
Aalto University

School of Science

Master’s Programme in Computer, Communication and Information Sciences

Doan Kien Bui

Design tools for ontology-based network
communication protocols

Master’s Thesis
Espoo, August 28, 2019

Supervisor: Professor Petri Vuorimaa, Aalto University
Advisor: Jani Hursti PhD. (Tech.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/237427396?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University
School of Science
Master’s Programme in Computer, Communication and
Information Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Doan Kien Bui

Title:
Design tools for ontology-based network communication protocols

Date: August 28, 2019 Pages: 61

Major: Computer Science Code: SCI3042

Supervisor: Professor Petri Vuorimaa

Advisor: Jani Hursti PhD. (Tech.)

Internet of Things has evolved quickly and reached to every aspect of our lives over
the years. The number of new heterogeneous, distributed devices and applications
connecting to the Internet is growing exponentially every day. As a result, data
interoperability has become a prerequisite for IoT networks.

However, the current infrastructures and communication protocols do not provide
a convenient way for applications from different domains to interpret and process
each other’s data, which is stored in vastly diversified, non-standardized formats.
Due to this lack of common ground, in many cases, the integration overhead
hinders organisations from exchanging their data to generate business values.
Semantic technologies would be a promising solution for these issues, thanks to
its ability to capture the high-level meaning of data.

Asema is developing SmartAPI, a semantics-based API framework for sharing
data between IoT systems. This thesis work is a part of SmartAPI project,
focuses on designing and developing a data designer application. I build a single
page web application with a modern graphical user interface, allowing users to
create, organise and share data models.

Keywords: IoT, semantic web, ontology, data interoperability, user inter-
face, user experience

Language: English

2

Acknowledgements

First and foremost, I would like to express my profound gratitude to my
supervisor Professor Petri Vuorimaa and my advisor Jani Hursti. I would
not finish this thesis work without for their incredible guidance and support.

Secondly, I would like to thank all members of Asema Oy and Professor
Petri’s research group. It has been an enjoyable working experience with you
all.

Last but not least, I would like to thank my friends and family for their
valuable support.

Thank you all for everything.

Espoo, August 28, 2019

Doan Kien Bui

3

Abbreviations and Acronyms

IoT Internet of Things
API Application Program Interface
SDK Software Development Kit
RFID Radio Frequency Identification
WSN Wireless Sensor Networks
M2M Machine to Machine
IaaS Infrastructure as a Service
PaaS Platform as a Service
SaaS Software as a Service
OM2M Open Machine to Machine
HTTP Hypertext Transfer Protocol
CoAP Constrained Application Protocol
REST Representational State Transfer
RDF Resource Description Framework
IRI Internationalized Resource Identifier
URI Unique Resource Identifier
XML Extensible Markup Language
SKOS Simple Knowledge Organization System
OWL Web Ontology Language
JSON JavaScript Object Notation
JSON-LD JSON for Linked Data
ERP Enterprise Resource Planning
SSO Single sign-on
HTML Hypertext Markup Language
CSS Cascading style sheets
AJAX Asynchronous JavaScript and XML

4

Contents

Abbreviations and Acronyms 4

1 Introduction 7
1.1 Problem statement . 8
1.2 Scope and Goals . 8
1.3 Structure of the Thesis . 9

2 Background 10
2.1 Internet of things . 10

2.1.1 Overview . 10
2.1.2 IoT Interoperability . 13

2.2 Semantic Web . 15
2.3 Smart API . 18

2.3.1 Smart API Design Principles 19
2.3.2 Smart API Core Objects 20

3 Methodology 23
3.1 Overview . 23
3.2 Problem Identification . 24
3.3 Design and Development . 25

4 Design and Implementation 26
4.1 System Architecture . 26
4.2 Design of the Data Designer 29

4.2.1 Requirements and specifications 29
4.2.2 Use case analyses . 31

4.3 Implementation . 36
4.3.1 Overview . 36

4.3.1.1 Concept Form Wizard 37
4.3.1.2 Ontology Graph 39
4.3.1.3 Code Generator Widget 41

5

4.3.2 Frontend Implementation 42
4.3.3 Backend Implementation 44

5 Evaluation 47
5.1 Evaluation Criteria . 47
5.2 Evaluation . 48
5.3 Existing ontology editors . 52

6 Conclusions 55

6

Chapter 1

Introduction

Since its birth in the 1960s [1], the Internet has revolutionised various in-
dustries and completely changed the way information technology involves in
everyday human activities. Currently connecting 4.3 billion users over the
globe, and growing at over a million new users each day [2], the Internet has
been woven into the fabric of many lives on the planet. The Internet con-
nectivity is empowering an enormous spectrum of applications and devices,
visibly influencing the way we communicate, the way we work and the way
we live. It can be found everywhere, from workstations to personal comput-
ers, from smart homes, smart household appliances to wearable devices and
smart sensors. And that global network of connected devices is called the
Internet of Things (IoT).

Over recent years, IoT and its applications have been the topic of interest
for both academic and industrial players [3]. IoT networks consist of inter-
connected smart devices, which communicate with each other autonomously
without human involvement. IoT devices are heterogeneous and diversi-
fied in infrastructures, interfaces, and processing and sensoring capabilities.
Although they are often limited in power, memory and computing power,
the communication processes among IoT devices can generate an enormous
amount of data. Therefore, data interoperability has become a challenging
issue in the IoT world [4].

Many studies have been conducted on applying semantic technology to
solve the IoT data interoperability problem [5]. Semantic Web refers to
machine-readable data on the Internet. Not only describing data in machine-
consumable formats, Semantic Web also specifies the meaning of data and its
relations. This enables data to be processed and stored in a self-explanatory
format so that different domain applications can share and interpret each
other’s data unambiguously.

7

CHAPTER 1. INTRODUCTION 8

1.1 Problem statement

It is often that to extract significant business values from IoT data, mul-
tiple sources of data from different organisations need to be combined [6].
However, due to IoT heterogeneous characteristics, raw IoT data is usually
processed and stored in various formats with non-standard naming and vo-
cabulary conventions. Subsequently, the industry has customarily suffered
from lacking a consensus of data interoperability. Semantic technology has
shown potential as a promising solution because it is not only able to present
data in standardised, machine-readable formats but also able to describe
what the data stands for.

This thesis is a part of Smart API, an open-source project developed
and maintained by Asema Oy, designed for semantic interoperability of IoT
systems. It helps two or more IoT applications to understand, analyse and
interpret each other’s data effectively and unambiguously. However, in a net-
work of systems that includes different domain applications, creating, editing
and sharing data models is challenging. Therefore, in the scope of this the-
sis, the main research question we try to answer is: How to create and
share ontology-based data models to improve the interoperability
and compatibility in IoT systems.

1.2 Scope and Goals

The thesis focuses on designing and implementing a graphical user interface
for creating, editing and sharing triples. Users can use the tool for browsing
existing data models, creating new ones, and generating code stubs to use
with the Smart API SDK and Smart API services. The application must
require minimal installation effort so that it can be integrated easily with
any infrastructure. The thesis has two primary objectives:

• Improving the overall usability: Users should be able to use all
functionalities in the graphical user interface effortlessly and intuitively

• Implementing multi-dimensional data models: We target to de-
sign and implement the support for more complex, multi-dimensional
data models

The new data designer tool will be a part of Smart API services in Asema
IoT Solution.

CHAPTER 1. INTRODUCTION 9

1.3 Structure of the Thesis

The thesis comprises six chapters in the following order: Introduction, Back-
ground, Methodology, Design and Implementation, Evaluation and Conclu-
sion. Chapter 2 gives an overview of the basis and current research about
Internet of Things, data interoperability and Semantic Web. Chapter 3 ex-
plains the research methodology applied in this thesis work. Chapter 4 de-
scribes the design and implementation of the proposed solution, which is a
web-based ontology editing application. Chapter 5 shows the evaluation of
the proposed solution in a practical use case and benchmarks it with other
existing ontology editors. Lastly, Chapter 6 contains the conclusion, retro-
spect, and directions for future works.

Chapter 2

Background

In this chapter, I will review the technologies and literature that are related
to this thesis work. I first thoroughly go through the concepts and principles
of the Internet of Things to set a base for the thesis. Then, the current state-
of-the-art of data exchange and data management in the Internet of Things
industry is discussed. Finally, I inspect the Semantic Web and Smart API
as a part of the Internet of Things interoperability architecture.

2.1 Internet of things

Internet of Things is referred to as systems of smart devices interconnected
via a linked network [7]. There are two pillars in IoT: ”Internet” and
”Things”. ”Things” are physical, smart devices that function autonomously
and are able to communicate with each other or with a server via Internet
connectivity. This includes everything from small-sized, individual wearable
devices such as sensors, fitness wristbands and smart watches, to household
appliances, such as smart television, smart refrigerators, washing machines,
smart home systems, to large-scale, distributed systems such as traffic lights,
aeroplane engines and IoT Gateways [8]. IoT applications have covered a
wide range of industries, from manufacturing [9], logistics [10], retailing [11],
to pharmaceutics and healthcare services [12].

2.1.1 Overview

Internet of Things and its applications are transforming business processes by
enabling machines and devices to interact with each other automatically and
intelligently, improving the visibility, accuracy and real-time access of data
flow. IoT envisions a new world where a global network of connected devices

10

CHAPTER 2. BACKGROUND 11

significantly enhances human life quality [13]. To realise IoT visions, new
characteristics and requirements are introduced to the preexisting tradition
computing devices [14]:

• Ubiquitous Connectivity: Perpetual connectivity is a fundamental
principle in Internet of Things systems. Smart devices are required to
be accessible without any time and place restrictions

• Heterogeneity: IoT devices diverse in a wide range of hardware and
software. An IoT application needs to support a varied set of devices
and connectivity protocols

• Smartness: IoT smartness consists of object smartness and network
smartness. IoT devices need standardisation of communication stan-
dards, from device hardware layers that interact with the physical
world, to software layers that handle the communication with the In-
ternet.

• Object Addressability and Functionality: IoT devices are de-
signed to be identified effortlessly and readily available for other pur-
poses.

• Resource Constraints: IoT network architecture considers comput-
ing and power limitation of sensors and devices.

To establish the horizontal interaction between IoT entities, devices and
sensors connected to the network constantly send data to the cloud, from
which computer systems, software developers and other parties read, interact
and integrate the data with their applications [15]. Figure 2.1 demonstrates
a common network setup among different parties in an IoT communication
network.

Figure 2.1: Communications in IoT networks.

CHAPTER 2. BACKGROUND 12

There are five essential IoT technologies that are used in a wide range of
IoT products and services [16]:

Radio Frequency Identification (RFID) refers to an IoT electromag-
netic technology used to identify and trace the information that is attached
to a digital data encoded tag [17]. Similar to traditional barcoding tag tech-
nology, information about the object is stored in a microchip on an RFID tag
or a smart label. However, RFID offers numerous technological advantages,
including the ability to read data out of line-of-sight. This allows RFID tags
to be able to work hundreds of meters away from the tag reader, while tradi-
tional barcode tags have to be aligned with the optical scanner. RFID tags
are widely used in manufacturing, hospital, asset management and retailing
industries.

Wireless Sensor Networks (WSN) contains spatially disbursed, self-
configured networks of autonomous dedicated sensor devices for tracking,
monitoring, and storing the physical and environmental parameters [18].
WSN is used to measure the status of things, such as location, tempera-
ture, movements, and surrounding environmental conditions. Data in WSN
is usually recorded and stored at a centralised location. A WSN deploy-
ment can consist of hundreds of thousands of sensor nodes. WSN supports
multiple network and communication protocols, and WSN topologies range
from simple network setup to multiple wireless communication. WSN ap-
plications cover a broad spectrum, from military applications to monitoring,
transportation, agriculture and health care services.

Middleware is another major application area of IoT technology. IoT Mid-
dleware is an intermediate software layer between software applications to
support data communication and input, output. It works as a software in-
terface that abstracts away the details of different complex underlying tech-
nologies used in different applications so that they can be connected. The
ability to free software developers from the mundane communication details
between software is highly valuable for IoT systems. Middleware is an es-
sential part of the IoT architecture for empowering connectivity of a huge
number of heterogeneous sensors and devices [19]. Most middleware-based
IoT architecture is service-oriented and supports dynamic network topology.

Cloud Computing is a convergence of technologies that enables on-demand
uses of shared configurable computing resources. It enables organisations to
quickly start new computer services and redistribute provisioned resources
upon business changes. Infrastructure as a Service (IaaS), Platform as a

CHAPTER 2. BACKGROUND 13

Service (PaaS) and Software as a Service (SaaS) are the three major service
models in the cloud computing industry. Cloud computing offers a stable,
powerful platform with high availability and high scalability for IoT appli-
cations. Thanks to the advances of Cloud Computing, the massive amount
generated from IoT applications can be processed and stored safely and per-
formantly [20].

IoT application software is what truly brings values to IoT-empowered
enterprises [21]. Although raw IoT data prove to be hugely beneficial for
enterprises, the true value of the IoT technology can only be fully achieved
when raw IoT data is integrated with industry applications, such as inven-
tory systems, customer support systems, business intelligence and analytics
applications.

However, because of the diffusion of applications and smart devices, whose
interfaces are not specified or standardised, data compatibility and interoper-
ability has become one major problem in IoT networks [22]. The architecture
of the data processing layer in IoT software systems is not designed to fully
handle the heterogeneity and massive volume of IoT sensor and device data
[23]. This thesis focuses on improving data compatibility and operability for
IoT application software. In the following section, I review the current state
of the art of the IoT data interoperability.

2.1.2 IoT Interoperability

As the broadband Internet has become more widely available, the cost of con-
necting is decreasing, more devices are being created with Internet-connection
capabilities and sensors built into them, Internet of Things is evolving quickly,
the number of IoT units is anticipated to exceed 26 billion units by 2020 [24].
With an increasing amount of sensors and devices ready to be interconnected,
creating intelligent and autonomous IoT systems that allow participant de-
vices to exchange data securely and inter-operate effortlessly has emerged as
an upcoming challenge. One step towards solving this problem is the global
adoption of universal standards and cost-effective solutions. This has been a
topic of interest for both industrial players and academia. I discuss some of
the research on this topic below.

Machine to Machine (M2M) refers to the machine data communication
technology that allows devices or machines of the same type to communicate
directly via wired or wireless connections, without human assistance. It is a
broad term and not particularly applied to any kinds of networking or com-

CHAPTER 2. BACKGROUND 14

munication protocols. M2M has been used in a wide range of applications,
and it is considered an essential part of the Internet of Things [25]. However,
M2M suffers from lacking a standard for data compatibility. One notable
project tackling this issue is Open Machine to Machine.

Open Machine to Machine (OM2M) proposed by The European Telecom-
munications Standards Institute (ETSI), an ETSI-M2M compliant service
platform for M2M interoperability in 2014 [26]. OM2M has a modular archi-
tecture and supports multiple protocol bindings such as HTTP and CoAP.
The main feature of OM2M includes a RESTful API with open interfaces to
enable developing services and applications independently of the underlying
network.

AllJoyn is an open-source framework created and maintained by the AllSeen
Alliance and Linux Foundation for enhancing the interoperability among In-
ternet of Things devices and applications [27]. AllJoyn offers a universal, se-
cure and programmable software connectivity framework and an open-source
SDK that supports basic functionalities as discovery, connection manage-
ment, message routing and security. It runs on major platforms, including
Linux, Android, iOS, and Windows, and many other lightweight real-time
operating systems.

IoTivity Project is another open-source framework for device-to-device soft-
ware connectivity [27]. It was merged with AllJoyn in October 2016 [28]. The
primary goal of IoTivity is to create an extensible and robust network ar-
chitecture for smart and thin devices. The IoTivity offers a resource-based,
RESTful API connectivity framework that is available in several languages.

INTER-IoT is an on-going project funded by the European Commission,
aiming to improve the interoperability among heterogeneous Internet of Things
platforms [29]. INTER-IoT offers an open layer-based framework and asso-
ciated methodology for seamless integration of different IoT architectures.

To overcome the lack of a consensus standard, at Asema, I propose the
Smart API, a Semantic Web-based data modelling solution for IoT data
exchange via a standardised API framework. I discuss the Semantic Web in
the next section.

CHAPTER 2. BACKGROUND 15

2.2 Semantic Web

The semantic web is a World Wide Web extension, developed through World
Wide Web Consortium (W3C) [30]. The primary purpose of Semantic Web
is to establish a universal framework to create machine-readable content on
the Internet, that enables data sharing and data reusability across different
parties.

The term Semantic Web was initiated by Tim Berners Lee, who envisions
the Semantic Web to be a web of machine-readable data so that computers
can interpret and analyse all the content on the internet, including links,
texts and transactions between people and computers [30]. Collections of
open interconnected datasets can be referred to as Linked Data. Tim Berners
Lee described Linked Open Data through four principles [31]:

1. Use URIs as names to identify things

2. Use HTTP URIs so that people can look up and access those names.

3. Provide useful information about resources using open standard for-
mats, such as RDF, SPARQL

4. Include links to others URIS when publishing to the Internet, so that
people can discover more.

He also suggested a five star deployment model for Open data [32]:

• 1-star: Make data available on the web, in whatever format and under
an open license

• 2-star: Make data available on the web in structured, machine-readable
format.

• 3-star: Make data available on the web in a non-proprietary open
format

• 4-star: Use URIs to name resources

• 5-star: Provide links to other data to promote content

Metadata and ontology are the essential foundations of Linked Data.
While metadata provides a description language for web resources, ontol-
ogy is an explicit specification of abstraction, that describes concepts and
relations in a given domain.

CHAPTER 2. BACKGROUND 16

Figure 2.2: Tim Berners-Lee’s Linked Data Layer Model [33]

To achieve and create Linked Data, data resources are given unique iden-
tifiers URIs [34]. By accessing the URIs, consumers can identify the given re-
source, find more information and related entities. URIs have been extended
to IRIs that allow international characters [35]. Besides being identifiable
and discoverable using IRIs, it’s crucial that data is available in a common
format. W3C introduces the Resource Description Framework (RDF) as a
part of W3C specifications [30] in 1999 for metadata data modelling. An
RDF statement can be visualised as an edge in a directed graph, which con-
sists of a subject, an object and a predicate. Subject and object represent
the defined resource and the target value. They can be an IRI, a blank node
or a literal. A predicate is in the form of IRIs and represents the relationship
or property. RDF has many syntax notations and data serialisation format.
RDF statements can be serialized in XML based syntax (RDF/XML), triple
notations (N3, Turtle, N-triples), or JSON format (JSON-LD) [30].

CHAPTER 2. BACKGROUND 17

@prefix ad: <http://smart-api.io/ontology/ad#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

ad:Tray1 rdf:type ad:Tray.

ad:Tray2 rdf:type ad:Tray.

The above example demonstrates simple RDF statements in Turtle for-
mat. RDF is very useful for describing relations between resources, yet it
also has semation limitations. The power of RDF is further extended by
RDFS, which provides a data-modelling mechanism for representing RDF
vocabularies of related resources and their relations. RDFS and RDFS allow
resources to be described in detailed descriptions and classified with a hier-
archical structure [30]. Below is an RDFS-extended version of the previous
example.

@prefix ad: <http://smart-api.io/ontology/ad#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

ad:Tray1 rdf:type ad:Tray .

ad:Tray2 rdf:type ad:Tray .

ad:SmallerTray rdfs:subClassOf ad:Tray ;

rdfs:label "SmallerTray"@en ;

rdfs:comment "A type of Tray"@en .

Other expressive technologies that are built upon RDFS such as OWL
and SKOS focus on representing vocabulary structure and allow reasoning in
the Semantic web [30]. OWL offers the ability to express the nature of data
properties, such as symmetricity, and transitivity. Machines can uses those
characteristics of data properties to infer more statements from an ontology.

@prefix ad: <http://smart-api.io/ontology/ad#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.org/2002/07/owl#>

ad:Tray1 rdf:type ad:Tray .

ad:Tray2 rdf:type ad:Tray .

ad:SmallerTray rdfs:subClassOf ad:Tray ;

rdfs:label "SmallerTray"@en ;

rdfs:comment "A type of Tray"@en .

ad:equalTo rdf:type owl:SymmetricProperty.

ad:Tray1 ad:equalTo ad:Tray2.

CHAPTER 2. BACKGROUND 18

From the example above, since ad:equalTo is an owl:SymmetricProperty,
machine can induce a new statement ad:Tray2 ad:equalTo ad:Tray1 from the
ontology. OWL has many sublanguages and specifications, all of which focus
on different aspects of semantic reasoning.

To query and manipulate RDF data, a query language is required. For
that purpose, W3C standard in 2008 recommended SPARQL, a recent addi-
tion to the Semantic Web stack of languages [30]. SPARQL allows consumers
to run queries on RDF datasets in a similar fashion as SQL for traditional
relational databases. Below is an example of a simple SPARQL query.

PREFIX ad: <http://smart-api.io/ontology/ad#>

SELECT ?tray

WHERE {

?tray rdf:type c:Tray

}

In order to to create a semantic data model system, that would fit the
needs of particular IoT applications while taking into account the core value
proposition of the overall IoT concept, I introduce Smart API, and a linked
data-based, object-centric, semantics-enabled, transaction-capable framework
for building APIs for IoT solutions. I discuss Smart API in details in the
next section.

2.3 Smart API

Smart API is a semantics-based data model framework for IoT applications
[36]. IoT applications apply to a variety of smart devices, ranging from
tiny and power limited microcontroller-driven sensors, to embedded Linux
gateways and full-scale cloud platforms; each of which has unique data models
and formats. The application area is broad and the uses and devices diverse
significantly, therefore the industry has inherently suffered from lacking a
consensus of data standards and compatibility.

Semantics focuses on bringing meaning to data, or in other words, focuses
on building open data. A semantics data set not only can provide the data
itself, but also what the data stands for. As modern IoT systems are striving
for more advanced data processing, the possibility of automatic processing
of the vast amounts of data has become a crucial requirement. Therefore,
Asema has included semantic engineering into the IoT data processing to de-
velop Smart API, an semantics-based framework for transferring and storing
linked data. The core features of Smart API are:

CHAPTER 2. BACKGROUND 19

• Object centric: The primary intention of Smart API is to carry re-
mote objects between different systems [36]. Objects in SmartAPI
represent both the physical devices and the programming abstractions
of those devices. Smart API transparently processes data structures,
the data sending and receiving over the network.

• Semantics enabled: Smart API is built on the foundations of the se-
mantic web [36]. Common vocabularies of the semantics in Smart API
removes data ambiguity and allows automatic instance unit conversion
as data is transferred.

• Transaction capable: The SmartAPI transaction supports monetiz-
ing the application operations and data. The SmartAPI transaction
supports cryptographically encrypted data transfer for confidentiality
and non-repudiation [36]. SmartAPI transaction service works as an
invoicing ledger.

• Secure: Smart API is fully crypto-protected [36]. In addition to
HTTPS, Smart API provides encrypted and secure signing mechanism
for all messages. Moreover, Smart API offers OAuth2 authentication
protocol built-in support for better software engineering quality of life.

• Linked data enabled: In Smart API, everything is inter-connected.
Concepts can be created and linked between objects, messages, and in
any other configurations [36].

2.3.1 Smart API Design Principles

The design of Smart API attempts to achieve a holistic view of the data that
fits the needs of particular IoT applications while taking into account the core
value proposition of the overall IoT concept. It needs to serve the multiple
needs of various forms while being semantically processed and mapped into
actual software. Smart API borrows a lot from object-oriented programming,
where everything is an object. An object in Smart API can have:

• Properties: define what the object is

• Abilities: what the object can do, for example, what functionalities a
smart device has

Creating an IoT object in Smart API powered software to control and
measure sensor devices is straightforward. These are translated into software
terms as instance variables and methods. Measurement and manipulation

CHAPTER 2. BACKGROUND 20

can be achieved by simple get-set methods. Sensors and actuators can also
be identified easily without explicitly modelling. If a property is readable, it is
a sensor. On the other hand, if a property can be written, it is an actuator. A
read-write represents an actuator with sensoring ability. Property in Smart
API consists of three core variables: Quantity, Unit, and Datatype. This
design preserves the principles of Smart API design:

• Everything is modelled as an object

• Each measurable property of that object has quantity, unit, and datatype

• Sensoring means reading that property and controlling means writing
that property

These principles cover the basic functionality of all sensoring and con-
trolling applications in one uniform fashion. Besides, for data management,
Smart API adapts the CRUD-N concept for API convention. CRUD defines
the four essential functions of persistent storage: Create, Read, Update, and
Delete. ”N” or Notify, is an addition from the autonomous word, which is
an operation for signalling when data changes occur. Moreover, Smart API
defines the time span associated with every property to embody the time
aspect of data.

2.3.2 Smart API Core Objects

In Smart API, all concepts are classified into a hierarchical tree, whose root
node is Object. Core classes that inherit Object are divided into three
branches:

Entities represent tangible things operated on IoT networks, such as
devices, services, people. Entities are the targets of processing, whose prop-
erties contain the data to be processed. Entities are further broken down
into two subclasses: AbstractEntities and PhysicalEntities. PhysicalEntities
have physical properties such as dimension or weight, while AbstractEntities
do not. Both PhysicalObject and AbstractEntities can be further subclassed,
but such explicit subclassing has an insignificant impact on data processing.
There are several subclasses of PhysicalObject and AbstractEntities built-in
in Smart API, such as Person, Vehicle or Service.

Evaluations are the intangible, technical things in the network that act
as data carriers, including requests, inputs, and outputs. Evaluations are the
definers of processing. Their methods contain instructions on how to process

CHAPTER 2. BACKGROUND 21

data. Evaluations split into five subclasses: Activities, Abilities, Inputs,
Outputs, Messages, Provenances. Most of the network processing takes place
by creating an Evaluation for the target party to process and attaching data
to it in the form of Entities. The most typical procedure involves creating a
Request that identifies the target party, linking an Activity that determines
what the target should do, and packing the processing data into the Activity
as a set of Entities

Property containers include all data models that give a standardised
format to the properties of Entities. These classes ensure that the data is
understandable with the help of structures and vocabulary. The standard
container of such measurement is a ValueObject, which includes Quantity,
Unit, and DataType properties.

Figure 2.3 shows a hierarchical architecture of Smart API Core Object Classes.

Figure 2.3: Smart API Core Classes

This hierarchical structure of classes enables comprehensive and self-
explanatory data definitions, eliminates data ambiguity and enhances data
reliability and maintainability. The Smart API adds identifiers into the data,
which instead of being parsed as JSON, is now JSON-LD (JSON for Linked

CHAPTER 2. BACKGROUND 22

Data, a serialisation of RDF) format. One example of a payload for a Smart
API request is described as below:

{

"@context": {

"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",

"xsd": "http://www.w3.org/2001/XMLSchema#",

"smart": "http://smart-api.org/ontology/1.0/",

"nasa": "http://data.nasa.gov/qudt/owl/unit#"

},

"smart:weightBefore": {

"nasa:unit": "qudt:kilogram",

"rdf:value": 10^^xsd::int

},

"smart:heightBefore: {

"nasa:unit": "qudt:meter",

"rdf:value": 5^^xsd::float

}

}

Chapter 3

Methodology

In this chapter, I discuss the research methodology applied in this thesis.
I first go through an overview of the research process. Then I discuss each
process step to understand why and how I use this methodology in the thesis.

3.1 Overview

The research process applied in this thesis work is a design science search
process proposed by Peffers et al. in 2008 [37]. The research process is broken
down into six separate phases, where human involvement is needed.

Figure 3.1: Design Science Research Process [38]

23

CHAPTER 3. METHODOLOGY 24

Figure 3.1 describes the design research process. The first phase is Prob-
lem Identification, where the problem is identified, and its practical relevance
is ensured. The second phase is to define the scope and objectives of the re-
search work. It is followed by the Design and Development phase, which
focuses on designing and developing the goals and objectives that are set out
in the second phase. The outcomes of the third phase are demonstrated in
the Implementation phase, where the current designs and implementations
are continuously iterated. Evaluation and Conclusion are the fifth and final
phases, where a set of tests and evaluation criteria are run against the pro-
totypes. Additional feedback from the team is also included. The execution
order of the research process is not always sequential, but often back and
forth between phases in an iterative fashion.

In the scope of this thesis, all six phases were applied, including imple-
mentation phases. In the following sections, I review each stage and the
reasons behind all the design decisions.

3.2 Problem Identification

The problem is identified by the product owner and the team at Asema.
During the beginning of the thesis, I held multiple weekly group meetings
to help all team members understand the big picture as well as the nuances
of the project. I tried to break down the research question into smaller sub-
questions, so that we could set out milestones for the thesis. After making
sure everyone is on the same page, we agreed on the primary use case scenario
to use as the foundation for the thesis work. All objectives of the problem
were clearly defined in the use case scenario, which represents the definition
of done of the thesis.

The target scenario includes a partner company who wants to share data
with our system. There are two sources of data, a network of new sensors
to be installed and an existing cloud-based ERP. Both sources of data need
to be designed, defined and registered into the system. The ERP will be
connected using the Smart API library. The data will contain two new data
items that are not currently in the Smart API ontology, including one single-
dimensional item, and one multi-dimensional item. The current version of
the data designer is already able to generate single-dimensional data items,
so building the multi-dimensional data item generation functionality is the
main objective of thesis work. Moreover, the data designed must be able to
offer a robust, intuitive interface to create both these items in a web browser
environment and an ability to generate sample code that implements these
designs.

CHAPTER 3. METHODOLOGY 25

Besides group meetings, we also have multiple workshops to gather input
from all members working on the project. At the beginning of the workshops,
each member presented the current state of their work, what was in their way,
and what they were going to do next. Then we discussed the next steps to
move forward in the project. We went through the requirements of and
re-prioritised them based on the changes in the project.

3.3 Design and Development

Based on the requirements planned out in Problem Identification phase, I
designed and iterated through two prototypes of the tool. Prototypes are
an excellent way to test design decisions quickly and are the perfect match
for development processes with iterations. Both prototypes were carefully
evaluated with both expert opinions and user observation method. Expert
evaluation is cheap and fast; however it relies on the expert who conducts
the assessment. On the other hand, user observation takes more time, but
it provides more accurate and quantitative insights on user interactions with
the tool. I also checked if all requirement checklist items were fulfilled.

In the first prototype, I approached a form-based version, which was
mainly for demonstrating the major functionalities of the final product. This
prototype consisted of many forms with complex input fields where users can
use to create and edit ontology. Though it proved to be very straightforward
and fast-to-use for expert users, non-expert users were reported to have us-
ability difficulties while interacting with the tool. It was mainly because
expert users are familiar with the form-based approach, as it is used in many
other existing tools.

However, as I aim to offer a fully-fledge solution for any users, regardless
of their level of knowledge of semantic engineering; in the second prototype
I come up with a graph-based solution, where the ontology was rendered in
an interactive graph. Users can make changes to the ontology directly on
the graph, and the changes will then reflect on the graph immediately. The
prototype was evaluated with the same set of testing cases, and it showed
that users at any level could interact with the tool fast and effortlessly. The
majority of users reported that graph-based version has a much more smooth
learning curve, and they were able to get onboard in significantly less time.

Based on the evaluations of both prototypes, I came to the conclusion to
go with the graph-based approach. The design and implementation of this
installation are discussed in the next chapter.

Chapter 4

Design and Implementation

This section outlines the design of the system architecture and the imple-
mentation process of the proposed solution. I first review the Asema IoT
system architecture and the Smart API framework to give an overview of the
thesis work. I then discuss the design process of the ontology presentation in
a graphical user interface and its operation in the Smart API data network.
Finally, I analyse the use cases, functionalities, underlying technologies, and
the implementation of the ontology editing tool.

4.1 System Architecture

The Asema IoT Central is an adaptive system integration software for Inter-
net of Things systems. It differs from the traditional IoT solutions, which are
heavily reliant on middleware architecture, by having a lightweight, extend-
able modular application design. The modular architecture allows Asema
IoT Central to scale from simple-machine application to fully-fledged service-
oriented cloud systems effortlessly. Moreover, the lightweight approach en-
ables hardware and power efficiency, painless maintenance, and native sup-
port for edge computing. This architecture also allows out-of-the-box inte-
gration for sensor monitoring, remote control dashboards, product pricing,
information displays, and many more services, whose sources are included
in the application. Users can modify, expand, or extend the services for
re-branding or full business logic customisation.

Being designed as a building block for custom application integration, the
Asema IoT Central can flexibly connect to other network entities, forming a
grid to perform distributed tasks. This design not only enhances the overall
system scalability, but it also helps answer the questions of where data is
located and under whose possession. In the Asema IoT system, data access

26

CHAPTER 4. DESIGN AND IMPLEMENTATION 27

can be set by location and shared with either temporary or permanent access
rights. Figure 4.1 demonstrates the high-level architecture of the Asema IoT
solution.

Figure 4.1: Asema IoT Solution High-level Architecture [39]

Although the architecture of Asema IoT Central is very flexible and works
natively in many use cases, there is no one-size-fits-all solution. Therefore,
Asema IoT software supports three types of installation, namely Asema IoT
Central, Asema IoT Edge, and Asema IoT Dashboard. All of three installa-
tions include the same object-centric, event-driven core architecture so that
they can integrate effortlessly in large scale systems:

• Asema IoT Central is a fully-fledged, cloud-based IoT server and
client implementation for data collection, data sharing and system man-
agement. It includes business logic, local and remote user interfaces,
analytics interfaces, and client interfaces. By leveraging the latest
database and networking technologies, Asema IoT Central fully sup-
ports both traditional relational databases and modern NoSQL databases.
It can operate seamlessly in either standard network protocols (HTTP,
MQTT, CoAP) or local wireless or wired connection (WiFi, Bluetooth).
Moreover, Asema IoT Central features Screen-let Store, which is an app
store for effortless online IoT applications distribution. This installa-

CHAPTER 4. DESIGN AND IMPLEMENTATION 28

tion supports the major platforms and operating systems, including
Windows, Linux and Mac OS.

• Asema IoT Edge is a lite version of Asema IoT Central for edge
computing. It also contains the core business rule engine, database
support and integration components, but only supports basic user in-
terfaces and no data analytics tools. This is a compact version designed
to run on memory-limited devices and can be installed into embedded
environments. It is compatible with embedded Linux distributions and
can be cross-compiled to ARM architecture.

• Asema IoT Dashboard is the implementation version of IoT Central
for mobile devices. It is a user interface component, which does not
have any database, business logic or server supports. However, Asema
IoT Dashboard offers a sophisticated, fully customizable graphical user
interface for IoT applications. This installation runs on Android and
iOS.

The flexibility of software installations is crucial for mass adaptation.
The application is available in ready-made builds for all major operating
systems. All have been tested in operation on a wide range of virtualization
technologies, including VMWare, VirtualBox, Microsoft Azure and Amazon
EC2.

The JSON RPC API is a format used in many modern network services.
A standard JSON RPC call consists of an ID, a method name and param-
eters. The method in the payload represents the actions of the API calls,
which can be searching, fetching or any controlling actions. An example
JSON call to fetch all objects in the system is described below.

{

"id": 1,

"params": Null,

"method": "fetch_objects"

}

With the context provided by Smart API, the payload clearly defines
what the data is, which is highly beneficial for software developers in their
development process. Moreover, to help cutting the integration overhead,
Asema offers a free, open source Smart API SDK in all major programming
languages. One core component of the SDK is the data designer tool, which
allows users to design their data models in an intuitive graphical user inter-
face. The design and implementation of the tool are discussed in the next
sections.

CHAPTER 4. DESIGN AND IMPLEMENTATION 29

4.2 Design of the Data Designer

The first part of this section describes the architectural design and the spec-
ifications of the solution, where I thoroughly go through how system compo-
nents communicate with each other and how data flows between them. The
second part focuses on the use of case analyses and the design plan.

4.2.1 Requirements and specifications

In Internet of Thing systems, where many different parties are continually
collecting and storing raw IoT data, it is not easy to justify whether the
collected information is beneficial or not. In many cases, IoT applications
collect raw data under an assumption that the data can potentially become
useful in the future. In today world, the costs for collecting and storing data
are becoming more trivial, the risks of missing out on some valuable data
outweigh the costs. Therefore, many companies chose to pile up their data
instead and sometimes leave it in dust for years, because for IoT data to be
useful, it has connected with other data. However, data structures in IoT
are very complex, and it is very easy to lose track of what includes in a data
collection. The database was probably designed and maintained by a data
engineer who left the company or stopped working on the project long ago,
and manipulation of data is left hanging and replies solely on documentation.

On the other hand, software engineers, who are building applications
usually neither have the skill nor the access to the actual format of data.
This issue causes overhead in data integration processes. The solution is
primarily designed to address this problem between systems. Smart API is a
semantic-based API framework, that allows the engineers of an organization
to use APIs with minimal support from the engineers at other organisations,
and provides standardised APIs when their systems are interconnected. To
do that, both the requests to and responses from the APIs must be self-
explanatory.

Based on the understanding of the system requirements, I found that to
provide an efficient solution; the designed architecture has to acknowledge
the fact that different actors have different data domains. The platform
architecture is designed to ensure the availability and consistency of data
by introducing microservice architecture with semantic interoperability of
systems.

CHAPTER 4. DESIGN AND IMPLEMENTATION 30

Figure 4.2: Platform Architecture

Figure 4.2 demonstrates the platform architecture and communications
among system components. The structure and functionalities of each com-
ponent below are described below.

WebFront is the central service. It is a standalone application, which
acts as a proxy, connecting different services and maintaining the communi-
cations with these components via several interfaces. WebFront also provides
a set of backbone APIs, serving multiple front-ends, including the Data De-
signer. When users make interactions with Data Designer or other front-ends,
the request is submitted to WebFront, from which it is forwarded to the cor-
responding services that are responsible for handling those requests. The
services then process the request and respond to WebFront, which then send
suitable feedback to users.

Find Service or Smart API Find acts as a navigator in the Asema
global semantic map. It stores and maintains information about devices
connected to the systems, where they are located and under whose controls.
Control systems can find data providers, and service providers can discover
control systems via Find Service. Moreover, It represents systems when a
third party service is required to relay data such as state information.

Talk Service or Smart API Talk maintains the Smart API data model.

CHAPTER 4. DESIGN AND IMPLEMENTATION 31

The service provides developers with online tools to further develop and
release data versions, testing facilities to test data validity, and an SDK to
help integrate data model straight into their software development process.

SSO Secure Service or Smart API Secure offers a uniform authen-
tication method to the whole system. It issues identities to participants in
the form of the authentication process so that users can use one username
and password to identify themselves in multiple applications. Furthermore,
Secure Service operates as a policy distribution central hub, allowing known
and unknown parties to negotiate modifications in their security policies.

This architecture is designed to ensure availability and stability and does
not have any single point of failure. The system scales up or scales down
can be achieved effortlessly by adding or removing nodes of any components.
Moreover, the data model is stored in a single source of truth to establish
data consistency and discoverability.

I review the use cases of the data designing process in the next section.

4.2.2 Use case analyses

The main objective of the data designer is to allow users to explore and cre-
ate new classes of objects, which serve as global search terms in the Smart
API Find directory. In addition, other users can also find those newly added
concepts from the Smart API Talk server and use them to create their ontol-
ogy or to build compatible applications. Two groups of users are projected
to be the primary end users of this tool in the scope of this thesis. The first
group is technical users who are more familiar with ontology engineering and
semantic web, but necessarily technical experts or having intensive domain
knowledge. The other group covers non-expert users, who have little to none
experience with semantic web and ontologies. Despite the gaps between tech-
nical understanding and capabilities of two groups, this thesis aims to offer
both of the groups two main goals.

The first goal of the Data Designer is to provide helps in the software
development process. It allows users to create, edit, and extend the data
model in an intuitive graphical user interface. Besides, the Data Designer
can generate ready-to-use source code stubs that can be copy-pasted into the
applications to shorten development time and reduce repetitive works. The
tool also presents clear documentation and explanation for the data model,
so that software developers can use the generated code stubs out of the box in
their software development, cutting a sizable amount of time otherwise will

CHAPTER 4. DESIGN AND IMPLEMENTATION 32

be spent on studying the domain knowledge and understanding the library.
This approach helps ease the learning curve of industry knowledge as well as
software practices and provides standardised coding references. Developers
also can share their data models easily by exchanging generated code stubs.

Secondly, and most importantly, the Smart API Data Designer makes it
possible to share data models between organisations. One major problem in
the IoT data interoperability is the terminology and unit disparities among
organisations, where different terms and units are used for the same thing.
The rate of movement can be identified by ”Speed” and measure by ”Kilo-
meter per hour” at one organisation while being ”Velocity” and ”Meter per
second” at another organisation. This issue causes severe disorganisation,
turbulence, and complications during system integration processes. Data
Designer tackles this issue by enabling a universal ontology sharing model.
Once a terminology is created, it is available on a common vocabulary, which
is shared among all parties, while all units come with a built-in conversion
module. The common vocabulary is a systematic hierarchical graph of on-
tologies. Developers can use smart searches that suggest both exact word
searching and synonym searching to explore the common vocabulary for the
appropriate terms and units that fit their particular system. They then can
choose to reuse the existing terminologies, or copy/extend them for further
modification. Furthermore, all parties in the Smart API network are assigned
to and identified by unique namespaces to avoid data conflicts.

We analyse the use cases based on the understanding of these goals. Use
cases can be classified into three groups: Data Model Design, Data Sharing
(Data Exchange), and Authentication. Figure 4.3 displays the use case
diagram of the Data Designer tool.

CHAPTER 4. DESIGN AND IMPLEMENTATION 33

Figure 4.3: Use Case Diagram

CHAPTER 4. DESIGN AND IMPLEMENTATION 34

Data Model Design group consists of use cases that are related to the
data creation and data management processes: create concept, upload
ontology from local computer, list concepts, and edit concept.

Create Concept is the core functionality of the tool that allows users
to create and submit data concepts to the common ontology. Table 4.1
shows ten types of concepts that developers can create. As we discuss in the
system requirements and specifications section, there are two distinct user
groups that are using the tool, each of which has a different level of expertise
in semantic and ontology engineering. Therefore this function is designed to
be flexible yet standardised for both user groups. After interviewing users
from both groups, we recognise that while a form-based approach is more
suitable for more-expert users, a graph-based user interface can help non-
expert users to bridge the ontology knowledge gap and be able to focus on
creating data models. The tool supports both approaches, from which users
can choose either one that is more suitable for them. User can create the
following types of concepts:

• Creating a Quantity: Define a quantity, which is the unit of measure.
It represents a quantitative property for the object. For example, a
quantity can be the length, speed or temperature

• Creating a Unit: Define a unit, which is used to measure quantity.
For example, ”Length” quantity can be measured by ”meters” or ”kilo-
metres” units

• Creating a Device Type: Define a type for physical devices

• Creating a Service Type: Define the type of connected service

• Creating a Data Type Property: Define data type used for value
objects. For example : ”string”, ”integer”, ”number”, etc.

• Creating an Object Property: Define a relationship between con-
cepts. For example: ”hasWeight” can be used to link an object to its
weight

• Creating a Unit Category: Define a category of units. For example:
”Kilometer” and ”Meter” can belong to the ”LengthUnit” unit category

• Creating a Quantity Category: Define a category of quantities.

• Creating a General Class: Define a class of objects. For example
”Car” can be a class

CHAPTER 4. DESIGN AND IMPLEMENTATION 35

• Creating a Class Member: Define a member or an instance of a
class. For example: ”MyCar” can be an instance of class ”Car”

Upload Ontology allows users to upload ontology files from there local
computer to generate a full ontology defined in the uploaded files. Supported
formats include Turtle, JSON-LD, and N-Triples. The uploaded ontology
definition files then are tested and validated in the Testing Service, controlled
by WebFront server. If the imported data is valid and not existent in the
common ontology, it is added to the central graph system under the owner’s
namespace. If the namespace does not exist, a new namespace is created and
assigned to the owner. If there is a conflict, users can choose to either import
the ontology to a new namespace or cancel the upload.

List own concepts and Edit concept are designed for managing cre-
ated concepts. After logging in, a user can see a list of their established
concepts in a connected graph, where each node represents a concept. Users
then can select a concept to edit, and the graph is automatically updated to
match the changes. Users only can see and edit concepts under the names-
paces that they have administrator rights.

While Data Model Design use case group covers data model designing and
data model management processes, users also need to be able to share their
created data models. There are two use cases for this group, which are
Search and Generate Code.

Search is critical for exploring and sharing data. The quality and con-
sistency of data models in common vocabulary rely heavily on the quality
of search results. If developers are not able to search for the concept they
are looking for, they will create a new data model for that concept. The
system, therefore, is prone to data redundancy and duplication because mul-
tiple models are created to represent the same entity. Moreover, the search
function is required to be able to proactively suggest developers existing
terms that might be suitable for their needs during every step in the data
model creation process. This search also applies to unit search and datatype
search. We design a smart, self-autocomplete search module that looks up
for concepts that match the exact input keyword, as well as concepts that
are related to the keyword and its synonyms. The implementation of this
module is further discussed in the Implementation section of this chapter.

Generate Code is for generating code stubs. After defining an ontology,

CHAPTER 4. DESIGN AND IMPLEMENTATION 36

users can build reusable code stubs in selected programming languages. The
code stubs include all concepts in the ontology and are ready-to-use with
simple copy-paste. The supported languages include C++, Python, Java,
and PHP.

In the next section, I discuss the implementation of this design.

4.3 Implementation

In the scope of this thesis, the implementation consists of a single page app
user interface and a data model management back-end server. The applica-
tion of a graphical user interface covers all use cases analysed in the previous
section, and the back-end server handles the underlying logic behind user
requests. This section first gives an overview of the data designer tool and
its components. Then, I discuss front-end and back-end implementations in
detail to justify the software architecture choices.

4.3.1 Overview

The main goal of the graphical user interface is to provide a responsive,
modern workspace that is intuitive and simple to use so that both technical
and non-technical users can interact with effortlessly. Figure 4.4 describes
the main screen of the graphical user interface.

Figure 4.4: Data Desginer Graphical User Interface

CHAPTER 4. DESIGN AND IMPLEMENTATION 37

The main components of Data Designer GUI are: create concept form
wizard, ontology graph, quick edit tables, and code generator widget; each
of which is responsible for a set of core functionalities. Users are required to
login to use any functions in the tool. After logging in, username and prefix
are visible on the top bar navigation bar, and users can start interacting with
the tool.

Figure 4.5: Top Bar

The fundamental element that is utilised throughout all components in
the tool is the smart search input. It is an input element that provides a list
of suggestions when users look up for a keyword so that users know what
is already in the system that can be reused, and what is not. Upon the
user’s typing, the smart search input automatically talks with the ontology
server, retrieves the suitable recommendations, and displays them to the user.
Moreover, the smart search provides users with quick add-on actions based
on the context of use. Figure 4.6 demonstrates a smart search input element.

Figure 4.6: Smart Search Input

The component that is most beneficial from the smart search input is the
concept form wizard.

4.3.1.1 Concept Form Wizard

From the homepage, users can enter the concept form wizard by clicking on
the ”Start Creating Concept” button. There are two separate steps in the
form wizard. The first step is the initialisation step, where the user setup
the concept name and its parent class.

CHAPTER 4. DESIGN AND IMPLEMENTATION 38

Figure 4.7: Create Concept Form Wizard

As we discuss in the requirement section, it is important to make sure
that users do not create a new concept for an existing entity in the system, so
in this step, when users enter the concept name, we provide a list of existing
concepts that can be used instead. Users can review the details of those
existing concepts by clicking on ”Details” on each recommendation item. A
popup with all details of the selected concept shows up as below:

Figure 4.8: Concept Detail Popup

Users then can choose to use, extend, or inherit that concept. Copying
concept creates a new concept that has all properties of the original concept,
and users can add more statements without affecting the original one. On

CHAPTER 4. DESIGN AND IMPLEMENTATION 39

the other hand, extending concept creates a subclass of the selected concept.
If they cannot find any concepts that match their needs, users can continue
to create a totally new concept. However, in order to keep all concepts under
a hierarchical tree, users also need to select the parent class when creating a
concept. After filling in all required fields in step one, users can start editing
the concept in steps two of the wizard.

Figure 4.9: Concept Editing Form

At least one label and one comment in any language are required. Users
also can add properties to the concept by giving statements with predicates
and objects. After saving, users can choose to either continue creating a new
concept or review their ontology namespace in the ontology graph on the
homepage.

4.3.1.2 Ontology Graph

The ontology graph is the most critical component to provide users with
an intuitive view of their ontology. It visualises all current user’s concepts
as well as their relationships in graph panel and allows the user to interact
with their ontology directly. The nodes are the concepts, and the edges are
the relationships between them. Different shapes represent different concept
types. For example, Physical Entity concepts are shown as circle nodes,
while square nodes stand for Object value concepts. When a new concept is
created, it is also automatically added to the ontology graph.

CHAPTER 4. DESIGN AND IMPLEMENTATION 40

Figure 4.10: Ontology Graph

The ontology graph supports all basic graph functionalities, including
drag and drop, zoom in, zoom out and hover to see details. Furthermore,
users can create connections between their concepts directly on the graph.
Users start by clicking the ”Connect” button and then drag a connection
arrow from the subject concept to the object concept. The ontology graph
updates and takes care of the validations and interactions with the server in
the background, to ensure that the user experiences is as smooth as possible
without any blocking.

Besides, while the ontology graph aims to bring helps to non-expert users,
the tool also offers form-based quick edit concept tables for users with more
experience with ontology.

CHAPTER 4. DESIGN AND IMPLEMENTATION 41

Figure 4.11: Quick Edit Table

Quick edit tables work in sync with the ontology graph. Whenever users
make changes in one of the two components, both of them are updated.

4.3.1.3 Code Generator Widget

When users click on the ”Generate Code” button, a modal window shows
up, users then can choose which concept to generate code stub, to which
programming language, and under which code type. The supported pro-
gramming languages include C++, Python, Java, and PHP. Users can use

CHAPTER 4. DESIGN AND IMPLEMENTATION 42

this code stub out-of-the-box in their software or share it with others without
any modifications. Figure 4.12 shows the code generator widget window.

Figure 4.12: Code Generator Widget

Those components cover all use cases analysed in the Design section of
this chapter. I discuss the implementation details and chosen technologies in
the following sections.

4.3.2 Frontend Implementation

To offer a fluid user experience plays a vital role during the frontend designing
and implementing processes. One main goal of the thesis is to build a modern
looking, simple to use GUI that users at any technical level can interact with
effortlessly. I choose web browsers as the working environment for the data
designer because with the help of cutting-edge Javascript technologies, web
applications are becoming faster, more convenient to use, easy to update,
and device-independent. Figure 4.13 describes an overview of the frontend
architecture.

CHAPTER 4. DESIGN AND IMPLEMENTATION 43

Figure 4.13: Frontend Architecture

In the web environment, response time or waiting time between request
response circles could be problematic for IoT systems that process large data
sets with complicated logic. Users cannot have good user experience if they
have to wait several seconds after clicking a button when instantaneous feed-
backs are critical for nowadays applications. To address this issue, I apply
the single-page application design pattern in implementing the designer tool.
A single-page application is an application that works under a web browser
environment and does not require page reloading during use. Different from
the traditional multi-page application, single-page application loads all web
resources, including HTML, CSS, JS scripts only once throughout a web
session, and dynamically loads data from servers, rewrites the current page
rather than re-rendering entire new pages. This approach minimises the
blocking of the user experience between page transitions, making the appli-

CHAPTER 4. DESIGN AND IMPLEMENTATION 44

cation works more smoothly and comparable to desktop application perfor-
mance. Moreover, with the help of modern web frameworks, the development
of single-page applications is streamlined and simplified. I choose React, an
open source Javascript frontend framework created and maintained by Face-
book, as the framework for building the designer tool. A React application is
divided into independent, reusable building blocks called Components. This
design principle also fits our needs perfectly, as many components in the de-
signer are used in different locations, such as the smart search input, concept
table.

Besides, to offer users an interactive interface, I leverage AJAX and asyn-
chronous programming techniques in processing HTTP requests. AJAX
allows web applications can send and retrieve data from a server asyn-
chronously in the background, without blocking the display and behaviour
of the application, therefore enables a more fluid user experience. The tool
handles all requests asynchronously and stores all data a common store us-
ing Redux React. However, it always returns acknowledgement feedback
first so that users know that their requests are received and being processed.
This approach, together with single page application architecture provides a
robust and uninterrupted user experience. Moreover, to give the GUI a mod-
ern look, we build the web interface on Bootstrap, which is an open source
CSS framework, that focuses on building responsive, mobile-first applica-
tions. I apply flat design principles to all components to create a consistent
and unique user interface. For developing the ontology graph, I examine the
vis.js library, which is a dynamic, browser-based visualisation library. It of-
fers many features to manipulate and interact with large amounts of dynamic
data.

I review the implementation details of the backend Web Front server in
the next section.

4.3.3 Backend Implementation

On the backend side, I use Python to build the WebFront server and many
other services. It has been the programming language of choice when it comes
to web development for many years. Python offers:

• Fast and robust web development

• A vast amount of libraries and fast growing community

• Stable and powerful scripting capabilities that allow software engineers
to develop more with less code.

CHAPTER 4. DESIGN AND IMPLEMENTATION 45

• Supports asynchronous networking, which is critical to work with single-
page frontend applications

• Open-source and mature programming language

Although Django is the most popular Python web framework, it also con-
tains many components and features that are not beneficial for this thesis.
Therefore, to avoid redundancy, I choose Tornado as the backbone frame-
work for the WebFront server. Tornado is an open source web framework
that is not as feature rich as Django, but smaller in size and might run
faster. Moreover, Tornado supports non-blocking network I/O, allowing it
to scale to thousands of open connections effortlessly. This feature proves to
be extremely valuable for an IoT web server.

Another important task of the Web Front server is to process and main-
tain the common vocabulary. There are several Python RDF processing
libraries, including 4RDF, RedlandRdf, Rx4RDF, and rdflib. While 4RDF
is progressively and merged into rdflib, RedlandRdf and Rx4RDF are out-
dated and complicated to use, rdflib has emerged as the most reliable and
powerful python tool to work with graph data. I use rdflib to maintain
and manipulate the RDF data in the system, and store all ontology in files.
The web server loads all those ontology files into a graph store during the
initialisation. Figure 4.14 shows the architecture of the backend server.

CHAPTER 4. DESIGN AND IMPLEMENTATION 46

Figure 4.14: Backend Architecture

When an API request comes to the Tornado server, it first reaches the
request handler module. Request handler module acts as a router, which
matches API requests with responsible controllers. The matched controller
then unpacks request payload, processes it by talking to the graph store.
After processing the request, the server returns a response to the user in
standard JSON format. The back-end server processes requests from the
front-end asynchronously to make sure there is no interruption in the user
interface.

To justify this approach, I benchmark both frontend and backend im-
plementations under a practical use case scenario, which is discussed the
evaluation of the system in the next chapter.

Chapter 5

Evaluation

In this chapter, I evaluate and analyse the proposed implementation dis-
cussed in Chapter 4. First, I briefly present the evaluation criteria and an
example use case. Then, I consider the research questions presented in the
Introduction chapter, and thoroughly analyse the solution to see how it com-
plies to the criteria and what has been accomplished in the testing context.
Finally, I benchmark our proposed solution with existing tools in the market.

5.1 Evaluation Criteria

As I discuss in Chapter 1, the primary objectives of the thesis work are:

• To improve the overall usability of the data designer tool: achieving
this would answer the main research question, which is how to present
information in an intuitive way that makes it easy to create, edit and
share ontology-based data in IoT industry, to improve the interoper-
ability and data compatibility among different parties.

• To implement multi-dimensional data design processes: this is the ma-
jor improvement of the new version of the data designer tool. The
current version of the tool does not support multi-dimensional data
models, which limits users to only simple single-dimensional data mod-
els.

In order to verify the objectives, I planned out a use case for testing.
The testing use case consists of a cloud-based ERP, which is connected to
Find Server using the Smart API library. The data will contain new multi-
dimensional data items that do not exist in Smart API ontology. The data
designed must be able to support multi-dimensional data creation and editing

47

CHAPTER 5. EVALUATION 48

in an easy to use web dashboard. Moreover, when the data design is done
with the dashboard, the dashboard needs to be able to automatically generate
Smart API SDK compatible sample code for the design.

Figure 5.1: Evaluation Scenario

I evaluate the proposed solution based on those requirements in the next
section.

5.2 Evaluation

Overall, I have accomplished the two main objectives set out at the beginning
of the thesis work. The usability of the tool was enhanced significantly. I
have revamped the whole user interface, giving it a new modern, intuitive
look. The most significant improvement in the GUI was that ontologies are
visualised in an interactive graph so that users can have a graphical overview
of their data models and their relations. Figure 5.2 demonstrates the changes
in the GUI.

Figure 5.2: Changes on the graphical user interface

One of the components that are enhanced the most is the create concept
form. In the previous version of the tool, adding concept requires many steps
in many different screens, and users have no overview or general understand-
ing of the progress. The user interface is confusing and not self-explanatory.

CHAPTER 5. EVALUATION 49

There are no prominent indicators to tell users what they can do on the
screen, or where they can start the concept creating process. During a us-
ability test, some users report that they do not know where to begin or how
to use the tool. Moreover, when users create a new concept, there are no
suggestions for existing concepts that can be reused, therefore limiting the
reusability and hierarchical structure of data models.

Figure 5.3: Old create concept form

In the proposed solution, I focus on improving the defects found in the us-
ability test of the previous version of the tool. The whole process is presented
with guidelines and pages are broken up into clearly defined areas. The new
tool provides a clear visual hierarchy on each page with prominence headers
and colour-coded step indicators. Users now can see clearly where to start,
where they are currently at, and what would be the results. In addition, all
inputs now are empowered with autocomplete and suggestion functionality
so that users can take advantage of existing concept base. Thanks to the
changes in the UI, the same user group said that this is much more intuitive
and they was able to create concepts without any human instructions.

CHAPTER 5. EVALUATION 50

Figure 5.4: New create concept form

In addition, in the older version of the tool, to interact with data models,
users have to access different pages with a staggering number of forms and
inputs. In the proposed solution, users can do everything in quick edit ta-
bles with complete helping accessibility, such as auto-complete inputs, drag
and drop actions. The number of inputs and forms is reduced noticeably.
Besides, I introduce many new data model manipulation functionalities in
the proposed solution. Most importantly, ontology now can be visualised in
the interactive ontology graph, providing users a graphical overview of data
models and their relations, and also allowing intuitive interactions.

Functionality Old Version Proposed Solution

Create data model Requires 3 different views at 3 different places Everything can be done on only 1 view

Create data relation Unavailable Can be done while creating data model or on the graph

Edit data model Difficult to find where to start editing Can be done on the graph or with quick edit data table

Delete Data model Unavailable Can be done on the graph or with quick edit data table

Data Visualisation Unavailable Data is visualised in an interactive graph

Multidimensional data model Unavailable Fully supported

Table 5.1: Functionality comparison

Moreover, not only the user interface has been fully renovated, but the
performance of the tool has been improved remarkably. The loading time was
reduced by 31.4 percent, from 2217ms for the first time loading to 1520ms.
The average response time was cut by 43 percent, from 144 ms to 82 ms.

CHAPTER 5. EVALUATION 51

Figure 5.5: Loading Time comparison

Moreover, since the new tool is a single page application, users do not
have to reload the whole page when submitting a request, but only needed
data. The data transferred was also decreased drastically, over 60 percent
from 1.6Mb to 667Kb.

Figure 5.6: Data Transferred comparison

The other primary task of the thesis work, which is to implement multi-
dimensional data model support was also finished. Users can create a multi-
dimensional data model effortlessly. A data model now can have both prop-
erty relation with value objects and data relations with other resources. Data
relations can be created on the fly on the graph by dragging a new edge from

CHAPTER 5. EVALUATION 52

the subject resource to the object resource. The edge represents the predicate
of the statement.

Under the testing scenario, Data Designer tool was able to register data
models to Find Server, which is visible for ERP and IoT Central. Users can
generate code stubs from those data models on the graphical user interface
easily. The proposed solution successfully demonstrated that it can work in
sync with other services in the system.

5.3 Existing ontology editors

Over the years, Semantic Web technology has been beneficial from an ar-
ray of data management tools, glossaries, ontology and vocabulary building
platforms. In a semantic system that includes multiple parties with complex
data flows, the job of creating, editing and sharing ontology models is bur-
densome. A number of tools have been introduced to tackle this problem.
We discuss the existing tools specialised in ontology editing below.

Protégé [40] is an open-source platform, including a suite of tools for
domain model construction and knowledge based engineering with ontolo-
gies. It has been developed and maintained by Stanford University. Protégé
supports the OWL 2 Web Ontology Language comprehensively and offers
a feature-rich environment for ontology editing. Protégé features include
create, upload, modify, and share ontologies for collaborative viewing and
editing in a fully customizable user interface.

NeOn-Toolkit [41] is another open-source, multi-platform ontology edi-
tor, which offers vocabularies creating and publishing compatible with Linked
Data principles.

TopBraid Composer from TopQuadrant [42] is the most reputable can-
didate on the commercial product side. It is a W3C standard-compliant
platform for building Semantic Web ontologies for semantic applications.
TopBraid Composer offers extensive support for developing, managing of
knowledge model engineering.

I benchmarked the proposed solution with those existing applications using
five criteria: Semantic Knowledge Requirements, Ontology Discovery, On-
tology Management, Data Presentation, UX, and Setup Effort. Semantic
Knowledge Requirements are the general levels of understanding of ontology
that users need to have in order to use the applications effectively. Ontol-
ogy Discovery and Ontology Management consider the abilities of the tools
to help users browsing existing ontology base and managing their ontology,

CHAPTER 5. EVALUATION 53

including edit and delete functionalities. Data Presentation evaluates how
the tools present data models to users. UX is for the general usability and
intuitiveness of the tools. Setup Efforts assesses the installation overhead
needed to start using the tools.

Protégé is the most common open-source ontology editor on the market.
It claims to be suitable for both beginners and expert users. However, I
found it more on the expert side. The main view of Protégé does not display
the relevant data for most of the significant use cases, but only shows the
metrics of the ontology. The entities view of Protégé clearly shows the entities
in a hierarchical structure format; however, the list is static, and there are
no immediate ways to edit or add new classes or properties. By clicking
to an entity on the list, users can open the individual entity screen, which
shows all details of the selected entity. The information shown is useful;
however there are many tabs and with no clear instructions. For users with
less technical experience, this could be confusing. Editing information can
be made inline, which is very straightforward. All inputs are equipped with
auto-complete functionality. However, it requires a solid understanding of
ontology engineering to create and edit data models since the tool does not
provide any bits of help or instructions for starters. On the desktop version,
there are several plugins providing ontology visualisation. However, they
are only able to create a simple graph representation of data without any
editing functionalities. Users can not see the details of each entity or make
any changes on the graph. On the web version, ontology visualisation is not
available.

TopBraid Composer is a refined, enterprise-class application, so it expects
users to be at expert levels. The application does not provide any instruc-
tions on the UI. On the main view, TopBraid Composer displays useful in-
formation and an excessive list of buttons without any descriptions about
their functionalities. This would be overwhelming for non-expert users. The
list of entities view and single entity view are similar and comparable to
Protégé. There are no significant differences; however TopBraid Composer
offers code view, which shows the entity’s serialisation in various formats,
including RDF/XML, Turtle and JSON-LD, while Protégé lacks this fea-
ture. Data visualisation is only available for the paid version. Installation is
required and a web version is not available.

NeOn-Toolkit comes in two versions: a basic configuration which provides
basic OWL and F-logic ontology modelling functionalities, and an extended
configuration which contains plugins, enabling more sophisticated features

CHAPTER 5. EVALUATION 54

such as external data integration, ontology mapping and reasoning. For both
versions, installations are required, and a web deployment of the application
is not available. NeOn-Toolkit offers similar but simpler functionalities to
Protégé. It also has an ontology navigator, which shows a list of entities in a
hierarchical structure, and an entity editor form for an individual entity. The
features and user interfaces between two applications are comparable, and
there are no significant differences. Users also are expected to have decent
ontology engineering knowledge to use the tool. NeOn-Toolkit also provides
simple data visualisation via plugins; however, data manipulation features
on the graph are not available.

The assessment table is shown below.

Table 5.2: Comparison table between the proposed solution and existing
tools

Overall, unlike many existing ontology editing tools, which are mainly
for expert users who have semantic expertise to read and write triples, our
proposed solution offers an intuitive way for users with fewer experiences
with semantic engineering to create and manipulate data models effortlessly.
We also provide a visualisation of ontology on an interactive graph, which is
not standard on any other existing tools.

Chapter 6

Conclusions

With the dispersion of devices and sensors in the IoT industry, data inter-
operability has emerged as a burning question. The current IoT infrastruc-
ture and communication protocols make it is difficult for organisations to
share and exchange IoT data, which is often available in vastly diversified
formats. Besides, existing ontology engineering software only provide users
with limited tools to specify the high-level description of data. Therefore IoT
data usually contains inconsistencies, non-regulated naming conventions and
terms. This work proposes to apply semantic interoperability into IoT land-
scapes. Semantic technologies allow data to be embedded with its meaning
in a hierarchical structure. This helps promote high-quality, self-explanatory,
reusable data models, which enables organisations to share and exchange IoT
data to generate business value effortlessly. In this thesis, we have presented
a web-based ontology editing application for IoT networks.

We first reviewed the concept and the applications of IoT, which cover a
wide range of industries and everyday life activities. We discussed the current
state of the art of data interoperability in IoT and how applying ontology can
help cope with the current situation. While ontology can give meanings IoT
data, the task of building, storing and sharing data models can be expensive
and time-consuming. We then proposed a web-based graphical user interface
for designing and sharing data models. The primary objective of the thesis
work is to implement an ontology editor that allows any users, including both
users with and without triple engineering knowledge, to create and edit data
models effectively. There are two major requirements for the data designer:

• Minimal setup effort: the tool must require minimal-to-none soft-
ware setup effort. We proposed a web-based solution that works in all
major browsers without any setup overhead.

• Ontology usability and interoperability: the tool must promote

55

CHAPTER 6. CONCLUSIONS 56

data model usability and sharing.

We surveyed several available open-source libraries to develop the data
designer application. The front-end implementation of the application was
built on React.js, which is a modern, component-centric JavaScript library
for building user interfaces. The backend was a RESTful Python-Tornado
implementation. The application is constructed as a single page web applica-
tion that utilises AJAX and REST APIs technologies to provide users with
engaging user experience. With a graph-based approach, the usability has
been enhanced significantly with new features and more intuitive UI/UX.
The performance of the application has also been improved noticeably. A
new major feature that was introduced in this thesis work is the support
for building multi-dimensional data models. Moreover, the smart input sys-
tem recommends users to reuse existing ontologies that may match their
need when they are creating new data models. This helps to encourage the
reusability and sharing of data models in the system.

Overall, we fulfilled all requirements and specifications, and the appli-
cation was working properly on different browser environments. We evalu-
ated the application on various factors using expert opinions and user group
survey. In general, both users with ontology engineering knowledge and
non-technical users could perform different tasks timely and effortlessly. We
collected the feedback and iterated the work accordingly. Although there
were still rooms for improvement in the application, such as a new view for
uploading ontology or a better organisation of class hierarchical tree, the
application was robust and working as designed.

We also benchmarked our application with the existing tools on the mar-
ket. The current tools are apparently for ontology engineers who are already
familiar with creating and manipulating triples. They are usually very con-
fusing and hard to use for non-expert users. Our application would fit into
that gap. By providing an intuitive graphical user interface with a graph
that visualises data models and their relations, Data Designer can help ease
the process of creating and managing ontologies.

Furthermore, the solution showed promising potential for further devel-
opment and expansion. Our ideas for future works are presented below:

• Support Turtle/XML as input for data models: for more technical
users, creating data models directly using Turle or other RDF seri-
alisation syntaxes would be more productive.

• Code Generator add-on/extension for major IDEs: we have thoughts
of building extensions that generate code stubs for major code editing

CHAPTER 6. CONCLUSIONS 57

tools, such as Vim, Atom, VsCode. When users are building triples in
those IDEs, the extension can read the ontology and generate matching
code stubs, similar to the code generator in the Data Designer.

• Better Discovery Service: in the current version, the smart input pro-
vides users with suggestions upon their input keywords. However, we
would want to build a map of existing ontologies so that users can
discover and fetch what they are looking for more easily.

• Enterprise Integration: one major improvement to the application is
the ability to integrate with existing IoT infrastructures.

Bibliography

[1] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn,
Leonard Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts, and
Stephen Wolff. A brief history of the internet. SIGCOMM Comput.
Commun. Rev., 39(5):22–31, October 2009.

[2] Simona Enescu. The concept of cybersecurity culture. The Fourth An-
nual Conference of the National Defence College Romania in the New
International Security Dynamics, pages 176–191, 2019.

[3] Yuan Li, Mingjun Hou, Heng Liu, and Yi Liu. Towards a theoretical
framework of strategic decision, supporting capability and information
sharing under the context of internet of things. Information Technology
and Management, 13(4):205–216, 2012.

[4] B. Ahlgren, M. Hidell, and E. C. . Ngai. Internet of things for smart
cities: Interoperability and open data. IEEE Internet Computing,
20(6):52–56, Nov 2016.

[5] Payam Barnaghi, Wei Wang, Cory Henson, and Kerry Taylor. Semantics
for the internet of things: Early progress and back to the future. Int. J.
Semant. Web Inf. Syst., 8(1):1–21, January 2012.

[6] Joshua Cooper and Anne James. Challenges for database management
in the internet of things. IETE Technical Review, 26(5):320–329, 2009.

[7] J. Zheng, D. Simplot-Ryl, C. Bisdikian, and H. T. Mouftah. The internet
of things [guest editorial]. IEEE Communications Magazine, 49(11):30–
31, November 2011.

[8] L. D. Xu, W. He, and S. Li. Internet of things in industries: A sur-
vey. IEEE Transactions on Industrial Informatics, 10(4):2233–2243, Nov
2014.

58

BIBLIOGRAPHY 59

[9] Z. Bi, L. D. Xu, and C. Wang. Internet of things for enterprise systems of
modern manufacturing. IEEE Transactions on Industrial Informatics,
10(2):1537–1546, May 2014.

[10] Chunling Sun. Application of rfid technology for logistics on internet
of things. AASRI Procedia, 1:106 – 111, 2012. AASRI Conference on
Computational Intelligence and Bioinformatics.

[11] Dhruv Grewal, Anne L. Roggeveen, and Jens Nordfält. The future of
retailing. Journal of Retailing, 93(1):1 – 6, 2017. The Future of Retailing.

[12] Yuehong YIN, Yan Zeng, Xing Chen, and Yuanjie Fan. The internet
of things in healthcare: An overview. Journal of Industrial Information
Integration, 1:3 – 13, 2016.

[13] Xiang Su, Jukka Riekki, Jukka K. Nurminen, Johanna Nieminen, and
Markus Koskimies. Adding semantics to internet of things. Concurrency
and Computation: Practice and Experience, 27(8):1844–1860, 2015.

[14] AV Dastjerdi R Buyya. Internet of Things: Principles and Paradigms.
Morgan Kaufmann, 2016.

[15] Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescapé.
Integration of cloud computing and internet of things: A survey. Future
Generation Computer Systems, 56:684 – 700, 2016.

[16] In Lee and Kyoochun Lee. The internet of things (iot): Applications, in-
vestments, and challenges for enterprises. Business Horizons, 58(4):431
– 440, 2015.

[17] X. Jia, Q. Feng, T. Fan, and Q. Lei. Rfid technology and its applications
in internet of things (iot). In 2012 2nd International Conference on
Consumer Electronics, Communications and Networks (CECNet), pages
1282–1285, April 2012.

[18] L. Mainetti, L. Patrono, and A. Vilei. Evolution of wireless sensor net-
works towards the internet of things: A survey. In SoftCOM 2011, 19th
International Conference on Software, Telecommunications and Com-
puter Networks, pages 1–6, Sep. 2011.

[19] Kiev Gama, Lionel Touseau, and Didier Donsez. Combining heteroge-
neous service technologies for building an internet of things middleware.
Computer Communications, 35(4):405 – 417, 2012.

BIBLIOGRAPHY 60

[20] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
First Edition of the MCC Workshop on Mobile Cloud Computing, MCC
’12, pages 13–16, New York, NY, USA, 2012. ACM.

[21] Pankesh Patel, Animesh Pathak, Thiago Teixeira, and Valérie Issarny.
Towards application development for the internet of things. In Pro-
ceedings of the 8th Middleware Doctoral Symposium, MDS ’11, pages
5:1–5:6, New York, NY, USA, 2011. ACM.

[22] Sarfraz Alam, Mohammad M. R. Chowdhury, and Josef Noll. Inter-
operability of security-enabled internet of things. Wireless Personal
Communications, 61(3):567–586, Dec 2011.

[23] B. Di Martino, A. Esposito, S. A. Maisto, and S. Nacchia. A semantic
iot framework to support restful devices’ api interoperability. In 2017
IEEE 14th International Conference on Networking, Sensing and Con-
trol (ICNSC), pages 78–83, May 2017.

[24] S. Zawoad and R. Hasan. Faiot: Towards building a forensics aware eco
system for the internet of things. In 2015 IEEE International Conference
on Services Computing, pages 279–284, June 2015.

[25] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson. M2m:
From mobile to embedded internet. IEEE Communications Magazine,
49(4):36–43, April 2011.

[26] M. Ben Alaya, Y. Banouar, T. Monteil, C. Chassot, and K. Drira.
Om2m: Extensible etsi-compliant m2m service platform with self-
configuration capability. Procedia Computer Science, 32:1079 – 1086,
2014. The 5th International Conference on Ambient Systems, Networks
and Technologies (ANT-2014), the 4th International Conference on Sus-
tainable Energy Information Technology (SEIT-2014).

[27] H. Derhamy, J. Eliasson, J. Delsing, and P. Priller. A survey of commer-
cial frameworks for the internet of things. In 2015 IEEE 20th Conference
on Emerging Technologies Factory Automation (ETFA), pages 1–8, Sep.
2015.

[28] Linux Foundation AllSeen Alliance. Alljoy wiki, 2016.

[29] Maria Ganzha, Marcin Paprzycki, Wies law Paw lowski, Pawe l Szmeja,
and Katarzyna Wasielewska. Semantic interoperability in the internet of

BIBLIOGRAPHY 61

things: An overview from the inter-iot perspective. Journal of Network
and Computer Applications, 81:111 – 124, 2017.

[30] F. van Harmelen R. Hoekstra G. Antoniou, P. Groth. A Semantic Web
Primer. 3rd Edition. MIT Press, 2012.

[31] Tim Berners-Lee. Linked data, 2006.

[32] W3C. 5 star linked data, 2013.

[33] Li Ding, Tim Finin, Anupam Joshi, Yun Peng, Rong Pan, and Pavan
Reddivari. Search on the semantic web. Computer, 38:62 – 69, 11 2005.

[34] C. Bizer T. Heath. Linked Data: Evolving the Web into a Global Data
Space. Morgan Claypool, 2011.

[35] W3C. An introduction to multilingual web addresses, 2008.

[36] Asema Oy. Smart api core ontology model, 2018.

[37] Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and S Chatterjee.
A design science research methodology for information systems research.
Journal of Management Information Systems, 24:45–77, 01 2007.

[38] Jabu Mtsweni, Elmarie Biermann, and Laurette Pretorius. isemserv:
A model-driven approach for developing semantic web services. South
African Computer Journal, 52, 06 2014.

[39] Asema Oy. Asema iot central architecture and operation, 2018.

[40] Standford University. Protégé.

[41] Neon-Toolkit. Neon toolkit wiki, 2014.

[42] W3C. Topbraid wiki, 2011.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Scope and Goals
	1.3 Structure of the Thesis

	2 Background
	2.1 Internet of things
	2.1.1 Overview
	2.1.2 IoT Interoperability

	2.2 Semantic Web
	2.3 Smart API
	2.3.1 Smart API Design Principles
	2.3.2 Smart API Core Objects

	3 Methodology
	3.1 Overview
	3.2 Problem Identification
	3.3 Design and Development

	4 Design and Implementation
	4.1 System Architecture
	4.2 Design of the Data Designer
	4.2.1 Requirements and specifications
	4.2.2 Use case analyses

	4.3 Implementation
	4.3.1 Overview
	4.3.1.1 Concept Form Wizard
	4.3.1.2 Ontology Graph
	4.3.1.3 Code Generator Widget

	4.3.2 Frontend Implementation
	4.3.3 Backend Implementation

	5 Evaluation
	5.1 Evaluation Criteria
	5.2 Evaluation
	5.3 Existing ontology editors

	6 Conclusions

