117 research outputs found

    Sensor Networks and Their Applications: Investigating the Role of Sensor Web Enablement

    Get PDF
    The Engineering Doctorate (EngD) was conducted in conjunction with BT Research on state-of-the-art Wireless Sensor Network (WSN) projects. The first area of work is a literature review of WSN project applications, some of which the author worked on as a BT Researcher based at the world renowned Adastral Park Research Labs in Suffolk (2004-09). WSN applications are examined within the context of Machine-to-Machine (M2M); Information Networking (IN); Internet/Web of Things (IoT/WoT); smart home and smart devices; BT’s 21st Century Network (21CN); Cloud Computing; and future trends. In addition, this thesis provides an insight into the capabilities of similar external WSN project applications. Under BT’s Sensor Virtualization project, the second area of work focuses on building a Generic Architecture for WSNs with reusable infrastructure and ‘infostructure’ by identifying and trialling suitable components, in order to realise actual business benefits for BT. The third area of work focuses on the Open Geospatial Consortium (OGC) standards and their Sensor Web Enablement (SWE) initiative. The SWE framework was investigated to ascertain its potential as a component of the Generic Architecture. BT’s SAPHE project served as a use case. BT Research’s experiences of taking this traditional (vertical) stove-piped application and creating SWE compliant services are described. The author’s findings were originally presented in a series of publications and have been incorporated into this thesis along with supplementary WSN material from BT Research projects. SWE 2.0 specifications are outlined to highlight key improvements, since work began at BT with SWE 1.0. The fourth area of work focuses on Complex Event Processing (CEP) which was evaluated to ascertain its potential for aggregating and correlating the shared project sensor data (‘infostructure’) harvested and for enabling data fusion for WSNs in diverse domains. Finally, the conclusions and suggestions for further work are provided

    Spatial Statistical Data Fusion on Java-enabled Machines in Ubiquitous Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSN) consist of small, cheap devices that have a combination of sensing, computing and communication capabilities. They must be able to communicate and process data efficiently using minimum amount of energy and cover an area of interest with the minimum number of sensors. This thesis proposes the use of techniques that were designed for Geostatistics and applies them to WSN field. Kriging and Cokriging interpolation that can be considered as Information Fusion algorithms were tested to prove the feasibility of the methods to increase coverage. To reduce energy consumption, a compression method that models correlations based on variograms was developed. A second challenge is to establish the communication to the external networks and to react to unexpected events. A demonstrator that uses commercial Java-enabled devices was implemented. It is able to perform remote monitoring, send SMS alarms and deploy remote updates

    Building the Hyperconnected Society- Internet of Things Research and Innovation Value Chains, Ecosystems and Markets

    Get PDF
    This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment.The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade

    Design tools for ontology-based network communication protocols

    Get PDF
    Internet of Things has evolved quickly and reached to every aspect of our lives over the years. The number of new heterogeneous, distributed devices and applications connecting to the Internet is growing exponentially every day. As a result, data interoperability has become a prerequisite for IoT networks. However, the current infrastructures and communication protocols do not provide a convenient way for applications from different domains to interpret and process each other’s data, which is stored in vastly diversified, non-standardized formats. Due to this lack of common ground, in many cases, the integration overhead hinders organisations from exchanging their data to generate business values. Semantic technologies would be a promising solution for these issues, thanks to its ability to capture the high-level meaning of data. Asema is developing SmartAPI, a semantics-based API framework for sharing data between IoT systems. This thesis work is a part of SmartAPI project, focuses on designing and developing a data designer application. I build a single page web application with a modern graphical user interface, allowing users to create, organise and share data models

    PIS: IoT & Industry 4.0 Challenges

    Get PDF
    International audienceIn the era of Industry 4.0, digital manufacturing is evolving into smart manufacturing. This evolution impacts companies in three main areas: organization, people, and technologies. This chapter analyzes the Internet of Things (IoT) and Cyber-Physical Systems (CPS)—key technologies transforming the physical world into a digitalized physical world. IoT and CPS provide factories with sensing capabilities, perform data and context capture and allow them to act/react to optimize the value chain. We survey the recent state-of-the-art development of the Industrial Internet of Things (IIoT)—also known as IoT and CPS in the context of Industry 4.0, from a protocol, architecture, and standard point-of-view. We also explore key challenges and future research directions for extensive industrial adoption of these technologies

    Building the Hyperconnected Society- Internet of Things Research and Innovation Value Chains, Ecosystems and Markets

    Get PDF
    This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment.The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade

    Benefits and Challenges of Internet of Things for Telecommunication Networks

    Get PDF
    Recently, Internet of things (IoTs) has become the main issue in designing monitoring systems such as smart environments, smart cars, and smart wearable devices. IoTs has transformed the life of people to be more adaptable and intelligent. For example, in a healthcare monitoring system, using smart devices will improve the performance of doctors, nurses, patients, and the healthcare industry. The IoTs revolution is known as the fourth industrial revolution and would change the way humans interact with machines and lead the way to a high-technology machine-to-machine interaction. In fact, almost every device around us would be connected to Internet, collecting and exchanging data with other devices on the cloud. In this chapter, we will introduce the benefits of IoTs on telecommunication networks and its challenges to give a complete overview for researchers to know how to improve our life and society by building smart IoTs systems

    Non-Invasive Data Acquisition and IoT Solution for Human Vital Signs Monitoring: Applications, Limitations and Future Prospects

    Get PDF
    The rapid development of technology has brought about a revolution in healthcare stimulating a wide range of smart and autonomous applications in homes, clinics, surgeries and hospitals. Smart healthcare opens the opportunity for a qualitative advance in the relations between healthcare providers and end-users for the provision of healthcare such as enabling doctors to diagnose remotely while optimizing the accuracy of the diagnosis and maximizing the benefits of treatment by enabling close patient monitoring. This paper presents a comprehensive review of non-invasive vital data acquisition and the Internet of Things in healthcare informatics and thus reports the challenges in healthcare informatics and suggests future work that would lead to solutions to address the open challenges in IoT and non-invasive vital data acquisition. In particular, the conducted review has revealed that there has been a daunting challenge in the development of multi-frequency vital IoT systems, and addressing this issue will help enable the vital IoT node to be reachable by the broker in multiple area ranges. Furthermore, the utilization of multi-camera systems has proven its high potential to increase the accuracy of vital data acquisition, but the implementation of such systems has not been fully developed with unfilled gaps to be bridged. Moreover, the application of deep learning to the real-time analysis of vital data on the node/edge side will enable optimal, instant offline decision making. Finally, the synergistic integration of reliable power management and energy harvesting systems into non-invasive data acquisition has been omitted so far, and the successful implementation of such systems will lead to a smart, robust, sustainable and self-powered healthcare system
    • …
    corecore