657 research outputs found

    The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs

    Get PDF
    Dynamic heterogeneous graphs can represent real-world networks. Predicting links in these graphs is more complicated than in static graphs. Until now, research interest of link prediction has focused on static heterogeneous graphs or dynamically homogeneous graphs. A link prediction technique combining temporal RNN and hierarchical attention has recently emerged, called DyHATR. This method is claimed to be able to work on dynamic heterogeneous graphs by testing them on four publicly available data sets (Twitter, Math-Overflow, Ecomm, and Alibaba). However, after further analysis, it turned out that the four data sets did not meet the criteria of dynamic heterogeneous graphs. In the present work, we evaluated the performance of DyHATR on dynamic heterogeneous graphs. We conducted experiments with DyHATR based on the Yelp data set represented as a dynamic heterogeneous graph consisting of homogeneous subgraphs. The results show that DyHATR can be applied to identify link prediction on dynamic heterogeneous graphs by simultaneously capturing heterogeneous information and evolutionary patterns, and then considering them to carry out link predicition. Compared to the baseline method, the accuracy achieved by DyHATR is competitive, although the results can still be improved

    The Evaluation of DyHATR Performance for Dynamic Heterogeneous Graphs

    Get PDF
    Dynamic heterogeneous graphs can represent real-world networks. Predicting links in these graphs is more complicated than in static graphs. Until now, research interest of link prediction has focused on static heterogeneous graphs or dynamically homogeneous graphs. A link prediction technique combining temporal RNN and hierarchical attention has recently emerged, called DyHATR. This method is claimed to be able to work on dynamic heterogeneous graphs by testing them on four publicly available data sets (Twitter, Math-Overflow, Ecomm, and Alibaba). However, after further analysis, it turned out that the four data sets did not meet the criteria of dynamic heterogeneous graphs. In the present work, we evaluated the performance of DyHATR on dynamic heterogeneous graphs. We conducted experiments with DyHATR based on the Yelp data set represented as a dynamic heterogeneous graph consisting of homogeneous subgraphs. The results show that DyHATR can be applied to identify link prediction on dynamic heterogeneous graphs by simultaneously capturing heterogeneous information and evolutionary patterns, and then considering them to carry out link predicition. Compared to the baseline method, the accuracy achieved by DyHATR is competitive, although the results can still be improved

    Scalable Psychological Momentum Estimation in Esports

    Get PDF
    The world of competitive Esports and video gaming has seen and continues to experience steady growth in popularity and complexity. Correspondingly, more research on the topic is being published, ranging from social network analyses to the benchmarking of advanced artificial intelligence systems in playing against humans.In this paper, we present ongoing work on an intelligent agent recommendation engine that suggests actions to players in order to maximise success and enjoyment, both in the space of in-game choices, as well as decisions made around play session timing in the broader context. By leveraging temporal data and appropriate models, we show that a learned representation of player psychological momentum, and of tilt, can be used, in combination with player expertise, to achieve state-of-the-art performance in pre and post-draft win prediction. Our progress toward fulfilling the potential for deriving optimal recommendations is documented

    Aspect discovery from product reviews

    Get PDF

    Multicriteria Evaluation for Top-k and Sequence-based Recommender Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    GInRec: A Gated Architecture for Inductive Recommendation using Knowledge Graphs

    Get PDF
    We have witnessed increasing interest in exploiting KGs to integrate contextual knowledge in recommender systems in addition to user-item interactions, e.g., ratings. Yet, most methods are transductive, i.e., they represent instances seen during training as low-dimensionality vectors but cannot do so for unseen instances. Hence, they require heavy retraining every time new items or users are added. Conversely, inductive methods promise to solve these issues. KGs enhance inductive recommendation by offering information on item-entity relationships, whereas existing inductive methods rely purely on interactions, which makes recommendations for users with few interactions sub-optimal and even impossible for new items. In this work, we investigate the actual ability of inductive methods exploiting both the structure and the data represented by KGs. Hence, we propose GInRec, a state-of-the-art method that uses a graph neural network with relation-specific gates and a KG to provide better recommendations for new users and items than related inductive methods. As a result, we re-evaluate state-of-the-art methods, identify better evaluation protocols, highlight unwarranted conclusions from previous proposals, and showcase a novel, stronger architecture for this task. The source code is available at: https://github.com/theisjendal/kars2023-recommendation-framework
    • …
    corecore