9 research outputs found

    Error Estimate and Fairness in Resource Allocation with Inaccurate Information Sharing

    Get PDF
    International audienceIn resource allocation systems, inaccurate information sharing situations are such that users can be aware, up to a small error, about the other users' demands and the available global resource (which can be insufficient to meet the overall demand). Consequently, given an allocation rule, users can predict an allocation that will not necessarily coincide with the actual one. In this work, we provide an estimation of the error for a number of allocation rules and compare their robustness in inaccurate information sharing settings

    Network Slicing Using FlowVisor for Enforcement of Bandwidth Isolation in SDN Virtual Networks

    Get PDF
    Software-defined networking (SDN) is becoming increasingly popular because of features such as programming control, embedded monitoring, fine-grained control, flexibility, support for many tenants, and scalability. Problems with the prior design, known as the conventional network, include the need to configure each network device individually, decentralized control, and a persistent issue with tenant enforcement for multitenant support. Tenants are unable to administer their networks without disturbing their neighbours. In this research, network slicing on SDN will ensure tenant isolation using FlowVisor and an SDN controller. Flowspace, which is part of FlowVisor capable of implementing network isolation, is for isolation in this research. Multitenancy is supported in SDN via the network slicing technique. Two types of renters were employed, and two testing procedures connectivity and functionality were run to meet the research objectives. This research produced several findings, including that all hosts were correctly linked, and the connection was achieved without turning on FlowVisor. The host function can only send and receive data from hosts with the same tenant. The research results show that FlowVisor can be applied for isolation enforcement. As a result of each tenant utilising their slice of the network without being interrupted by other slices, this research finds that utilising FlowVisor to construct Flowspace can segment the network to allow multitenancy. Expanding the number of slices for more study and testing in a real-world setting is possible

    Game Theoretical Analysis of a Multi-MNO MVNO Business Model in 5G Networks

    Full text link
    This work has been supported by the Spanish Ministry of Science, Innovation and Universities (MCIU/AEI) and the European Union (FEDER/UE) through Grant PGC2018-094151-B-I00 and partially supported by Politecnica Salesiana University (Salesian Polytechnic University) in Ecuador through a Ph.D. scholarship granted to the first author.Sacoto Cabrera, EJ.; Guijarro, L.; Maillé, P. (2020). Game Theoretical Analysis of a Multi-MNO MVNO Business Model in 5G Networks. Electronics. 9(6):1-26. https://doi.org/10.3390/electronics9060933S12696Gruber, H. (2001). Competition and innovation. Information Economics and Policy, 13(1), 19-34. doi:10.1016/s0167-6245(00)00028-7Berne, M., Vialle, P., & Whalley, J. (2019). An analysis of the disruptive impact of the entry of Free Mobile into the French mobile telecommunications market. Telecommunications Policy, 43(3), 262-277. doi:10.1016/j.telpol.2018.07.007Nakao, A., Du, P., Kiriha, Y., Granelli, F., Gebremariam, A. A., Taleb, T., & Bagaa, M. (2017). End-to-end Network Slicing for 5G Mobile Networks. Journal of Information Processing, 25(0), 153-163. doi:10.2197/ipsjjip.25.153Son, P. H., Son, L. H., Jha, S., Kumar, R., & Chatterjee, J. M. (2019). Governing mobile Virtual Network Operators in developing countries. Utilities Policy, 56, 169-180. doi:10.1016/j.jup.2019.01.003Archivo Situacionista HispanoHttp://Www.Statista.Com/Statistics/671623/Global-Mvno-Market-Size/Lingjie Duan, Lin Gao, & Jianwei Huang. (2014). Cooperative Spectrum Sharing: A Contract-Based Approach. IEEE Transactions on Mobile Computing, 13(1), 174-187. doi:10.1109/tmc.2012.231Sacoto-Cabrera, E. J., Sanchis-Cano, A., Guijarro, L., Vidal, J. R., & Pla, V. (2018). Strategic Interaction between Operators in the Context of Spectrum Sharing for 5G Networks. Wireless Communications and Mobile Computing, 2018, 1-10. doi:10.1155/2018/4308913Samdanis, K., Costa-Perez, X., & Sciancalepore, V. (2016). From network sharing to multi-tenancy: The 5G network slice broker. IEEE Communications Magazine, 54(7), 32-39. doi:10.1109/mcom.2016.7514161Rost, P., Banchs, A., Berberana, I., Breitbach, M., Doll, M., Droste, H., … Sayadi, B. (2016). Mobile network architecture evolution toward 5G. IEEE Communications Magazine, 54(5), 84-91. doi:10.1109/mcom.2016.7470940Afolabi, I., Taleb, T., Samdanis, K., Ksentini, A., & Flinck, H. (2018). Network Slicing and Softwarization: A Survey on Principles, Enabling Technologies, and Solutions. IEEE Communications Surveys & Tutorials, 20(3), 2429-2453. doi:10.1109/comst.2018.2815638Barakabitze, A. A., Ahmad, A., Mijumbi, R., & Hines, A. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 106984. doi:10.1016/j.comnet.2019.106984Khan, L. U., Yaqoob, I., Tran, N. H., Han, Z., & Hong, C. S. (2020). Network Slicing: Recent Advances, Taxonomy, Requirements, and Open Research Challenges. IEEE Access, 8, 36009-36028. doi:10.1109/access.2020.2975072Kim, D., & Kim, S. (2018). Network slicing as enablers for 5G services: state of the art and challenges for mobile industry. Telecommunication Systems, 71(3), 517-527. doi:10.1007/s11235-018-0525-2Foukas, X., Patounas, G., Elmokashfi, A., & Marina, M. K. (2017). Network Slicing in 5G: Survey and Challenges. IEEE Communications Magazine, 55(5), 94-100. doi:10.1109/mcom.2017.1600951Cricelli, L., Grimaldi, M., & Levialdi Ghiron, N. (2012). The impact of regulating mobile termination rates and MNO–MVNO relationships on retail prices. Telecommunications Policy, 36(1), 1-12. doi:10.1016/j.telpol.2011.11.013Shakkottai, S., & Srikant, R. (2007). Network Optimization and Control. Foundations and Trends® in Networking, 2(3), 271-379. doi:10.1561/1300000007Habib, M. A., & Moh, S. (2019). Game theory-based Routing for Wireless Sensor Networks: A Comparative Survey. Applied Sciences, 9(14), 2896. doi:10.3390/app9142896Su, R., Zhang, D., Venkatesan, R., Gong, Z., Li, C., Ding, F., … Zhu, Z. (2019). Resource Allocation for Network Slicing in 5G Telecommunication Networks: A Survey of Principles and Models. IEEE Network, 33(6), 172-179. doi:10.1109/mnet.2019.1900024Guijarro, L., Pla, V., Vidal, J. R., & Naldi, M. (2019). Competition in data-based service provision: Nash equilibrium characterization. Future Generation Computer Systems, 96, 35-50. doi:10.1016/j.future.2019.01.044Banerjee, A., & Dippon, C. M. (2009). Voluntary relationships among mobile network operators and mobile virtual network operators: An economic explanation. Information Economics and Policy, 21(1), 72-84. doi:10.1016/j.infoecopol.2008.10.003Caballero, P., Banchs, A., De Veciana, G., & Costa-Perez, X. (2019). Network Slicing Games: Enabling Customization in Multi-Tenant Mobile Networks. IEEE/ACM Transactions on Networking, 27(2), 662-675. doi:10.1109/tnet.2019.2895378Fantacci, R., & Picano, B. (2020). When Network Slicing Meets Prospect Theory: A Service Provider Revenue Maximization Framework. IEEE Transactions on Vehicular Technology, 69(3), 3179-3189. doi:10.1109/tvt.2019.2963462Fossati, F., Moretti, S., Perny, P., & Secci, S. (2020). Multi-Resource Allocation for Network Slicing. IEEE/ACM Transactions on Networking, 28(3), 1311-1324. doi:10.1109/tnet.2020.2979667Cooperation among Competitors: Network sharing can increase Consumer Welfarehttp://dx.doi.org/10.2139/ssrn.3571354Mendelson, H. (1985). Pricing computer services: queueing effects. Communications of the ACM, 28(3), 312-321. doi:10.1145/3166.3171Liu, C., Li, K., Xu, C., & Li, K. (2016). Strategy Configurations of Multiple Users Competition for Cloud Service Reservation. IEEE Transactions on Parallel and Distributed Systems, 27(2), 508-520. doi:10.1109/tpds.2015.2398435Liu, C., Li, K., Li, K., & Buyya, R. (2017). A New Cloud Service Mechanism for Profit Optimizations of a Cloud Provider and Its Users. IEEE Transactions on Cloud Computing, 1-1. doi:10.1109/tcc.2017.2701793Niyato, D., & Hossain, E. (2008). Competitive Pricing for Spectrum Sharing in Cognitive Radio Networks: Dynamic Game, Inefficiency of Nash Equilibrium, and Collusion. IEEE Journal on Selected Areas in Communications, 26(1), 192-202. doi:10.1109/jsac.2008.080117Guijarro, L., Vidal, J., & Pla, V. (2018). Competition in Service Provision between Slice Operators in 5G Networks. Electronics, 7(11), 315. doi:10.3390/electronics7110315Sacoto-Cabrera, E. J., Guijarro, L., Vidal, J. R., & Pla, V. (2020). Economic feasibility of virtual operators in 5G via network slicing. Future Generation Computer Systems, 109, 172-187. doi:10.1016/j.future.2020.03.044Mandjes, M. (2003). Pricing strategies under heterogeneous service requirements. Computer Networks, 42(2), 231-249. doi:10.1016/s1389-1286(03)00191-9Reynolds, S. S. (1987). Capacity Investment, Preemption and Commitment in an Infinite Horizon Model. International Economic Review, 28(1), 69. doi:10.2307/252686

    5G network slicing for rural connectivity: multi-tenancy in wireless networks

    Get PDF
    As the need for wireless broadband continues to grow around the world, there is an increasing focus to minimise the existing digital divide and ensuring that everyone receives high-quality internet services, especially the inhabitants of rural areas. As a result, different technological solutions are being studied and trialled for improving rural connectivity, such as 5G with dynamic spectrum access. One of the architectures of 5G is network slicing, which supports network virtualisation and consists of independent logical networks, called slices, on the 5G network. Network slicing supports the multi-tenancy of different operators on the same physical network, and this feature is known as neutral host networks (NHN). It allows multiple operators to co-exist on the same physical network but on different virtual networks to serve end users. Generally, the 5G NHN deployment is handled by an infrastructure provider (InP), who could be a mobile network operator (MNO), an Internet service provider, a third-party operator, etc. At the same time, potential tenants would lease slices from the InP. The NHN strategy would help reduce resource duplication and increase the utilisation of existing resources. The existing research into NHN for small cells, in-building connectivity solutions, and other deployment scenarios help to understand the technological and business requirements. End-to-end sharing across operators to provide services to their end users is another innovative application of 5G NHN that has been tested for dense areas. Meanwhile, the feasibility and policy impact of NHN is not studied extensively for the rural scenario. The research in this thesis examines the use of NHN in macro- and small-cell networks for 5G communication systems to minimise the digital divide, with a special focus on rural areas. The study also presents and analyses the 5G multi-tenancy system design for the rural wireless scenario, focusing mainly on exploring suitable business cases through network economics, techno-economic study, and game theory analysis. The results obtained from the study, such as cost analysis, business models, sensitivity analysis, and pricing strategies, help in formulating the policy on infrastructure sharing to improve rural connectivity. The contributions of the thesis are useful for stakeholders and policymakers to assess the suitability of the rural 5G NHN by exploring state-of-the-art technologies, techno-economic analysis, sensitivity analysis, newer business models, investment assessment, cost allocation, and risk sharing. Initially, the research gap is highlighted through the extensive literature review and stakeholders’ views on rural connectivity collected from discussions with them. First, the in-depth discussion on the network economics of the rural 5G NHN includes the study of potential future scenarios, value network configurations, spectrum access strategy models, and business models. Secondly, the techno-economic analysis studies the key performance indicators (KPI), cost analysis, return on investment, net present value, and sensitivity analysis, with the application for the rural parts of the UK and India. Finally, the game theory framework includes the study of strategic interaction among the two key stakeholders, InP and the MNO, using models such as investment games and pricing strategies during multi-tenancy. The research concludes by presenting the contribution towards the knowledge and future work.As the need for wireless broadband continues to grow around the world, there is an increasing focus to minimise the existing digital divide and ensuring that everyone receives high-quality internet services, especially the inhabitants of rural areas. As a result, different technological solutions are being studied and trialled for improving rural connectivity, such as 5G with dynamic spectrum access. One of the architectures of 5G is network slicing, which supports network virtualisation and consists of independent logical networks, called slices, on the 5G network. Network slicing supports the multi-tenancy of different operators on the same physical network, and this feature is known as neutral host networks (NHN). It allows multiple operators to co-exist on the same physical network but on different virtual networks to serve end users. Generally, the 5G NHN deployment is handled by an infrastructure provider (InP), who could be a mobile network operator (MNO), an Internet service provider, a third-party operator, etc. At the same time, potential tenants would lease slices from the InP. The NHN strategy would help reduce resource duplication and increase the utilisation of existing resources. The existing research into NHN for small cells, in-building connectivity solutions, and other deployment scenarios help to understand the technological and business requirements. End-to-end sharing across operators to provide services to their end users is another innovative application of 5G NHN that has been tested for dense areas. Meanwhile, the feasibility and policy impact of NHN is not studied extensively for the rural scenario. The research in this thesis examines the use of NHN in macro- and small-cell networks for 5G communication systems to minimise the digital divide, with a special focus on rural areas. The study also presents and analyses the 5G multi-tenancy system design for the rural wireless scenario, focusing mainly on exploring suitable business cases through network economics, techno-economic study, and game theory analysis. The results obtained from the study, such as cost analysis, business models, sensitivity analysis, and pricing strategies, help in formulating the policy on infrastructure sharing to improve rural connectivity. The contributions of the thesis are useful for stakeholders and policymakers to assess the suitability of the rural 5G NHN by exploring state-of-the-art technologies, techno-economic analysis, sensitivity analysis, newer business models, investment assessment, cost allocation, and risk sharing. Initially, the research gap is highlighted through the extensive literature review and stakeholders’ views on rural connectivity collected from discussions with them. First, the in-depth discussion on the network economics of the rural 5G NHN includes the study of potential future scenarios, value network configurations, spectrum access strategy models, and business models. Secondly, the techno-economic analysis studies the key performance indicators (KPI), cost analysis, return on investment, net present value, and sensitivity analysis, with the application for the rural parts of the UK and India. Finally, the game theory framework includes the study of strategic interaction among the two key stakeholders, InP and the MNO, using models such as investment games and pricing strategies during multi-tenancy. The research concludes by presenting the contribution towards the knowledge and future work

    6G for vehicle-to-everything (V2X) communications: Enabling technologies, challenges, and opportunities

    Get PDF
    We are on the cusp of a new era of connected autonomous vehicles with unprecedented user experiences, tremendously improved road safety and air quality, highly diverse transportation environments and use cases, and a plethora of advanced applications. Realizing this grand vision requires a significantly enhanced vehicle-to-everything (V2X) communication network that should be extremely intelligent and capable of concurrently supporting hyperfast, ultrareliable, and low-latency massive information exchange. It is anticipated that the sixth-generation (6G) communication systems will fulfill these requirements of the next-generation V2X. In this article, we outline a series of key enabling technologies from a range of domains, such as new materials, algorithms, and system architectures. Aiming for truly intelligent transportation systems, we envision that machine learning (ML) will play an instrumental role in advanced vehicular communication and networking. To this end, we provide an overview of the recent advances of ML in 6G vehicular networks. To stimulate future research in this area, we discuss the strength, open challenges, maturity, and enhancing areas of these technologies
    corecore