhaps, in part, as a result

of being easier to finetune).

For our experiments we adopted the 103 layer DenseNet-FCN architecture

described in [91]; in particular, we used the publicly-available Keras implementation

of [128]. We adopted directly the architecture and initial weights of this network;

our customizations consisted of adjustments to the loss function and the synthetic

data augmentation methodology described below. During training, we minimized

the pixel-wise cross entropy loss using the Adam [94] optimizer, with a learning rate

of 1e−3. Due to memory constraints we did not load each image into memory at

once. Instead, examples consisted of vertical slice of 256 × 512 pixels that were

randomly cropped from the original image (whose dimensions were 496 × 768; see

Section 4.2.3 for full details). These input slices were then processed in small mini-

batches of cardinality 2 (again, due to memory considerations). In addition to

random cropping, input batches were further augmented with horizontal flipping,

image blurring, image sharpening, and brightness adjustments.

Variations in thickness of retinal layers introduces a non-trivial amount of

class imbalance (as there are fewer pixels corresponding to the thin, inner retinal

layers). To mitigate the impact of this class imbalance in training we increased the

weight in the loss penalty for the pixels associated with thin layers by a factor of 10

(roughly corresponding to the level of class imbalance). The model was trained for

500 epochs and model weights were saved whenever performance on the validation

set improved. Training the model in this fashion took approximately 24 hours on
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an NVIDIA Titan X GPU. Processing at inference time is much more rapid, taking

only a few hundred milliseconds to process the entire data set. Runtimes for the

classical algorithms of record ranged from 28 to 152 seconds [141]; while a direct

comparison of runtimes is not entirely fair due to differences in hardware and the

use of GPU acceleration, it is reasonable to say that the deep learning methods are

not adversely impacting overall runtime.

For training, we use a 10-fold cross validation to implement a “leave-one-

patient-out” evaluation process, where each fold corresponds to the five images

associated with a single patient. To evaluate performance on a given patient, we

use the 45 images from the other nine patients/folds to train a FNC, holding out the

last patient’s images to use in test. The patient used for testing is then rotated as in

conventional k-fold approaches. Of the nine patients available for training in a given

fold, one patient was reserved as a validation set. This stratification allowed us to

train the network on representative data while ensuring that the segmented images

for a given patient were not a by-product of training on that patient’s images.

4.2.2.2 Post-processing

After obtaining per-pixel layer estimates from the FCN, one must then gener-

ate the corresponding surface estimates. One approach is to directly extract surfaces

from the layer estimates by identifying locations where class estimates change along

the axial dimension. However, surfaces are defined as a unique location in the ax-

ial dimension where the layer estimates change and the raw semantic segmentation
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outputs do not satisfy this constraint. For example, the right panel of Figure 4.2

shows a few small regions (indicated by arrows) where monotonicity of class esti-

mates is violated due to the presence of small misclassification regions. We explored

implementing custom loss functions that incorporate this monotonicity as a soft

constraint; however, even this does not guarantee unambiguous surface estimates.

Another option is to employ post-processing heuristics to address these issues.

We explored one heuristic which addresses both spurious and missing estimates.

When the classification procedure generates more than one candidate for a layer

at a given location, the point which is nearest in Euclidean distance to the prior

surface is used (in the case of surface 1, distance to surface 2 is used as the adju-

dication method). Alternately, if a layer estimate is missing for any given location,

an estimate is imputed from the nearest available value for that layer. This partic-

ular heuristic coupled with the DenseNet FCN segmentation constitutes a baseline

algorithm which we term “SEG”.

However, hand-crafted heuristics such as these are rather ad-hoc. As an al-

ternative, we propose to explicitly use our prior knowledge that retinal surfaces

(in two-dimensional images) can be modeled as scalar-valued functions with an ap-

propriate level of smoothness and solve a regression problem for each surface. For

suitable regression procedures, this approach extends naturally to higher dimensions

as well (useful in settings where volumetric data is available).

For this study we employ Gaussian processes (GP) regression with a Radial Ba-

sis Function (RBF) kernel [129]. The RBF kernel has two hyper-parameters, a noise

variance and a characteristic length scale; we select both using a leave-one-patient-
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out cross-validation procedure analogous to what was done when training the CNN.

To implement the regression we used the GPy software library [72]. Hyperparam-

eter selection was performed by random search over candidates drawn uniformly

at random from a two-dimensional hypercube. For this study we observed that

using a single RBF kernel for each patient/region pair produced adequate results;

however, in settings where there is substantial non-stationarity in the behavior of a

patient or region kernel partitioning methodologies may be of value (e.g. [74]). The

GP is characterized by the combination of a mean and a covariance function; the

mean function was used as our best estimate for the corresponding surface while the

covariance provides some measure of the confidence of the estimate. While these es-

timates are all one-dimensional functions in the two-dimensional plane, we note that

GP regression extends naturally to higher dimensions as well. Other post-processing

approaches are of course possible; using GPs provides an interesting option in that

(a) there is some ability to bring prior knowledge to bear in the form of a covariance

prior and (b) it provides a built-in confidence measure, in the form of the covariance

estimate, which may provide some additional diagnostic value. This could be es-

pecially compelling in settings where images are less uniform in quality or surfaces

are more structurally diverse (as might be anticipated in settings with more severe

pathologies). We term this combined FCN and GP approach “SEG+REG”.
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Figure 4.2: Example segmentation; original image (left); neural network segmen-
tation output, before post-processing (right). White arrows denote regions where
semantic segmentation layer estimates suffer due to artifacts in the original image.

4.2.3 Data

For this study we utilize the publicly available University of Miami OCT

dataset [141]. This data set consists of 50 images spanning 10 different patients

with mild, non-proliferative diabetic retinopathy. There are five images associated

with each patient: one image of the fovea center, two of the perifovea, and two

of the parafovea. Each image consists of 496 × 768 pixels and the corresponding

transversal and axial resolutions are 11.11µm/pixel and 3.867µm/pixel. These im-

ages are a subset of volumetric data captured by a Spectralis SD-OCT (Heidelberg

Engineering GmbH, Heidelberg, Germany). Two expert graders each independently

annotated five retinal surfaces per image, where a “surface” is defined as the bound-

ary between a pair of adjacent retinal layers. The result is a total of 250 annotated

surfaces per grader, numbered 1,2,4,6 and 11 (following the convention introduced

in [141]). These surfaces and the associated layers are defined in Table 4.1. Fol-

lowing the approach of Tian et al., we use the first grader’s annotations as ground

truth and the second grader’s annotations as a measure of inter-operator agreement.
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Surface ID Upper Layer Lower Layer

1 Pre-retinal space Nerve fiber layer
2 Nerve fiber layer Ganglion cell layer
4 Inner plexiform layer Inner nuclear layer
6 Outer plexiform layer Henle’s Fiber layer

and Outer nuclear layer
11 Bruch’s complex Choriocapillaris

Table 4.1: Annotated surfaces provided by dataset in [141].

Example annotations are shown in Figure 4.3. Magenta lines in the figure denote

the estimates generated by human observer #1, which are used as ground truth.

Yellow lines depict the estimates produced by one of the algorithms of record (the

one generated by the “automated retinal analysis” (AURA) tool suite). Note that,

in the case of this image, the AURA estimate does not span the entire horizontal ex-

tent of the image. In order to avoid unfairly penalizing any algorithm of record, our

metrics (described further below) are computed only for regions where all algorithms

produce estimates.

4.2.4 Results

Following the approach in [141], we measure the accuracy of surface estimates

by computing the per-pixel differences between the estimate and the ground truth

annotations generated by the first manual grader. For a fair comparison, metrics cal-

culations are limited to the regions for which all automated algorithms in the dataset

had valid estimates. This unfortunately excludes some remote/lateral regions where

cut artifacts are more prevalent (cut artifacts are operator-induced artifacts where

the edge of the scan is abnormally truncated, a defect which does not typically affect
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Figure 4.3: Example annotations from the dataset of [141]. Magenta lines corre-
spond to one of the human annotations while yellow lines denote estimates from one
algorithm of record (AURA).

central retinal thickness measurements). Thus, a useful direction for future work

would be to expand the set of baseline estimates to permit comparisons in these more

challenging and dynamic regions. We used mean unsigned errors and mean signed

errors as performance metrics for both the proposed algorithms and algorithms of

record. For a given surface, the estimate vest and the corresponding ground truth

vref are both vectors (with dimension equal to the width of the evaluation region,

in pixels) and the signed error is defined to be

es = vref − vest;

the unsigned error is the absolute value of es taken component-wise.

We report the performance of both the SEG and SEG+REG compared with

the baseline algorithms. Table 4.2 reports the mean unsigned errors for each algo-
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Figure 4.4: Network architecture for the fully convolutional version of DenseNet,
summarized in [91].

rithm and surface, and the average and max values across all testing data. Values

in bold font indicate when an algorithm performs on-par with human performance

(i.e. within the margins of inter-operator error). The table suggests that, in aggre-

gate, our proposed method frequently matches human performance, and performs

favorably when compared to other algorithms of record. These results also indicate

particularly good performance of the proposed methods on the inner retinal sur-

faces. Table 4.3 shows the signed errors for the corresponding regions, from which it

appears that our method may be slightly overestimating the support of the retinal

layers as evidenced by a relatively large positive error on surface 1 and a relatively

large negative error on surface 11. Following [141] we also provide the mean unsigned

error broken down by ocular regions in Table 4.4 1.

1Note there are some minor differences between these results and table 5 of [141] for the algo-
rithms of record which may be attributed to variations in the extent of the macular region that was
evaluated; many of the automated methods tend to exhibit greater variation towards the edges of
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Table 4.2: Mean unsigned error aggregated across all eye regions. Values in bold
indicate when an algorithm meets or exceeds inter-observer (I-O) performance.

SEG SEG+REG Spectralis OCTRIMA AURA IOWA Bern I-O

surface 1 1.13 1.11 1.09 0.95 1.35 2.03 1.71 0.87
surface 2 1.14 1.07 1.45 1.18 1.19 1.74 2.77 1.14
surface 4 0.95 0.90 1.92 0.99 1.12 1.79 1.60 1.10
surface 6 1.23 1.18 1.19 1.52 1.54 1.51 1.72 1.29
surface 11 1.06 1.02 0.99 1.20 0.96 1.22 1.24 1.12

mean 1.10 1.06 1.33 1.17 1.23 1.66 1.81 1.10
std 0.10 0.10 0.37 0.23 0.22 0.30 0.57 0.15
min 0.95 0.90 0.99 0.95 0.96 1.22 1.24 0.87
max 1.23 1.18 1.92 1.52 1.54 2.03 2.77 1.29

Table 4.3: Mean signed error across all eye regions.

SEG SEG+REG Spectralis OCTRIMA AURA IOWA Bern I-O

surface 1 0.90 0.91 -0.82 0.66 1.22 1.99 1.65 0.26
surface 2 -0.12 -0.13 0.76 0.16 0.34 1.47 2.53 0.29
surface 4 0.18 0.18 1.43 0.12 0.41 1.59 1.30 0.29
surface 6 -0.30 -0.29 -0.51 -0.92 -0.51 0.78 1.13 0.09
surface 11 -0.66 -0.65 -0.44 -0.94 -0.58 1.04 0.90 -0.69

Table 4.4: Mean unsigned error for all surfaces and regions.

SEG SEG+REG Spectralis OCTRIMA AURA IOWA Bern I-O

surface1 fovea 1.18 1.14 0.90 0.90 0.90 2.14 1.67 0.85
surface1 parafovea 1.12 1.10 1.14 1.00 1.31 1.98 1.81 0.89
surface1 perifovea 1.12 1.10 1.13 0.92 1.62 2.01 1.62 0.86
surface2 fovea 1.34 1.25 1.39 1.15 1.29 2.42 2.02 1.31
surface2 parafovea 1.03 0.98 0.92 1.03 0.92 1.59 2.45 0.97
surface2 perifovea 1.15 1.09 2.02 1.35 1.42 1.54 3.47 1.22
surface4 fovea 1.10 1.03 1.30 1.12 1.25 1.81 1.44 1.13
surface4 parafovea 0.91 0.88 1.32 0.91 1.02 1.67 1.52 1.08
surface4 perifovea 0.92 0.86 2.82 1.00 1.14 1.89 1.76 1.11
surface6 fovea 1.45 1.38 1.79 2.75 2.58 1.58 1.86 1.50
surface6 parafovea 1.26 1.22 1.10 1.36 1.42 1.50 1.74 1.36
surface6 perifovea 1.08 1.04 0.99 1.08 1.14 1.49 1.62 1.11
surface11 fovea 0.92 0.87 0.81 1.02 0.88 1.08 1.23 1.12
surface11 parafovea 1.07 1.03 0.98 1.19 0.95 1.14 1.16 1.12
surface11 perifovea 1.11 1.07 1.07 1.31 1.02 1.38 1.32 1.11

mean 1.12 1.07 1.31 1.21 1.26 1.68 1.78 1.12
std 0.15 0.14 0.53 0.45 0.43 0.37 0.57 0.18
min 0.91 0.86 0.81 0.90 0.88 1.08 1.16 0.85
max 1.45 1.38 2.82 2.75 2.58 2.42 3.47 1.50

the scans and we evaluate on the largest common intersection across all algorithms.
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4.2.5 Discussion

The results suggest that semantic segmentation using a fully convolutional net-

work using DenseNets together with suitable post-processing using GP is a promising

approach to address the problem of fine-grained automated OCT segmentation, a

capability with many clinical applications. Our results compare well with existing

algorithms of record, often resulting in the smallest mean unsigned errors; overall,

performance is largely comparable with human annotation. We note, however, that

caution should be exercised when drawing conclusions since the algorithms of record

we compare against were developed and optimized using datasets which may not

match exactly the University of Miami evaluation dataset (e.g. in aspects such as

resolution, noise characteristics, and artifacts).

While our study focused upon estimating OCT surfaces in 2D images, we

note that the method extends naturally to 3D volumetric data (e.g. see [43]) and

that the semantic segmentation component may also help identify other clinically

important structures (such as drusen or other lesions). Furthermore, the GP-based

post-processing comes equipped with an uncertainty estimate that could prove useful

in some settings. For example, it could be advantageous in situations where we need

to provide a plausible range of uncertainty for the prediction when processing time-

varying patterns in clinical data acquired longitudinally.

While promising, there are other directions along which this study could be

improved moving forward. One potential limitation of our post-processing approach

is that by estimating surfaces independently, there is no theoretical guarantee that
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the resulting collections of surfaces do not intersect. Another current limitation

is the dataset size. The total number of B-scans (50) is not the largest publicly

available dataset (e.g. [41] consists of 110 B-scans). Furthermore, the mild nature

of the pathologies manifested in our dataset suggests that analysis on more severe

cases would be of value. For example, these results may not be representative of

other pathologies, such as DME.

It is worth noting that the number of images used in each fold for train-

ing, while modest (45), was adequate for performing semantic segmentation. The

data volume is comparable with those used in the original U-Net 2D and 3D stud-

ies [43, 130] and also aligns with reports by Devalla et al. which discusses the

apparent misconception related to the need of a significant training dataset in se-

mantic segmentation [55], a point which could appear at first counterintuitive given

that it is a well known fact it takes a much larger number of images in training to

perform full image classification. Since each pixel in the image has an associated

class label there is substantially more information available for training on a per-

image basis. Of course, many of these per-pixel “examples” share context and are

therefore highly correlated, there is still a substantial “force multiplier” which arises

from dense labels.

Another interesting direction of future work is to investigate performance in

more remote/lateral regions of the eye. Other future work involves developing

and/or testing additional datasets that are reflective of broader pathologies and

permit more comprehensive comparison with other recent methods. This is espe-

cially compelling given the variety of neurodegenerative diseases which can manifest
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as as abnormalities in the retina.

4.3 Application: Classification Using Hybrid Features

4.3.1 Objective

In this section we consider machine learning methods that exploit a mixture

of visual and non-visual features. In particular, we are interested “side channel”

information consisting of patient demographic data that may be ordinal or categor-

ical in nature (and thus lacking the metric structure associated with image data).

Our motivating application continues to be the automatic detection of age-related

macular degeneration (recall Section 4.1.1); however, here we will focus on whole-

image classification (i.e. assigning a single classification label to an entire image,

in contrast to the per-pixel estimates considered in Section 4.2). This study asks

whether random forests (which are well-suited for working with non-metric data)

can provide an effective mechanism for jointly leveraging image features together

with non-metric demographic information. While none of the individual algorith-

mic components we consider here are new (deep transfer learning, random forest

classification, PCA-based dimension reduction) their joint application to this data

set (and the resulting considerations) constitute a novel contribution.

4.3.2 Approach

The key idea behind our approach is to leverage the power of deep transfer

learning for extracting features from image-based data together with the ability
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Algorithm 4 Classification pipeline; parentheticals specify the dimensions for a
single object on the left-hand side.

1: procedure classify(fundusImages, demographics, y, cnnParams, nFolds=5)
2: . Pre-processing (Section 4.3.2.1)
3: xRegion1, xRegion2 = preprocess images(fundusImages); . (231× 231× 2)
4: . Image Feature Extraction (Section 4.3.2.2)
5: xFeatImg1 = overfeat features(xRegion1,cnnParams); . (4096× 1)
6: xFeatImg2 = overfeat features(xRegion2,cnnParams); . (4096× 1)
7: xFeatImgBothRegions = concat(xFeatImg1, xFeatImg2); . (8192× 1)
8: xFeatImg = PCA dimension reduction(xFeatImgBothRegions); . (100× 1)
9: . Classification (Section 4.3.2.3)

10: xFeat = concat(xFeatImg, demographics); . (112× 1)
11: groups = k fold per patient(xFeatImg, demographics, nFolds);
12: for i = 1 . . . nFolds do
13: model = train rf classifier(xFeat[groups 6= i ], y[groups 6=i]);
14: yHat[i] = predict(model, xFeat[groups == i]);
15: end for
16: return yHat;
17: end procedure

of random forests to simultaneously exploit metric and non-metric features. Algo-

rithm 4 summarizes the overall approach; details are provided in subsequent sections.

4.3.2.1 Pre-processing

We preprocessed all raw fundus images by cropping and normalizing each

image. This procedure is the same as the preprocessing steps described in [29],

which we recapitulate here. The first step is to remove extraneous background pixels

unrelated to the structure of the eye. This involved running a simple detector to

identify the approximate boundary of the retina and computing a square crop about

this region (see Figure 4.5); this removes superflous background pixels unrelated to

the structure of the eye. We then extracted two new sub-images corresponding

to two overlapping regions - one restricted to the center of the eye and another

which includes peripheral areas. This pair of images provides data at two coarse
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Figure 4.5: Cropping fundus images. The crops used to generate CNN input images
are shown in dashed lines. Figure taken from [29].

“scales” to the deep learning feature-extractor. The center of the fundus image

typically contains the most useful discriminatory information, while the periphery

can provide additional context for more difficult problem instances. These regions

are depicted by dashed lines in Figure 4.5.

The cropped image are then run through a intensity normalization step, whereby

the image is converted into the Lab color space, and the lightness channel (L) is

processed to lower the intensity gradient of the image. This step takes dark shadows

and bright highlights and brings them closer to the average intensity of the image.

Finally, each image is resized to 231×231 pixels for use in the transfer learning step

described below.
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4.3.2.2 Image Feature Extraction

To generate image-based features for classification we use the transfer learning

methodology described in [27, 29]. The general idea is to augment our somewhat

limited collection of images (limited from a deep learning standpoint) by training

a classifier on a different problem with similar characteristics for which we have

abundant data. Then, we use this classifier to generate features for our problem of

interest by extracting activations from intermediate layers of the network. In this

case, we use the OverFeat (OF) [135] network that was pre-trained on over 1.2 million

general purpose, non-medical images, including classes of various objects, such as

animals, edible items, and household objects. Without re-training we provide our

pre-processed fundus images to this network and use the output from the first “fully

connected” layer (which has dimensions 4096 × 1) as our feature vectors. Since

we have a pair of images for each original fundus image (one for each region) we

concatenate these to form a single 8192-dimensional feature vector.

4.3.2.3 Classification

For classification we combine the image-based features with the demographic

“side channel” features to train a Random Forest (RF) classifier [21]. Random

forests are an ensemble classification strategy where each element in the ensemble is

a classification and regression tree (CART). To mitigate the problem of overfitting

the ensemble to the training data, each tree is trained on a randomly sampled subset

of the feature vectors (a bootstrapping procedure known as bagging). In addition,
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a random sample of the features is used at each node of the tree to determine

the split at that level. These procedures trees that individually tend to be fairly

weak predictors; however, in aggregate, the ensemble produces a classifier with good

performance.

Note that RF classifiers can easily deal with feature sets that contain a mix

of categorical and ranked ordinal features. In addition, one can compensate for

missing feature values by introducing the CART notion of surrogate splits [22] which

introduces secondary split points at each node of each tree that are utilized if the

normal value that would be split on is missing. In the sequel, all RF tree generation

was done using such surrogate splits.

The aforementioned variable splitting used in RF is potentially problematic

for our application. Normally, one samples on the order of the square root of the

number of features at each tree node in order to determine a split point for that node.

However, the feature set imbalance between the number of side channel features and

the number of retinal image features would cause the side channel features to have

a minimal influence in the resulting classifier. In order to correct for this imbalance,

we use principal components analysis (PCA) to reduce the number of image-based

features to 100 prior to training. The resulting features capture 88.35% of the total

variance of the total image features, suggesting that this is not an unreasonable

strategy for dimension reduction.

Normally, testing an RF classifier is done using out-of-bag computations; this

leverages the fact that each tree in the ensemble is trained on a random subset

of the features, allowing the unseen portion of the data to be used as a surrogate
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test set for assessing the performance of that particular tree. However, certain

properties of the demographic data present challenges. The 4587 patients in the

study are associated with multiple records corresponding to multiple observations

of each patient over time (see Section 4.3.3). These records will have nearly identical

side channel features for a number of fields (e.g. GENDER and ETHNICITY are

invariant across visits), which would lead to a partial co-mingling of the testing and

training in the out-of-bag exemplars. Even features that should have changed over

the course of the study, such as VISUAL ACUITY, often show little variability over

multiple visits for a single patient. In order to mitigate this effect, we customize

the k-fold cross-validation approach to ensure that the observations associated with

a given patient are confined to a single fold. We then use k − 1 of those folds to

train our classifier and the remaining kth fold to test the classifier. This process

is repeated k times, leaving out a different fold for training each time. In this

investigation, we used k = 5. In addition, to compensate for the random sampling

inherent in RF classifiers, we repeat each cross-validation 5 times, and report means

and standard deviations of each statistic for which it was appropriate.

4.3.3 Data

The data used in this study are taken from the National Institutes of Health

(NIH) Age-Related Eye Disease Study (AREDS) 2014 dataset. The AREDS was a

twelve-year, multi-center, prospective cohort study designed to increase understand-

ing of disease progression and risk factors for both AMD and age-related cataracts

118



as well as develop potential therapies [5, 24]. During enrollment, a wide range of

patient characteristics and medical information was obtained for each patient, in-

cluding demographics (e.g. gender, age, race, education), health history (e.g. blood

pressure, cancer, smoking, angina, diabetes), prior eye treatments, vision status,

and current supplementation and medication use. In addition, at enrollment, color

fundus photographs were taken and graded for severity of AMD. Routine follow-

up visits occurred every 6 months, at which time the above medical information

was updated for each patient. Approximately every 12 months additional color

fundus photographs were taken and manually graded for AMD severity and the

scores recorded. In all, images from 4613 patients were obtained along with their

corresponding medical data [1].

At each fundus photograph session, four images were typically acquired. These

images corresponding to left and right stereo pairs (denoted LS and RS) of both the

left and right eyes (denoted LE and RE). Each of these four images was manually

graded for AMD severity. However, for some patients, images of only one eye and/or

one stereo pair were taken which resulted in an unequal number of images as well

as patients in each of the four possible types of retinal images (i.e. LE-LS, LE-RS,

RE-LS, and RE-RS). Therefore, in our experiments we used exclusively the 33578

LE-LS images taken from 4587 patients.

The demographic side channel information also has some data availability

issues. A number of fields have missing values for a large proportion of the data

records. For our study we identified 12 fields that were present in a majority of the

records considered. A list of these features, the number of missing entries, and the

119



Table 4.5: Side channel features used in this study and how frequently they were
missing (out of 4587 patients).

Feature Num. Missing Entries Categorical?

CORTICAL OPACITY FIELD 63 NO
CORTICAL OPACITY 5MM 63 NO
PSC OPACITY 5MM 63 NO
SUNLIGHT 286 NO
VISUAL ACUITY 0 NO
ETHNICITY 0 YES
DIABETES 1166 YES
EDUCATION 0 YES
LASER PHOTOCOAGULATION 156 YES
GLAUCOMA 1165 YES
CATARACT SURGERY 59 YES
GENDER 0 YES

nature of the feature (categorical or numeric) are summarized in Table 4.5.

4.3.4 Results

For the first set of experiments, we generated OF features for the left eye, left

stereo images in each record and combined them with the side-channel information

associated with the record, resulting in 33578 feature vectors, each of which was

112-dimensional. We then looked at a binary classification problem, where class

0 corresponded to AMD severity categories of 1 or 2, and class 1 corresponded to

AMD severity categories of 3 or 4. Note that there is a mild class imbalance in the

data set. There were 18,798 examples associated with records of class 0, and 14,780

examples associated with record of class 1. In the RF generation, we enforced a

uniform prior on sampling from the classes to compensate for this imbalance.

The accuracy, sensitivity, specificity and area under the ROC curve (AUC)
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corresponding to both the hybrid forest and the forest using only the image features

are given in Table 4.6. As indicated in the table, both the specificity and sensitivity

of the classifier are slightly improved by adding the side channel data. In addition,

the AUC increase shows more capacity for adjusting the classification thresholds to

improve the specificity with little decrease in sensitivity by using the side channel

information.

In order to test that the improvements in specificity, sensitivity and the AUC

are statistically significant, we used the Kolmagorov-Smirnov (KS) test to determine

if the distributions both with and without the side channel information could have

been drawn from the same distribution. In all cases, the p-values of the KS test

were 0.01 or below, indicating that the differences in the results were statistically

significant at the 1% level. However, while the side channel features do provide

some benefit to the classifier, the bulk of the classification performance is derived

from the image features.

While the benefits of the demographic information in this study are modest, in

situations where there is a paucity of training data we hypothesize the side channel

information could provide some additional discriminative power. In order to test

this, we set up a second experiment. We took the initial data used to generate each

classifier and downsampled it, i.e. we trained each random forest on only 10% of

the associated training fold and then tested on the entire associated testing fold.

The results of this experiment are summarized in Table 4.7. In this case, there

is a more noticeable benefit to adding the demographic information,as indicated

by the specificity, sensitivity and in the AUC for these classifiers. Repeating the
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Table 4.6: Statistics for experiments on full data set

Specificity Sensitivity AUC Acc.

side .6973 (8.74e-4) .5097 (.0029) .6515 (.0013) .6146
image .8821 (.0014) .6569 (.0006) .8444 (6.08e-4) .7834
both .8895 (4.63e-4) .6634 (5.40e-4) .8476 (9.43e-4) .7904

Table 4.7: Statistics for experiments on reduced data set

Specificity Sensitivity AUC Acc.

image .8264 (.0025) .6128 (.0024) .7961 (.0014) .7322
both .8355 (.0035) .6257 (.0027) .8065 (9.71e-4) .7430

Figure 4.6: ROC curves for generated classifiers.

Kolmogorov-Smirnov test for these samples again results in p-values at or below

0.01. ROC curves for both experiments are provided in Figure 4.6.

4.3.5 Discussion

The proposed hybrid deep-RF architecture shows promise with regard to per-

formance enhancement as there is a measurable improvement which is statistically

significant in incorporating both types of information via the proposed approach,
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despite some challenges in the dataset that are highlighted below. Also of note is

the fact that the addition of side channel information takes on more importance –

as might be expected – in the case when training data is less abundant.

One important point is that there are other side channel features present in

the AREDS data that could be used to supplement the fundus image data in our

experiments. However, the incomplete nature of these features led us to omit them

in our initial studies. The smoking features, in particular, are missing in over two

thirds of the patient records. One possible future direction is to combine the various

smoking features to try to impute a new smoking feature over most of the data set.

Past studies have identified smoking as highly correlated with AMD and therefore

improved classification performance might be possible by using this demographic

feature [134]. Other side channel information related to the vitamin treatments

employed during the AREDS study might also be of diagnostic benefit [134].

As indicated earlier, an additional complication in the data is the fact that

multiple images were associated with some patients, corresponding to multiple office

visits. The fact that the side channel data associated with these multiple visits

was nearly identical led to challenges in utilizing standard RF methods for model

testing and assessing variable importance. Even the VISUAL ACUITY feature,

which should have shown some change for patients over multiple visits, did not

exhibit such changes. Some of these features were likely subject to measurement

noise during collection which may also explain the relative diagnostic value of the

image data in our studies. Despite the modest improvements provided by these

particular features, this study provides a good foundation for future investigations
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to incorporate demographic data with visual features for AMD detection.

4.4 Conclusions

In this chapter we considered two medical image processing tasks, both re-

lated to the task of automatically identifying ocular disease with a particular focus

on AMD. We proposed and analyzed automated segmentation methods which sug-

gest that semantic segmentation using FCNs and DenseNet architectures, coupled

with regression-based post-processing using GP, can effectively help address the

automated OCT segmentation problem on par with human capabilities in cases

of patients with mild retinopathy and improve upon the reference algorithms of

record. In addition, we proposed and analyzed a random forest-based approach to

incorporating deep visual image features with ordinal or categorical side channel in-

formation. We show in this preliminary study that there is a statistically significant

gain in the combination of the two heterogeneous types of information through this

hybrid approach.
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