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Wireless Sensor Networks (WSN) are the cornerstone of Ubiquitous Sensor Networks (USN). 

They consist of small, cheap devices that have a powerful combination of sensing, computing 

and communication capabilities. The first technical challenge in USN is in fact due to energy 

constraints of WSN nodes. They must be able to communicate and process data efficiently 

using  minimum amount of energy and cover an area of interest with the minimum possible 

number of sensors. The second technical challenge is to establish the communication to the 

external networks such as the Internet or Cellular and to react to unexpected events; the 

reaction to dynamic changes in the environment sometimes requires  the deployment of new 

software features into the sensor nodes. 

To solve the first technical challenge, this thesis proposes the use of Information Fusion (IF) 

techniques in WSN. The basic problems of data fusion are to determine the best procedure to 

combine the available data and the way to describe the relationship between different sources. 

It proposes the use of techniques that were designed for Geostatistics and applies them to 

WSN field. Kriging and Cokriging interpolation that can be considered as Information Fusion 

algorithms were tested to prove the feasibility of the methods to increase coverage with 

theoretical guarantees through the use of the so called Kriging variances. To reduce energy 

consumption, an innovative distributed compression method that surpasses the existing ones 

was developed. The method is “a real-valued” version of Distributed Source Coding (DSC). 

The modeling of correlations is based on using the so-called variogram, and uses data fusion 

techniques to recover the compressed data at the sink.   

The second challenge is approached through the use of existing technologies. The time 

required for commercial Java-enabled sensor nodes and gateways to run IF algorithms and 

selected benchmarks were tested. The Java programming language, developed by Sun 

Microsystems, was selected because it was designed to offer a programming language, able to 

support flexible solutions to address diverse hardware devices, and because features such as 

over the air (OTA) programming in resource-constrained devices are already standardized.  

The connection to the external world is demonstrated through an exemplary implementation 

that can perform remote monitoring, send SMS alarms and deploy remote updates. It uses 

JavaME for sensor nodes and Java/OSGi in the gateway. 

 



 
 

Drahtlose Sensornetze (engl. Wireless Sensor Networks (WSN) ) sind der Grundstein von 

allgegenwertigen Sensornetzen (engl. Ubiquitous Sensor Networks (USN)). Sie bestehen aus 

kleinen,  kostengünstigen Geräten, welche eine leistungsstarke Kombination aus Mess-, 

Rechen- und Kommunikationsfähigkeiten besitzen. Die erste technische Herausforderung in 

USN entsteht durch Energie-Einschränkungen der WSN Knoten, denn sie müssen in der Lage  

sein, auf effiziente Weise Daten zu verarbeiten und zu kommunizieren, und dabei geringe 

Energiemengen verbrauchen und eine möglichst große Fläche mit minimaler Anzahl an 

Sensoren abdecken. Die zweite technische Herausforderung besteht darin, die 

Kommunikation zu externen Netzwerken wie etwa das Internet oder mobilen Netzwerken zu 

etablieren und auf unerwartete Ereignise zu reagieren:  die Reaktion zu dynamischen 

Veränderungen in der Umgebung braucht ein Vielfaches der Zeit, die dafür benötigt wird, 

neue Software-Funktionen für die Sensorknoten bereitzustellen. 

Um die erste Herausforderung zu meistern, wird in der vorliegenden Doktorarbeit die 

Benutzung von Informationsfusions (IF) Techniken in WSN vorgeschlagen. Das 

Hauptproblem bei Datenfusion ist die korrekte Wahl des Verfahrens, um die Daten zu 

kombinieren  und die Beziehung zwischen verschiedenen Quellen zu beschreiben. Die 

vorgeschlagenen Techniken wurden ursprünglich für die Geostatistik entwickelt und wurden 

im Rahmen dieser Arbeit im Bereich der WSN angewandt. Kriging und Cokriging 

Interpolation, welche als Informationsfusion Algorithmen zählen, wurden getestet, um die 

Realisierbarkeit der Methoden zur Vergrößerung der Abdeckung mit theoretischen Garantien 

durch Anwendung sogennanter Kriging Varianzen zu untersuchen. Um der Energieverbrauch 

zu reduzieren,  wurde eine innovative Methode zur verteilten Kompression entwickelt, welche 

bereits vorhandene Methoden übertrifft. Diese entwickelte Methode ist eine reellwertige 

Version von Distributed Source Coding (DSC). Das Modellieren von Korrelationen basiert 

auf der Benutzung eines sog. Variogramms und benutzt Datenfusions-Techniken um 

komprimierte Daten zurück zu gewinnen. 

Der zweiten Herausforderung wird durch die Benutzung bereits vorhandenen Technologien 

begegnet. Die von kommerzielle Java Sensorknoten und Gateways benötigte Zeit um IF 

Algorithmen durchzuführen und ausgewählte Benchmarken wurden getestet. Die Java 

Programmiersprache, entwickelt von Sun Microsystems, wurde ausgewählt, denn es ist genau 

dafür gedacht, flexible Lösungen und diverse Hardware-Geräte zu unterstützen, und weil 

Funktionalitäten wie over-the-air (OTA) Programmierung in ressourcenbeschränkten Geräten 

standard sind.  Die Verbindung zur externen Welt wird mittels eine Beispielsimplementierung 

demonstriert, welche eine Fern-Überwachung, das Senden von SMS Alarmen und das 

Bereitstellen von Fern- Aktualisierungen durchführt.  Diese benutzt JavaME für die 

Sensorknoten und Java / OSGi beim Gateway.  
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1.1 General Context 

In the so called cold-chain, perishable goods are transported using reefer container or trucks. 

Pervasive and real time monitoring of the cargo is required, both in storage and in transit. 

Management of the effect of different temperature ranges on  the price depreciation due to 

irreversibility of quality degradation and easy installation and operation without the  necessity 

of manual activities to collect temperature data are only some of the challenges [1]. Typical 

industries demanding it are: pharmaceutical, fruits & vegetables, seafood, dairy products, 

meet & poultry, processed food, floral, biological samples, blood units and beverages [2]. 

For the logistic companies, an inadequate management of the quality degradations lead to 

profit reductions. According to  the Food and Drug Association (FDA) 20% of all perishable 

food is wasted during transportation[3].   

The quality of the fresh goods is mostly determined by maintaining environmental parameters 

of interest within tolerable limits. Blocked airflows or defective seals can lead to temperature 

differences; such local variations are found in almost any transport and the hot spots patterns 

are not repeatable from transport to transport even when the same packing and loading 

schemes were used. Temperature differences up to 12 Kelvin can result in the reduction of 

local quality and shelf-life [4]. Temperature is of greatest influence on the ripening state; 

however, low humidity levels might lead to quality degradation by decreasing weight. The 

deteriorations can lead to a decrease in the aesthetic appeal, as well as a reduction in 

nutritional value. 

1.2 Cold-chain monitoring  

Traditionally, only temperature at the reefer unit were recorded during transportation and the 

data was analyzed at the destination point. With the advancements in technology, digital, 

portable data-loggers were being used to monitor the temperature inside several positions in 

the cargo itself. The data was retrieved at the unloading facilities.  The unpredictability of the 

quality inside the cargo often led to  decreased profitability for the food transport companies. 

The importance of an instant identification of the quality of the assets was recognized. A new 

technology was required that was able to monitor the ambient conditions, to communicate 

wirelessly, be cost-efficient, small, easy to deploy, and have some smart features to detect 

unwanted events such as  sudden increase of temperature.  
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During the last decade a new promising technology has been emerging; it consists of small, 

cheap devices that have a powerful combination of sensing, computing and communication 

capabilities. In 2003, MIT’s magazine of innovation for technology review in [5] cited 

Wireless Sensor Networks (WSN) as one of  the top 10 emerging technologies that will have 

an influence in the future.  

The use of WSN in cold-chain monitoring offers additional technical challenges, such as the 

restriction in mobility of the nodes once the sensors are placed into the boxes containing the 

goods. Another challenge is to enable the gathered data to be transmitted using existing 

internet or cellular network infrastructure [6] and to act to according to the actual quality state 

of the cargo. The information about the status of the product must be available at any time and  

everywhere in order to have valuable information that allows taking proper logistic actions. 

This leads to further advantages such as reduction of transport volume and greenhouse gas 

emissions. Actions against faulty cooling conditions can be taken as soon as a problem arises. 

Goods can be sorted in the warehouse by their actual quality condition.  

The deployment of WSN on refrigerated containers and trucks has, however, some 

advantages that are not found on other applications: the spatial positions of the sensors can be 

estimated and controlled during loading of the cargo and the environmental parameters inside 

the refrigerated containers are correlated; the trucks are normally equipped with 

communication gateway which have long range communication capabilities with no energy 

constraints and superior computing capabilities.  

1.3 Outline of the thesis 

The thesis consists of two main sections: the first one focuses on exploiting the spatial 

correlations between measurement points, and on the use of information fusion (IF) 

techniques to improve two important figures of merit in a wireless sensor deployment: high 

energy efficiency and large area coverage. The second part studies the feasibility of the 

integration of existing technologies to be used in WSN. These include the execution time of 

selected benchmarks on Java-enabled devices; and the efficient transmission of the gathered 

information over external communication networks using off-the shelf hardware. 

The first chapter introduces to the research problem and objectives.  The second chapter 

describes the concept of ubiquity, the technological requirements for ubiquitous computing, 

and the relation with the existing technologies nowadays such as WSN, Internet and Cellular; 
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special focus is made on the existing solutions to manage coverage, energy and 

maintainability in WSN. Their relationship with IF techniques is addressed and summarized. 

Third chapter presents a novel method to compress data in correlated environments. The 

method uses variography and IF techniques for compression, rate assignment and data 

recovery. Simulation results with real world acquired datasets demonstrate their simplicity, 

accuracy, and robustness. The method is suitable for data recovery at the sensor level due to 

the absence of binary codes; the method can be seen as a real-valued version of Distributed 

Source Coding (DSC). 

Fourth chapter makes use of existing Geostatistic methods such as Kriging and Cokriging 

methods and explain why these belong to the Best Linear Unbiased Estimators (BLUE) 

described as an IF method. Through simulations it is shown that the methods are also suitable 

to be used in WSN. They provide a measure of the accuracy of the estimates and do not 

require node mobility. 

Fifth chapter presents the benefits of using Java technologies in WSN. Java editions suitable 

for different types of devices are described; the selected sensor nodes and gateways are 

presented. Selected IF methods and performance benchmarks are tested in diverse hardware 

platforms to determine their feasibility of deployment in terms of their running time. 

Chapter six presents a demonstrator using only off-the shelf components. The overlap of 

WSN with Machine-to-Machine (M2M) and other technologies are mentioned and the 

concept is introduced.  The demonstrator shows how gathered and processed data can be 

visualized in a web page, how SMS alerts might be sent and remote software deployments are 

possible with existing technology. 

Finally, general conclusions are summarized and suggestions for future research work are 

given. 
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The ubiquity or omnipresence of the information was first conceived by Mark Weiser in 1991 

[7]. He termed it ubiquitous computing, where the machines fit the human environment so 

that no one notice their presence. He also described the technology required to achieve it, he 

wrote:  

„ The technology required for ubiquitous computing comes in three parts:  cheap, low-power 

computers that include equally convenient displays, software for ubiquitous applications and 

a network that ties them all together” 

Today, Weisers’ predictions for the computer of the 21
st
 century cannot be more accurate. The 

internet is connecting everybody everywhere; mobile devices are getting smarter and cheaper 

and WSN technology, despite the remaining technological challenges, is promising to get 

smaller and ubiquitous. An ubiquitous application consists of three categories [8]: 

Sensor Level: consists of sensor nodes that measure environmental parameters such as 

humidity or temperature; convert it to a binary representation to be read by digital devices. 

Each node has energy, communication and processing constraints.  They are relatively cheap, 

small and independently energy supplied. 

Server Level: It is the intermediary sink node. Commonly named gateways they are capable 

of collecting data from the sensor nodes and to communicate with external networks. They 

are commonly expensive, with no severe energy or computational constraints.  

Client Level:  Unlike sensor and server levels which are hardware-related solutions, client 

level is software-related and consists of the visualization of the data and the maintainability 

and management of the network.  

Sensor networks are recognized to be a key technology for building an ubiquitous system [9], 

they work at the sensor level, and because they have short range communication capabilities, 

WSN  must rely on communication with specialized gateways, which work at  the server 

level,  to communicate with fixed Ethernet LAN, WLAN, UMTS/GPRS, etc up to the end 

user at client level. 
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2.2 Wireless Sensor Networks 

The research directions in WSN can be summarized in:  

Increase the area of coverage: Usually, a region of interest (ROI) is covered by the use of 

several nodes. Normally some regions can be more properly monitored than others and 

individual sensor nodes might have either complementary or redundant information about a 

specific region. An efficient WSN deployment must be the one that -differentiate the regions 

that can be properly monitored from those that cannot. It must be also be able to monitor 

making use only of the necessary sensors and avoid using redundant information 

Nevertheless; it has to be smart enough to make use of redundant information to make  the 

WSN less vulnerable to failures of a single node. 

Increase energy efficiency: The most challenging issue is to improve the energy efficiency.  

The energy can be consumed basically by radio communication and hardware operation. 

Research work has been focused on developing energy-efficient processing techniques to 

reduce radio communication and complicated computations. Distributed approaches where 

the processing is made inside each node to reduce inter-node communication and avoid 

central coordination are top research topics. 

Improve the flexibility and maintainability: A desirable feature in a WSN is its ability to react 

to environment changes and failures that were unknown at the time of their initial 

deployment. Therefore, it should be able to provide dynamic features to allow complete or 

partially update of the code in the sensor nodes over the air (OTA) during runtime. 

An ideal WSN deployment is the one that has all desired figures of merit: broad sensing 

coverage, low energy consumption, low deployment costs, and high flexibility and 

maintenance. Unfortunately, several trade-offs exist between them.  

The trade-offs are summarized In Table 2.1. If big batteries are used, the deployment costs are 

increased but allows the use of hardware devices that are less-prone to failures and easy to 

maintain. The use of powerful processors allow the programming of smarter algorithms that 

might increase flexibility and maintenance but would increase costs and energy consumption. 

Finally, deployment of large number of nodes increases the sensing coverage but increases 

significantly the deployment costs and make them  difficult to maintain.  

 

 



- 6 - 

 

Table 2.1 Trade-offs between figures of merit in WSN 

 Sensing Coverage Energy  

consumption 

Deployment costs Flexibility and 

maintenance 

Big batteries No trade-off “Do not worry  

about it” 

  

Powerful  

Hardware 

No-trade-off    

Dense  

Deployment 

 No trade-off   

 

2.2.1 Methods to reduce energy consumption 

Advancements in wireless telecommunications and electronics have been more than evident 

over the last few years. Hardware devices have become smarter, smaller, multi-functional and 

cheaper.  These developments are in part due to Moore’s law, that states that the computing 

processing is doubling approximately every 2 years, such trend has been happening for at 

least three decades. 

WSN however is a technology that does not benefit from this trend; the sensor nodes are 

designed to be small and cheap but they have inherent memory, computing power and energy 

constraints. As Schlachter mentioned in [10]: 

“There is no Moore’s Law for batteries. The reason there is a Moore’s Law for computer 

processors is that electrons are small and they do not take up space on a chip. Chip 

performance is limited by the lithography technology used to fabricate the chips; as 

lithography improves ever smaller features can be made on processors. Batteries are not like 

this. Ions, which transfer charge in batteries are large, and they take up space, as do anodes, 

cathodes, and electrolytes. A D-cell battery stores more energy than an AA-cell. Potentials in 

a battery are dictated by the relevant chemical reactions, thus limiting eventual battery 

performance. Significant improvement in battery capacity can only be made by changing to a 

different chemistry” 

Limitations in energy storage in WSN nodes lead to the necessity to use hardware devices 

with low current-draw. Typical sensor nodes make use of energy-efficient microcontrollers 

and radio transceivers.  Because the radio transmission is the most expensive functionality, 

short-range transmission and limited communication are basic features. 
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Anastasi [11] identified three main enabling techniques to reduce energy consumption in 

wireless sensor networks: duty cycling, data-driven approaches and mobility.  

As the name suggests, in duty cycling the nodes are sleeping part of their lifetime. When the 

nodes are sleeping, the radio-transceiver is a low-power mode whenever communication is 

not required. As soon as a new data packet arrives the radio should be switched on.  A 

distributed sleep/wakeup algorithm is required to decide which sensors should remain active 

and which inactive. 

Data-driven approaches exploit spatial and temporal correlations to avoid communication of 

redundant data. Data processing and fusion techniques are applied in the context of wireless 

sensor networks. This is a hot research field because algorithms in digital signal processing 

and information fusion are normally energy-demanding itself to be applied in WSN. 

In some cases, if the sensors are mobile, mobility can be used to reduce communication. 

Nodes closer to the sink, have to relay more packets and therefore they are more prone to 

suffer from premature depletion [12].  If some nodes are mobile, the traffic flow can be 

altered to distribute more efficiently the relay of packets.  

Heterogeneity can be also used to prolong the network lifetime in two ways. All normal nodes 

can send data report to the sink via the nearest heterogeneous node, which possess high-speed 

microprocessors, bigger batteries, and high-bandwidth, long-distance network 

transceivers.And the nodes near the sink do not need forward vast packets from other nodes 

[13]. Device heterogeneity may also be exploited by shifting resource intensive processing 

tasks to other nodes within the network [14].   

2.2.1.1 Data-driven approaches 

According to [11], data-driven approaches can be divided into data-reduction schemes that 

address the problem of  sending unnecessary data and energy-efficient data acquisition that 

aims to reduce the energy spent by the sensing subsystem. This thesis focus only in data-

reduction schemes; they can be divided into: in-network processing, data compression and 

data prediction.  

2.2.1.2 In-network processing 

In-network aggregation is the global process of gathering and routing information through a 

multihop network, processing data at intermediate nodes with the objective of reducing 

resource consumption (in particular energy), thereby increasing network lifetime [15].  
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As the previous definition explains, in-network data aggregation involves many layers of the 

protocol stack. The most important focus is on the design of an efficient routing protocol [16].  

The application, routing and data aggregation layers are closely interrelated. 

According to [15], we can distinguish them into two approaches: 

In-network aggregation with size reduction refers combines and compress data from different 

sources in order to reduce the amount of information propagating over the network.  This 

approach may reduce accuracy; after the information is received at the sink is usually not 

possible to recover it; i.e. lossy aggregation.  

In-network aggregation without size reduction merges incoming packets coming from 

different sources and merges it without signal processing. This is done for example when two 

attributes, for example temperature and humidity, are sent because they cannot be aggregated 

together.  This approach preserves the original information and can be considered lossless.  

2.2.1.3 Data compression 

Radio communication is the most power consuming task in wireless sensor networks. 

Minimizing the data size before transmission is an effective way to reduce total power 

consumption. One obstruction is that most data compression algorithms are not feasible for 

WSN’s [17]. Kimura [17] mentioned two reason for that: the size of the algorithms exceeds 

the memory size and the processing speed is too low in comparison to other wireless 

technologies.  He also mentioned the necessity to design a low-complexity and small size data 

compression algorithm for sensor networks.  He enlisted some of the data compression 

schemes suitable for WSN, namely, coding by ordering, pipelined in-network compression, 

low-complexity video compression and distributed compression. 

Coding by ordering was introduced in [18], as in the case of in-network compression, is 

closely related to routing protocols, in this case it is part of data funneling routing. The 

algorithm combines different packets into a single one with a single header; it can be 

combined with signal processing and source coding techniques. The method presents good 

compressing ratio and in simple enough to be applied in WSN. 

Pipelined in-network compression is present in [19]; in contrast to in-network aggregation it 

is applicable to any kind of query;  several queries and statistical measure cannot be supported 

by aggregation. The basic idea is to collect sensor data in aggregation node’s buffers for some 

time and combined the data into one single packet without redundancy. 
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Distributed Source Coding (DSC) was pioneered four decades ago  by Slepian and Wolf 1973 

[20]. They studied joint decoding of two the independently encoded correlated sources. Their 

results became famous; surprisingly, if two random variables are correlated, they can be 

compressed and decompressed lossless without necessity of communication between the 

encoders. This is possible as long as the source rates satisfy conditional entropies constraints. 

The correlation between the sources is known as a-priori; the sink may have to collect 

information over the network, calculate the correlations between the sensors and send it 

before each sensor starts compressing its reading.  

DSC is protocol agnostic, it operates with any MAC protocol, network protocol and 

application layer protocol [21].  

2.2.1.4 Data prediction 

Data prediction techniques build a  model describing the sensed phenomena [11, 22]. They 

can be classified into three main classes: stochastic approaches, time series forecasting and 

algorithmic approaches.  

Stochastic methods map data into terms of probabilities and statistics. Chu’s approach [23] is 

a good example. As the authors said, the idea is to maintain dynamic probabilistic model, one 

is distributed in the sensor network while the other is in the base station. The model in the 

base station requires a training phase to build up a probability density function. They also 

investigate how temporal and spatial correlations interact with the network topology and 

evaluate the performance in real-world sensor networks.  

In time series forecasting a set of historical values is used to predict future values of the same 

time series. The time series is modeled for example by a Moving Average(MA), Auto-

Regressive (AR) or Auto-Regressive of a Moving Average processes. A good example is 

PAQ and [24] SAF [25] that use an AR model. Their model does not include sensor readings 

and is associated with an error-bound that is used to determine the validity of the model. 

A method that does take into account sensor readings is the one developed by the author of 

this thesis which is described in [26]. The system is based on parametric system identification 

and a parameter adaptation algorithm described in [27]. It was specifically adapted for the 

identification of a system which contains non-linear feedback and makes use of an 

intermediary variable to transform the system into a pseudo linear one. The method is 

accurate, energy-efficient and easy to implement on sensor nodes. 
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2.2.2  Methods to increase coverage 

The coverage problem in sensor networks has been defined in the literature  in a variety of 

ways Most literature defines coverage in sensor networks for tracking applications. An 

interesting definition is the one from Djidjev and Potkonjak [28]. They define  the goal of 

static coverage as to cover a specific area of interest using the smallest number of sensors, 

however they  focus on dynamic coverage in which the sensor are allow to move in the area 

of interest. 

Coverage holes are defined in [29] as the degree of tolerance/redundancy  of  a given target 

area  for accurate localization.  Huang and Tseng [30] discus the problem of discovering 

insufficiently covered regions, where  the sensing ranges are modeled as unit disk or spheres.  

The authors in [31] introduce the concept of deterministic and stochastic coverage. In 

deterministic coverage, a static network is deployed according to a predefined shape, this can 

be for example a regular grid, whereas stochastic coverage deals with the situation where the 

deployment is random for example if the sensor are dropped off from a plane.  

Only little research has been done on coverage for environmental monitoring. Lazos and 

Poovendran [32-33] are the exception. They define coverage as the way to quantify how well 

is the field of interest sensed by the deployment of the sensor network and raise a question: 

“How many sensors are needed to achieve the desired coverage with a probability higher 

than a threshold value? “They focus in stochastic (probabilistic) deployments for 

heterogeneous sensor network and make use of integral geometry to tackle the problem.  

A really interesting approach is the one proposed by [34]. The authors follow information 

driven approach for sensing optimization; they find the optimal positions of the sensor in 

order to extract the maximum information. They use Kriging interpolation which was 

developed to mining and geology to determine the best position of the new measurement 

locations, the sensors are allowed to move until convergence is achieved.  Umer [35] 

proposed a distributed algorithm for Kriging interpolation in resource constrained sensor 

nodes.  

Krause and Guestrin’s [36-37] solution is similar. They introduce an algorithm with strong 

theoretical guarantees for cases when the functions present submodularity, which means that 

addition of new measuring points, is more useful if few observations are available and less 

helpful if there are already enough observations. Their goal is to minimize the Kriging 

variance in  unobserved locations.  
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Sensing optimization using Kriging can be found in geostatistics literature. For example,  in  

Szidarovszky [38],  it is proposed a Branch-and-Bound algorithm to find the optimal sites of 

drillholes; for the estimation of the minimum number of sensors, a method that takes 

advantage of interesting feature of Kriging interpolation was selected.  The Kriging-Variance 

(KV), that measures the uncertainty of the estimation before actual measurements are 

available. KV is monotonic, that means that increasing the number of measuring points will 

not increase the KV. The method minimizes the number of required additional points subject 

to upper bounds of the Kriging-Variance. The method, that is an unconstrained Branch-and-

Bound (BnB) algorithm, adds a measuring point if it improves  the variance, or removes it, if 

it does not bring any accuracy improvement. To avoid, calculation of matrix inverses each 

time a point is added or removed, calculations of the inverse of a partitioned matrices are 

done.  

2.3 Requirements for flexibility and maintenance 

Traditionally, sensor network algorithms are hard-coded. Typical sensor nodes as TelosB [39] 

are programmed using a C-type language called NesC that is specially designed for highly 

resource constrained devices and can only run on TinyOS [40]. As mentioned by Mahgoub 

[41], an ability to program sensors dynamically is important according to the user needs. The 

use of a programming language able to support flexible solutions to address diverse hardware 

devices and sensor nodes and gateways able to be reprogrammed on the demand over-the-air 

is required.  The main issues to consider are [8]: 

• Checking the downloaded software for integrity, version mismatch, platform 

mismatch, etc. 

• Version control, that is, prevention of version mismatch 

• Heterogeneity of sensor nodes. There may be a mix of platforms.  

• How software would be activated. It may be automatically or manually activated. 

• Problems related to very resource-constrained nodes, such as limited code memory 

• Performance. The time required to update nodes as wells as tradeoffs between time 

and energy. 

2.4 Sensor data fusion in WSN 

According to Iyengar  [8], the development of applications in WSN requires interdisciplinary 

collaboration in computer science and engineering disciplines. He mentioned the necessity of 

advancements in data fusion to combine data from multiple sources to create more complete 
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representation of the world. Data fusion is per se interdisciplinary; it is defined as set of 

theories techniques and tools that are used to combine sensor data to improve the performance 

of the system in some way. Being more specific, classified according  the relation among the 

sources, the ways the fusion can improve the system is in its completeness, accuracy and 

certainty [42]. Incomplete information might be found, for instance, when two sources posses 

information about different portions of the same environment at different positions. Inaccurate 

information might be the result of environmental noise or error models, if two or more sensors 

posses information about the same source, the redundant information can be used to fuse them 

into a single filtered estimation that is more accurate. Certainty might be, for instance, 

improved by fusing several estimations of a point of interest each one of them with high 

uncertainties into a new estimation with low, acceptable variance.   

The fusion type might be performed across sensors, attributes or time [43]. Fusion across 

sensors is the most common one and is made through measurements of the same variable of 

attribute. Fusion across attributes is made over a number of measurements that are associated 

with the same situation, for example temperature and humidity in a room. Fusion across time 

current measurements are fused with historical information, with this type of fusion is 

possible for example predict future values with the learned information. 

 

As mentioned before, sensor fusion is interdisciplinary; it involves disciplines like 

communication engineering, geostatistics and process automation and artificial intelligence. 

The methods and techniques, however can be summarized into inference, estimation, 

aggregation and compression [44].   

2.4.1.1 

Inference is the act of deriving conclusions based on evidence. The classical inference method 

is Bayesian inference used extensively in communication engineering, mathematically 

speaking an uncertainty is represented in terms of conditional probabilities describing an a-

priori beliefs. The posterior probability represents the belief of hypothesis V given the 

information U. The probability is calculated by: 

                                                              (2.1) 

Where   is the belief of hypothesis V given the information U.  is the prior 

probability of V and   is the probability of receiving U if V is true. The main design 

issue is the setting of the probabilities that have to be guessed beforehand. 
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2.4.1.2 

Estimation methods were developed in the control engineering field and make extensive use 

of state vectors. The most common estimation methods are the Kalman Filter and  Best Linear 

Unbiased Estimator (BLUE)  

The Kalman filter is over 50 years old but still one of the most important data fusion 

algorithms [45].  The typical uses is to smooth (filter) noisy data to provide estimates of the 

state vectors of the model of a dynamic system. Its mathematical derivation uses linear matrix 

algebra as a minimum mean squared estimator [46].  Two pieces of information are available, 

estimations and measurements, they are fused to provide the best possible estimate.  The 

Gaussian probability density functions of both pieces of information are multiplied together, 

giving as a result another Gaussian function , that  is a key point to perform the filtering in 

recursive way.  

Best Linear Unbiased Estimator (BLUE) has application where the Kalman Filter does not. 

For example when no complete prior information is available [47], or when different 

attributes must be fused, or where the dynamic model is too complex to be modeled.  

A Best Linear Unbiased Estimator has the following properties: 

Is Linear in data: The estimate is calculated by the sum of all the resulting multiplications of 

assigned weights and available data  

                                                            (2.2 ) 

Is unbiased : The expectation of the prediction is equal to the “real value” of the attribute. 

                                               (2.3)  

Possesses theoretical Guarantees: A variance of the estimation is provided as a measure of 

accuracy. 

                     (2.4) 

Where  is a vector containing n weights and  is the covariance Matrix. 

2.4.1.3 

Aggregation techniques are extensively used by database systems, developed to be used in 

query languages as SQL, they summarize data. They are feasible to implement in sensor 

nodes, it processess the incoming data with the local measurement by performing aggregation 

operations, such as average, sum, minimum or maximum.  This approach may reduce 
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accuracy; after the information is received at the sink is usually not possible to recover it. In 

this thesis we are mostly interested in the average operation, that according to the law of large 

numbers, the average of the results obtained from a large number of trials should be close to 

the expected value. 

(2.5)

2.4.1.4 

Data compression is not information fusion method, however they are mentioned here 

because they use Bayesian inference to decompress the received measurement. They are 

based on information theory concepts. If two measurements are spatially correlated, they can 

be compressed and decompressed without loss. The correlation between the sources has to be 

known a-priori; the sink may have to collect information over the network, calculate the 

correlations between the sensors and inform the sources how many bits are required to send in 

order to be able to achieve lossless compression. The method is known as Distributed Source 

Coding (DSC)  

Table 2.2  summarizes some of the most important Information Fusion techniques used in 

WSN 
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Table 2.2 Information Fusion in WSN 

 What Improves? Fusion Types  Methods 

In-network aggregation with 

 size reduction 
Energy consumption Across sensors Aggregation 

In-network aggregation  

without size reduction 
Energy consumption 

• Across attributes 

• Across sensors 
Aggregation 

Coding by ordering Energy consumption Across sensors Compression 

Pipelined in-network 

compression 
Energy consumption Across sensors Compression 

Distributed Source Coding Energy consumption 

• Across sensors r 

• Redundant 

• Complementary 

• Inference 

• Compression  

• Estimation 

Stochastic approaches Energy consumption Across time 

• Inference 

• Data 

prediction 

Time series forecasting Energy consumption 
• Across time 

• Across sensors 

• Data 

prediction  

• Estimation 

Kriging 
• Coverage 

• Certainty 
Across sensors 

• Estimation 

• Inference 
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Low energy consumption is one of the most important figures of merit in sensor networks. 

Exploiting the spatial correlation between the sensed points to reduce radio communication 

data rates is a really good approach that can help achieve this objective. The methods used to 

compress the data must be simple, accurate, and robust. Modelling the spatial correlations 

using variography that is the traditional method to measure spatial correlations between 

variables using two-point approaches seem to be the obvious start point. 

Geostatistics is a theory of regionalized variables [48] in which variables or attributes of 

interest are spatially distributed. It already has mature methods developed and tested in the 

field. However their applicability to sensor networks has been limited; exceptions are for 

example, [49] and [50], where kriging interpolation is performed with the aim of reducing the 

number of sensors deployed.   

Only a few research works have considered the links between geostatistics, data compression, 

and transmission of correlated observations. Research made in [51] considered it to guide the 

optimization of source-channel coding schemes, while Oldewurtel [21] applied spatial 

statistics only for data modelling and simulation.  DSC approach fails to make a correct link 

with statistics and random fields; as a matter of fact, research work on Distributed Source 

Coding (DSC) has focused mainly on finding the more robust codes and the most efficient 

decoders.  

In the present chapter, a method that combines geostatistical and information fusion methods 

for data compression in sensor networks is presented. The reconstruction of the measurement 

data can be largely simplified if the global mean of the probe points is available; the mean is 

approximated by the strong law of large numbers, and by combining it with an estimation of 

the variogram and with continuous-valued source space partitions, it is proved that it is 

possible to perform energy-efficient, robust, and consistent data compression in sensor 

networks.   

 

The procedures were tested on two datasets recorded in a refrigerated container of dimensions 

2.2 × 2.2 × 5.4 m as part of a collaborative internship with the Research Centre for Logistics 

Information Technology (LIT) at the Pusan National University in Korea in 2012.  



 

In order to increase spatial variability, the conta
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with pallets covering the floor to deflect the air flow.

In total, 60 ASN 405T [52] wireless sensor nodes were placed in the walls, doo

floor, forming a grid of 55 cm lag distance. Each n

of measuring humidity and temperature with accuracies of ± 3% RH

and sending the data to a gateway. 

(a) 
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variations are high at the beginning and low at the

- 17 - 

In order to increase spatial variability, the container was first cooled from ambient 

temperature (15 °C) to a set point of 0 °C for 3 hours and then warmed to a set point of 25 °C 

performing the actual experiment, that comprised cooling the 

°C for 80 minutes. As the most significant influence on the cargo container is 

the loading state, two configurations were tested: one with an empty container and the other 

llets covering the floor to deflect the air flow. 

wireless sensor nodes were placed in the walls, doo

floor, forming a grid of 55 cm lag distance. Each node contains a SHT20 [53]

humidity and temperature with accuracies of ± 3% RH and ± 3 °C, respectively, 

and sending the data to a gateway.  

 

(b) 

Spatial distribution of the measurement points at the walls of the container: (a) temperature, 

shows the measurements of the same experiment over time; it can be seen that the 

variations are high at the beginning and low at the end of the experiment. 

iner was first cooled from ambient 
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Figure 3.2 Temperature and humidity variability over time at t

container  
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undergo lossless compression and decompression without the need for 

between the sources.  

Figure 3.3 Distributed Source Coding 
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Temperature and humidity variability over time at the measurement points on the walls of the 

Distributed Source Coding (DSC) was pioneered four decades ago, in 1973, in a famous paper 

Slepian and Wolf. They studied joint decoding of two independently encoded 

gly, if two random variables U and V are correlated

compression and decompression without the need for 

 

Distributed Source Coding concept: only the decoder has access to Side Inform

 

points on the walls of the 

decades ago, in 1973, in a famous paper 

o independently encoded 

gly, if two random variables U and V are correlated, they can 

compression and decompression without the need for communication 

 

concept: only the decoder has access to Side Information V 



 

The correlated environment is modelled by a 

binary source and V is the sink, the correlation be

 with variance  and mean zero.

Given a quantization step , the 

of bit flipping to be less than a value p 

When dealing with continuous

fact that the least significant bits will have more
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The correlated environment is modelled by a Binary Source Channel (BSC). 

binary source and V is the sink, the correlation between them is modelled by an additive noise

and mean zero. 

, the Chebyshev’s inequality can be used to bound

of bit flipping to be less than a value p if the source is compressed to n bits by

                                                   

ontinuous-valued values, such a model becomes more complex du

fact that the least significant bits will have more probability of flipping than the most 

significant ones, as shown in Figure 3.4. In order to increase the probability of correct 

decoding, the decoder must have been set properly with different  bit-flipping

, resulting in a complex correlation model and decoding methods; for example, the 

proposed hybrid decoding for such a purpose 

 

flipping of continuous-valued sources   

the decoder receives incomplete but sufficient information about a source it can be 

recovered perfectly by using the so-called mutual information (MI), that 

amount of information a random variable contains about another variable from a 

. Source coding theorems are used to determine the necessary number of bits to be 

transmitted in order to achieve lossless communication. 

                                    

Binary Source Channel (BSC). Usually, if U is the 

tween them is modelled by an additive noise 

(3.1) 

bound the probability 

bits by [54-55] 

                                                         (3.2) 

(3.3) 

valued values, such a model becomes more complex due to the 

 probability of flipping than the most 

. In order to increase the probability of correct 

flipping probabilities for 

ding methods; for example, the 

(3.4) 

rmation about a source it can be 

 is a measure of the 
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                                    (3.5) 
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called marginal entropies and  is their joint entropy.  

rewrites the last equation in a more useful representation. 

In bit terms, if M is the number of bits of the uncompressed word and N is the number of bits 

of the compressed word, the compression rate is defined as  

Achievable rate regions for Slepian-Wolf coding of two sources 

The theorem has applicability as a data compression technique in the sense that redundant 

information should be transmitted only once and used in the decoder to complement the 

conditional entropy to recover the joint entropy. Because it is based on binary 

information theory concepts, the research focus was on channel modelling and code design. 

is their joint entropy.  

ntation.  is the 

(3.6)

(3.7)

ompressed word and N is the number of bits  

(3.8) 
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The most referenced implementation of DSC in WSNs is DISCUS (Distributed Source 

[57]. It uses the concept of “binning” to partition the source space 

into bins that will be treated as smaller channel codes, each one indexed by the so

syndrome.  The syndrome is sent to the decoder, where the source is estimated using the side 

information as support. The rate of transmission R must be bigger than the conditional 

entropy to achieve lossless decoding. 

In the source partition process, a linear block code family is selected. A good linear code is 

the one that exhibits a large Hamming distance d, that is, the number of positions at which 

each pair of binary words inside every coset or bin is different. There are several code types to 

be selected such as LDPC, turbo codes, projective geometry codes, and so on. For example, 

shows the Hamming distances for different compression rates of a family of 

 when M is equal to 11 bits and the compressed words are of 2, 

3, 5, and 8 bits correspondingly. The more compressed a binary word is, the more difficult

is to recover it, because each coset has more binary words in it and that are more similar to 

entation of a linear block code is a parity matrix H consisting of N rows 

and M columns, where M is the number of bits of the binary word. By using H, the source 

space will be partitioned into   bins or cosets, each consisting of   binary words. 

s DISCUS (Distributed Source 

” to partition the source space 

odes, each one indexed by the so-called 
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smission R must be bigger than the conditional 
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 is different. There are several code types to 

projective geometry codes, and so on. For example, 

on rates of a family of 

nd the compressed words are of 2, 

ore compressed a binary word is, the more difficult it 

y words in it and that are more similar to 

H consisting of N rows 

 binary word. By using H, the source 

binary words.  



 

For example, the parity matrix shown 

[21]. 

Figure 3.7  Source Space partition. 
the lower the number of the hamming distance

Figure 3.8 Parity matrix H of an 11 × 8 geometry code
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the parity matrix shown Figure 3.8 is an 11 × 8 (M × N) geometry code used in 

ource Space partition. The Source is divided into cosset, the bigger the c
the lower the number of the hamming distance 

Parity matrix H of an 11 × 8 geometry code 

is an 11 × 8 (M × N) geometry code used in 

 

The Source is divided into cosset, the bigger the compression, 
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Figure 3.9(b). 
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Figure 3.9 Code partition in coset number 5
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Once the parity matrix is selected for a desired compression rate R, the process of coset code 

simple matrix multiplication as follows:  

s=H u                                                        

The resulting value s is the index of the coset containing the active word u. It is not unique; 

representations of u that result in the same syndrome.  For example, the eight 

binary words of u indexed by coset number five for the previous parity matrix are shown 

 

 

  Binary Words in coset number 5 

1 0 0 0 1 0 1 0 

2 1 1 0 1 1 0 1 

3 1 0 1 0 0 0 1 

4 0 1 1 0 1 1 0 

5 1 1 1 0 1 0 0 

6 0 0 1 0 0 1 1 

7 0 1 0 1 1 1 1 

8 1 0 0 1 0 0 0 

(b) 

coset number 5 (a) Graphical representation (b) Possible binary words 

he estimation will be a channel decoding process. A traditional decoding algorithm can be 

used with the exception that the decoder aims to find the most probably coded word with the 

received syndrome instead of trying to correct the error (with the all-zero syndrome). 

A decoding algorithm, that uses Bayesian inference, is the so-called Maximum

(ML)algorithm, in which, the inference process is as follows: The most likely sent codeword 

is found by calculating all conditional probabilities for all possible individual codeword and 

choose the one with maximum probability.  The process is time-consuming and might lead to 

t depends on setting the right probabilistic of bit-shift, the robustness 

mpression rate R, the process of coset code 

                                      (3.9) 

taining the active word u. It is not unique; 

me.  For example, the eight 

mber five for the previous parity matrix are shown in 

Binary Words in coset number 5  

0 0 0 0 

1 0 0 0 

0 1 0 0 

1 1 0 0 

0 0 1 1 

1 0 1 1 

0 1 1 1 

1 1 1 1 

ossible binary words  

 traditional decoding algorithm can be 

most probably coded word with the 

zero syndrome).  

called Maximum-Likelihood 

is as follows: The most likely sent codeword 

es for all possible individual codeword and 

consuming and might lead to 

shift, the robustness 



 

of the used code and the number of iterations.  The

Binary Symmetric Channel is NP

Another common decoding algorithm is the belief pro

message passing one. These are iterative algorithms

iteration the algorithm passes messages from messag

The messages that are passed are probabilities or 

of the algorithm is its sunning time, in general, i

powerful [60]. 

Figure 3.10 Graphical representation of the estimation process.

DSC has been extended in several research works for

cases [61]. In non-asymmetric DSC decoding, multiple sources are compr

jointly; the sum of the rates of the indiv

cases, all code words can be recovered by a normal 

zero) without the need for modification of the code. 

 

 

 

Figure 3.11 shows the architecture of a sensor node. As can be 
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of the used code and the number of iterations.  The maximum likelihood decoding for the 

Binary Symmetric Channel is NP-complete [58].  

Another common decoding algorithm is the belief propagation algorithm

message passing one. These are iterative algorithms, and their name implies that

iteration the algorithm passes messages from message nodes to check nodes, and vice versa.  

The messages that are passed are probabilities or beliefs.   One very important figure of merit 

of the algorithm is its sunning time, in general, is faster than the ML algorithm, but is less 

Graphical representation of the estimation process. 

DSC has been extended in several research works for multiple sources and non

asymmetric DSC decoding, multiple sources are compr

jointly; the sum of the rates of the individual sources must be larger than

cases, all code words can be recovered by a normal channel decoder (with 

) without the need for modification of the code.  

shows the architecture of a sensor node. As can be seen, the output of the sensor 

ted to a binary word so that it can be processed. 

Due to the fact that environmental data have a continuous range of values, the measurements 

have to be converted into a binary representation in order to be interpreted by a digital system
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ocessor. Such a process has two main steps: quantization and analogue

 

 

(b) 

 

Conversion from real-valued to binary domain: (a) Linear quantization. (

 

Linear quantization replaces the range of continuous values with a set of discrete ones by 

dividing the data range into a number of uniform intervals of a power of two.  The quantized 

value is the one that is closest to the actual measurement. The decimal value resu

the quantization process is then converted to a binary representation. 

                                                   

Wolf approach, compression is done via channel coding; that is, the acquired 

signal is processed digitally in the microprocessor. However, quantization of a measured 

environmental variable is required only to be interfaced to an embedded system 

a binary domain and to be communicated via radio in the form of a bit stream. Additional 

features such as data compression and recovery can be performed in a continuous

ation and analogue-to-

 

valued to binary domain: (a) Linear quantization. (b) Block Diagram 

s values with a set of discrete ones by 

tervals of a power of two.  The quantized 

t to the actual measurement. The decimal value resulting from 

                                                    (3.10) 

 

(3.11) 

ng; that is, the acquired 

. However, quantization of a measured 

faced to an embedded system that works in 

 the form of a bit stream. Additional 

be performed in a continuous-valued 
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The approach adopted in this research work is to use a real-valued statistical domain to model 

the correlation between any pair of sensing points of the environment, and geostatistical 

methods are selected. The experimental variograms (EVs) from the acquired datasets need to 

be calculated.  

The variogram  describes the statistical dependency across sensors by the expected value 

E for the square of the difference in value of two points as a function of the distance h. 

 (3.12) 

These experimental curves must be approximated by theoretical variograms conforming to the 

limitations of being conditionally negative semi-definite functions. Only a limited set of 

functions can be applied as theoretical variograms, for example, Gaussian, Exponential and 

Spherical. They are usually described with three parameters: range, nugget and sill. The range 

gives the maximum distance up to which the mutual influence of two probe points has to be 

considered. Nugget and sill give the expected squared temperature deviation for very small 

and very large distances. 

According to Kanevski [48], Spherical, Exponential and Gaussian variogram models  are  the 

most commonly used. The behaviour of them near the origin is of most importance in spatial 

predictions: Spherical model has a linear behaviour near the origin; the Gaussian variogram 

presents a very smooth behaviour at short distances, whereas an Exponential model reaches 

95% of sill at the radius r.   Other models include Power, Gamma, Stable and Bessel.  

Spherical model:  

(h)                                   (3.13) 

 

Exponential model: 

                                          (3.14) 

Gaussian model: 

(3.15) 



 

 

3.4.1.1 
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Figure 3.12 Experimental variogram for temperature measurements

model. The numbers indicate how many pair of points
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To take the binning concept into a real

scheme to generate a subset of possible candidates,

any pair of candidates should be as big as possible

the research work is based on coding and decoding t

recovery. Chou proposed a compression method that h
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fitting algorithm was found in [62], that  provides a Matlab script to 

minimize the fitting error for an experimental, isotropic variogram. the minimum is found by 

 algorithm [63], that is a heuristic, well-known method that is

effective and computationally compact as it does not need any matrix inversion. 

Furthermore, the algorithm provides additional advantages that may improve the good fitting 

of the function: it allows the least squares to be weighted if the number of obser

experimental lag is provided. Two weighting schemes are selected from the geostatistics 

literature. The first one is based on Cressie [64] and automatically gives most weight to early 

weights to the lags with a small number of observations. The second scheme 

assigns weights based on the criterion of goodness described by McBratney and Webster 

Experimental variogram for temperature measurements and its fitting by a theoretical 

model. The numbers indicate how many pair of points were available for a given distance.

To take the binning concept into a real-valued domain, it is necessary to use a compression

scheme to generate a subset of possible candidates, wherein the Euclidean distance between 

any pair of candidates should be as big as possible. With the exception of Chou 

the research work is based on coding and decoding techniques rather than compression and 

recovery. Chou proposed a compression method that has very lightweight encoders. 

provides a Matlab script to 

tropic variogram. the minimum is found by 

known method that is 

t need any matrix inversion.  

ntages that may improve the good fitting 

weighted if the number of observations per 

 are selected from the geostatistics 

and automatically gives most weight to early 

ions. The second scheme 

bed by McBratney and Webster [65]. 

 

 and its fitting by a theoretical 

 were available for a given distance. 

valued domain, it is necessary to use a compression 

 wherein the Euclidean distance between 

f Chou [55], most of 

echniques rather than compression and 

as very lightweight encoders.  
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Similar to DSC, the source space will be partitione

 binary words. Instead of using codes, the method is
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(LS) that contains the  values separated by the quantization step 

partitioned into two linear spaces; one of them cor

and the other to the even-indexed ones.  The process is repeated M times, res

LS that contains  values separated by a Euclidean distance of 

process is illustrated in Figure 

are on the bottom-right branches, and odd representations are on the 

traversing the tree-based construction starting with the least

form the final LS. 

Figure 3.13 Tree-based source space partition. The value of the ith 

the linear spaces 
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The partition process is described mathematically using a modulo operation 

-to-binary conversion. Although mathematically elegant, it is 

equivalent to obtaining the decimal value of the truncated binary word at the i

. The value of u can be recovered from the received

information by fusing it with the information  available at the sink. 

Similar to DSC, the source space will be partitioned into  bins or cosets, each consisting of  

binary words. Instead of using codes, the method is based on the creation of linear 

are separated by a big Euclidian distance. The method starts with a linear space 

values separated by the quantization step 

partitioned into two linear spaces; one of them corresponding the odd-indexed representa

indexed ones.  The process is repeated M times, res

values separated by a Euclidean distance of  .  The descending tree 

Figure 3.13; the original LS is shown at the top, even represe

right branches, and odd representations are on the bottom

based construction starting with the least-significant bit, the method will 

based source space partition. The value of the ith bit in u determines the construction of 

 

sing a modulo operation as in Equation 
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uncated binary word at the i
th

 LSB bit to 

. The value of u can be recovered from the received 

bins or cosets, each consisting of  

 based on the creation of linear 
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values separated by the quantization step . The LS is then 

indexed representation 

indexed ones.  The process is repeated M times, resulting in a final 

.  The descending tree 

; the original LS is shown at the top, even representations 

bottom-left branches. By 

significant bit, the method will 

 

bit in u determines the construction of 
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Algorithm 1  Pseudo-code implementation of source space partition 

 

Initialization 

Create LS LS of  elements separated by one  

 

 

Build the LSs accordingly  

Main loop 

 

 

 

 

 

 

 

 

3.4.1.3 

The disadvantage of Chou‘s method lies in the decoding operation.  A lookup table (LUT) is 

used to determine, by comparison, which one of the elements in the LS is closer to the side 

information available. A correlation tracking algorithm is required to find a parameter that 

scales the side information value and estimates U by selecting the value in the LUT that is 

closer. Such an algorithm requires all of the sensors to send their uncompressed data several 

times to calculate an estimate of the variances of the prediction error for each pair of sensors. 

Their approach however is correct in the sense that an LUT-based estimation is energy-

efficient but fails in terms of simplicity. The knowledge of auxiliary information and the use 

of information fusion will help to solve this problem. 



 

 

The fundamental idea behind this concept is to fuse

real source value from a truncated received word. T

called auxiliary information.  

 

Figure 3.14 Data estimation in a fusion cell

In the 1990s, Uhlmann and Julier 

covariance intersection (CI). Later, in 2001, 

measurements fusion. He demonstra

fused density functions and gave an information

In CI, two pieces of information, labelled U and V,

output Z to provide a better estimation of it in the presence of 

information is the mean and the covariance of each of the estimations. We c

mean is the same for all three variables as they be

If  

And  

The fusion is made though a linear combination of them.
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The fundamental idea behind this concept is to fuse all information available to recover the 

real source value from a truncated received word. The data recovery unit requires the so

 

Data estimation in a fusion cell 

In the 1990s, Uhlmann and Julier [66] pioneered a data fusion technique that was termed 

covariance intersection (CI). Later, in 2001, Hurley [67] showed its applicability to sensor 

demonstrated that it results in the minimization of the entr

fused density functions and gave an information-theoretic justification for it.   

In CI, two pieces of information, labelled U and V, that  are noise corrupted, are fused into an 

ovide a better estimation of it in the presence of unknown correlation. The only 

and the covariance of each of the estimations. We c

mean is the same for all three variables as they belong to the same random field. 

                                                      

E       E                                        

fusion is made though a linear combination of them.  

 all information available to recover the 

he data recovery unit requires the so-

 

pioneered a data fusion technique that was termed 

showed its applicability to sensor 

ted that it results in the minimization of the entropy of the 

theoretic justification for it.    

are noise corrupted, are fused into an 

unknown correlation. The only 

and the covariance of each of the estimations. We consider that the 

long to the same random field.  

                                                 (3.17) 

                                       (3.18) 
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Z=                                                          (3.19) 

It follows that 

                  (3.20) 

The aim of the algorithm is basically to minimize the trace of  by choosing the weights 

 and . For decompression purposes a minimization criterion has to be defined when one 

of the measurements is fixed and used as side information and the correlation are known.  

It is observed that Equation 3.20 can be written in terms of centred covariances  

(3.21) 

If the centred covariance is considered symmetric  

=  =                                                   (3.22) 

Also, if   is the side information, the expectation is constant as well 

(3.23)  

Traditionally, a CI iterative algorithm would have a set of measurements of both variables and 

would find the matrix weights  and  that minimize the trace of   by performing 

filtering of redundant data between U and V.   

Because  is constant, the elements of  will be weighted equally, and does not 

have an effect on the minimization. The minimization depends mainly on the trace of 

  

(3.24) 

V is constant and U takes all the possible values in the coset by considering the main 

diagonal of .  

(3.25) 

and its trace is  

 = (3.26) 

Minimizing the trace of  will lead automatically to a minimization of . If  

and  are the i
th

 elements in the main diagonal of  and  then 



 

If an iterative algorithm were used to find the min

fewer proportionally big values of  

it.  By choosing the minimum of all of t

choose the one that contributes more to the fusion,

estimations of the source that 

possibility of finding the correct source value 

The value of  that leads to the minimum of 

And because  is constant, 

Equation 3.29 leads to the conclusion that the estimation in the 

the mean value is the one that has a high

the conclusion that the side information plays no r

 

Because U and V are in fact two outcomes of the sam

variogram   of the random field. 

Figure 3.15 Probability density function of the random variable

partition.  
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=

If an iterative algorithm were used to find the minimum of the trace of

fewer proportionally big values of   and consequently more small values of 

it.  By choosing the minimum of all of them, that is, the most weighted, we automatically 

choose the one that contributes more to the fusion, and because all elements 

that are separated by a big Euclidean distance, there is

inding the correct source value  

that leads to the minimum of  is: 

is constant,  

leads to the conclusion that the estimation in the linear space that is closer to 

the mean value is the one that has a higher probability of being the correct one. It also le

the conclusion that the side information plays no role in the minimization process

Because U and V are in fact two outcomes of the same random variable, 

of the random field.  

Probability density function of the random variable U and its relation with the coset 

 (3.27) 

, it would weigh 

and consequently more small values of 

hem, that is, the most weighted, we automatically 

 and because all elements of  are possibly 

are separated by a big Euclidean distance, there is a large 

(3.28) 

 (3.29)  

linear space that is closer to 

er probability of being the correct one. It also leads to 

ole in the minimization process. 

 is in fact the 

 

 U and its relation with the coset 
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Given the distance between two measured points and a fitted variogram model, it is possible 

to have an estimate of the number of bits required to represent the source U given by the 

following equations.  

The expected value of is in fact the value of the fitted variogram at a distance h.  

                                                    (3.30) 

According to equation 3.29, the minimum value of  must selected, and beacause  

is the Euclidian distance between all the elements in the coset, a correct estimation is made 

when 

(3.31) 

which leads to 

                                            (3.32) 

and the assignment of rates is made by rounding the result of equation 3.32  to the next 

integer and adding one to compensate for modelling inaccuracies. 

(3.33) 

 

 

In this section simulation results are provided. We wanted to measure compression rates due 

to bit transmission and the percentage of failed estimations for different fitted variogram 

models and weighting schemes.  For experimental confirmation of the developed compression 

method, a binary word size of 11 bits was selected. The following table shows the upper and 

lower limits used for linear quantization and the corresponding quantization steps for 

humidity and temperature 
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Table 3.1 Limits used for linear quantization and respective quantization steps 

4  

Upper limit Lower limit  

Temperature 

(K) 
25 0 0.0122 

Humidity 

(%RH) 
75 0 0.0366 

 

 

 

For a word size M of eleven bits and the mentioned quantization steps, the entropies and their 

values ranges are summarized in the next table. 

Table 3.2 Binary entropies and respective temperature and humidity ranges 

 Temperature variance Humidity variance 

Entropy(bits) Minimum Maximum Minimum Maximum 

5 .0034 .009 0.04 0.09 

6 .009 .03 0.09 0.34 

7 .03 .1527 0.34 1.37 

8 .1527 .61 1.37 5.50 

9 .61 .82 5.50 12.03 

 

 

Figure 3.16 shows the variogram fitting for an exponential model with weighting as described 

by McBratney and Webster [65] for the temperature measurements in the experiment with 

pallets on the floor if the variogram and the mean value are updated at every sampling time. 



 

(a) 

 

Figure 3.16 Results for temperature when the container is fille

variogram; (b) rate allocation. 

The selection of the variogram model has no impact 

seen in Table 3.3  

Table 3.3  Average achieved compression rates for three fitted

 

Variogram 

model

Gaussian

Spherical

Exponential

 

 

 

Regarding the percentage of failed estimations, the

for both experiments and for both environmental var

McBratney and Webster [65]

cases.Table 3.3 shows the results for temperature when the containe

the floor for different quantization steps. 
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(b) 

Results for temperature when the container is filled with pallets: (a) spatio

The selection of the variogram model has no impact on the average compression, as can be 

Average achieved compression rates for three fitted variogram models 

Average compression rate ´R 

Variogram 

model 

 2  3  4  

Gaussian 0.76 0.67 0.61 0.58 

Spherical 0.75 0.66 0.61 0.57 

Exponential 0.76 0.67 0.62 0.58 

Regarding the percentage of failed estimations, the exponential model provides better results 

for both experiments and for both environmental variables.  The  weighting scheme based on 

[65] also reduces the percentage of failed estimations i

shows the results for temperature when the container is filled with pallets on 

the floor for different quantization steps.  

 

d with pallets: (a) spatio-temporal 

on the average compression, as can be 

 exponential model provides better results 

iables.  The  weighting scheme based on 

also reduces the percentage of failed estimations in all 

r is filled with pallets on 
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Table 3.4 Percentage of failed estimations for three models and two weighting schemes for temperature 

measurements when the container is filled with pallets on the floor 

 

 McBratney and Webster Cressie 

 2  3  4   2  3  4  

Gaussian 10.63 10.66 9.75 10.70 13.86 13.89 12.13 13.95 

Spherical 11.44 11.47 7.50 11.53 12.55 12.58 9.44 12.67 

Exponential 7.53 7.53 5.58 7.64 9.95 9.97 7.23 10.03 

 

The next table summarizes the results for both experiments and for temperature (T) and 

humidity (H) when the exponential model is fitted using the criterion of McBratney and 

Webster. Every possible combination of source–sink pairs was simulated. The percentage 

energy savings is calculated by averaging the N sent bits over the duration of the experiments. 

It can be seen that energy savings up to 57% for temperature and up to 50% for humidity are 

possible without exceeding an estimation failure rate of 10%. In the best cases it is possible to 

achieve an estimation failure rate of 4% with 40% energy savings. 

Table 3.5 Summary of accuracy and energy saving results for an exponential variogram model fitted 

using the criterion of McBratney and Webster 

 Percentage of error Energy savings (%) 

 2  3  4   2  3  4  

Container 

with 

pallets 

T 7.53 7.53 5.58 7.64 23.82 32.79 37.95 41.77 

H 6.16 6.27 7.45 6.08 26.65 35.63 41.26 44.61 

Empty 

container 

T 7.41 7.95 9.14 7.72 39.22 48.20 53.01 57.18 

H 3.91 4.06 5.42 4.42 31.96 40.93 46.61 49.91 

 

4.1.2.1 

The previous results assume that information about the mean and variogram is updated 

continuously for every sample. However, because the aim is to compress data to reduce 

communication, the acquisition of uncompressed data from all sensors has to be avoided as 

much as possible. The datasets used in the present research work are very useful to study the 
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robustness of the method because the variances and mean of the environmental field are 

changing drastically over time.   

An experimental variogram data-aggregation query is far more energy-consuming than a 

mean value one. However, the mean value plays a bigger role in performing a correct 

estimation. It makes sense to update the mean value more often than the variogram. To test 

the robustness against non-stationarity, the variogram is updated only at the times when the 

sill of the fitted variogram model reaches one of the entropy transition values shown in Table 

3.6. The mean is updated at regular intervals of 10 and 15 minutes. 

Table 3.6 Summary of accuracy and energy savings results for an exponential variogram model fitted 

using the criterion of McBratney and Webster when the mean is updated at discrete intervals 

 Percentage of error Energy savings (%) 

Stationary-

like  

10 minute 

interval 

15 minute 

interval 

Stationary-

like  

10 minute 

interval 

15 minute 

interval 

Container 

with 

pallets 

T 7.53 6.82 10.26 23.82 18.95 18.95 

H 6.16 9.51 12.20 26.65 23.89 23.89 

Empty 

container 

T 7.41 6.76 11.01 39.22 34.66 34.66 

H 3.91 7.23 11.71 31.96 29.41 29.41 

 

Table 3.6 summarizes the results when the variogram and the mean are updated at every 

sampling, that can be considered a stationary-like process, and when the variogram is updated 

according to the binary entropy and the mean is updated at discrete intervals. It can be seen 

that, as expected, the percentage of estimation errors increases, but in the worse case it is only 

12%. The energy saving decreases, but in the worse case only about 5% is not saved in 

comparison with the stationary-like case, 

 

In order to compare both approaches for distributed compression, the temperature 

measurements for the container with pallets on the floor are selected. The rates are adapted 

according to our method for the last sampling time.  The probability of bit flip in DSC is fixed 

at 0.45. An implementation of the decoder provided by [68] and geometric codes described in 

[69] are used.  
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 Figure 3.17(a) shows that for the statistical approach almost all combinations are perfectly 

recovered; correct estimations are represented by blue squares and failures by red ones.  

Figure 3.17 (b) illustrates the results for the Slepian-Wolf approach; it can be observed that 

the percentage of errors is high. Another selection of the probabilities of bit-flip helps in some 

sensor combinations, but its detrimental in others. 

  

(a) (b) 

Figure 3.17 Correct estimations for all possible combinations of sensor pairs: (a) using continuous-valued 

approach; (b) using the Slepian-Wolf  approach 

 

Methods in the geosciences and data fusion fields can be combined for application in key 

technologies such as sensor networks to cope with inherent constraints such as the need to 

reduce radio communication. By doing this and shifting from the binary to the real-valued 

domain it is possible to achieve not only efficient data compression but also easy data 

recovery suitable for performance in constrained devices. 

Parallels exist between performing distributed sensor compression in digital and real-valued 

domains. In the binary domain, the environment is modelled as a wireless communication 

channel, where the source is corrupted by noise during transmission, arriving at the decoder 

with some of the bits flipped due to the noise power. The bigger the noise, the more bits are 

likely to be flipped. In a real-valued domain, the environment is first “explored”; an 

experimental variogram is acquired from the actual measurements and automatically fitted to 

a theoretical model to determine the spatial relationships. 

In the binary domain, rate allocation is bounded for example by Chebyshev’s inequality, in 

which it is necessary to establish a prediction error and the value of the quantization step. In 
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the real-valued domain the fitted variogram model together with the mean value is required to 

allocate ratios.  

Both approaches use the concept of partitioning the source space into cosets; each element 

belonging to a specific coset is “far away” from the others using a specific metric; in the 

digital domain the metric used is the Hamming distance, whereas in the real-valued domain it 

is a Euclidean one. 

In both cases, the task of the data estimation unit is to utilize the available information 

properly to select the element inside the coset that best complies with a given criterion. In the 

binary domain the decoder uses complex techniques such as belief propagation to determine 

which binary word is more likely to be the one sent, given the probability of bit flip during 

transmission. In the real-valued domain, all elements of the coset are used together with the 

auxiliary information to build a lookup table from which the minimum element is selected. 

The results show that is possible to achieve perfect estimations of at least 90% of the possible 

sensor combinations while reducing communication by up to 60% without needing a simple 

algorithm that can be deployed in sensor nodes. It is also shown that the method is robust 

against non-stationarity.  
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Information Fusion (IF) has found applicability in Geographical information systems (GIS). 

In [68] several research papers regarding IF and GIS are discussed, surprisingly, Kriging 

interpolation, developed for geo-statistics, is not considered.  Kriging methods are IF ones, 

but they have not been fully appreciated by the general fusion community. The Ordinary 

Kriging method (OK) can be considered as a spatial statistical fusion method across sensors 

whereas Cokriging interpolation (CK) can be considered a spatial statistical method for fusion 

across attributes and sensors.  

Kriging methods are based on statistical descriptions of the spatial dependencies of the 

attributes, the so called variograms. They are Best Linear Unbiased Estimators (BLUE), 

where “best” basically means that the estimation gives the lowest variance possible and 

therefore gives strong theoretical guarantees. The condition of unbiasedness is assured by 

constraining the sum of all weights of the primary attributes to be equal to one. The 

minimization of the variance is then constrained to the unbiasedness condition, by using 

Lagrange multipliers the problem of constrained minimization turns into a problem of 

unconstrained minimization.  

 

Kriging and cokriging errors have Gaussian distributions; it is determined by the mean µ and 

the resulting Kriging variances. A correct tuning of the variogram models and parameters is a 

necessary condition to the correctness of the estimation. Such correctness, can be evaluated 

by cross-validating the predicted Kriging standard deviation  and the actual error  for each 

destination point i [69]. The relation  should be unitary.  

(5.1)  

 

                                                          (5.2) 

 

 

The interpolation error   at each point is defined as the average squared error between the 

estimated value  and the real value  over   samples.  
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(5.3) 

The average prediction error  over  destination points was selected as a measure of the 

quality of the interpolation. 

 

(5.4) 

 

Kriging [48, 69] performs  linear interpolation to estimate the value in one destination point 

by multiplying the available measurements with a set of weighting factors. Weights are 

proportional to the correlation between the estimated points and the measurements; if there is 

no spatial correlation all weights are equal and the estimates yield to the average value of all 

measurements. In comparison with deterministic interpolation techniques such as Null-model 

and Inverse Distance Weighting (IDW), provides two estimates: the values at a specific 

location and the uncertainty of such estimation. The results were  published  in a joint paper 

[70]. The contributions of the author of this thesis were on the research of the accuracy of the 

Nelder-Mead method to automatically fit the variogram to the experimental data and on the 

comparison with the accuracy achieved by other methods.  

 

There are plenty of interpolation techniques, we have selected only two, IDW that takes into 

account the distances between the source points and a null-model that averages all the 

sources. 

IDW is the most common method used to interpolate the value at an unknown location; it uses 

only the geometrical distances between the source points and the destination. The 

estimation at an unknown location is given by 

(5.5) 

And the weighting coefficients are given by: 

                                                                  (5.6) 

It assumes that the influence of a source point on a destination point decreases with the square 

of their distance. 
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Null-Model is a simpler model, that ignores the influence of the distances in the estimation 

calculates the average of the source points to estimate the value at a specific location. 

 

(5.7) 

 
The Ordinary Kriging method (OK) can be considered as a statistical fusion method across 

sensors due to the fact that it improves the completeness of the information: it estimates the 

value at a specific location and provides the so called kriging variance (KV), that is a measure 

for the certainty of the estimations. The subsequent curve fitting is restricted to a limited set 

of the guaranteed consistency. Variogram values for distances between the measured points 

are combined in a linear equation system. The interpolation is calculated by weighing the 

existing measurements by a set of coefficients, given by the solution of the equation system. 

For a detailed introduction to the Kriging method, see [71].  

 

Kriging [48, 69] applies a linear interpolation to predict the temperature in one destination 

point by multiplying the available measurements with a set of weighting factors. An 

experimental Variogram is calculated from the measurements and then fitted with a 

theoretical model in a way to minimize the error between experimental and theoretical 

Variogram. The application of the Variogram to set the Kriging weights provides a 

statistically correct estimator for the weighting factors, and therefore, is the best linear 

estimator under the condition that the expected value for the difference between two points 

depends only on their distance vector and not on their absolute position.  

Variogram values for distances between the measured points are combined in a linear 

equation system. The interpolation is calculated by weighing the existing measurements by a 

set of coefficients, given by the solution of the equation system.  

= (5.8) 

The unbiasedness is guaranteed by: 

(5.9) 

And the KV is obtained by: 
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(5.10) 

Where  is the lagrange multiplier  

 

As mentioned before a correct variogram model and proper fitting of its parameter is highly 

important. Besides Nelder-Mead algorithm described in [63], we selected two more methods.   

5.2.3.1 

A brute-force grid search was implemented. The grid search tests all combinations of range, 

nugget and sill for the lowest fitting error between a given set of boundaries. For an adequate 

setup of the boundaries, The algorithm searched for a sill value between 60% and 180% of the 

measurement variance all measurements.  The lower and upper grid boundaries for the nugget 

value were set to 2% and 20% of the measurement variance, respectively; the search for the 

variogram range values was performed between 1 and 10 meters. 

5.2.3.2 

A third method that only adapts the sill value was implemented. Based on the resulting range 

of the fitting-algorithms, the fixed range was set to the average range value of the fitted 

experiments. The nugget was directly set to the square of the measured sensor tolerances. The 

sill was calculated to fit the average value of the theoretical model to the experimental 

Variogram for large distances. 

 

In total 14 datasets were recorded to test the Kriging procedures on different conditions: eight 

in cold storage rooms and six during regular food transports.  

The dimension of the cold storage rooms are of 2.6 × 2.2 × 2.3 meters. Between 54 and 68 

temperature probes of PT100 type were installed at the walls. Zero and six degree Celsius 

were programmed as set point temperatures, empty and loaded conditions as well as on-of an 

modulated cooling modes were tested. Specific Details can be found in [72].The performance 

conditions to validate the tests are the loading state (empty/full), set-points of 6 and -29 °C 

The six experiments performing during food transports were acquired in collaboration with 

food supplier companies and consists of two datasets recorded during terrestrial transport of 

frozen-meat and four recorded during overseas transport of bananas.  
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The tests consisting of terrestrial transport of frozen meat was performed inside delivery 

trucks provided by the German company Rungis Express. The trucks is separated into three 

separate chambers, the experiments were performed in the deep freezer chamber with 

dimensions of   2.9 × 2.5 × 2.35 meters. Forty TurboTag [73] data loggers were placed with a 

set point of -29 °C.  

Two of the datasets tests consisting of overseas transport of bananas were provided by 

Maersk, in it forty-five sensors were placed inside the freight. The rest two datasets were 

recorded within a cooperation project with Dole from Costa Rica to Antwerp. Twenty-seven 

and thirty-one iButton [74] data loggers were placed in the centre of banana boxes in 

experiments perform in 2010 and 2011, respectively. 

 

The resulting variogram models and range value depend basically of the loading conditions, 

dimensions of the closed, controlled environment and set point. Table 5.1 shows the average 

range of the grid search Variogram models sorted by groups of experiments.  It can be seen 

that if the air circulates without obstacles, the temperature variations spread over a wider 

range.  A clear comparison is the resulting ranges of the cold storage room the average range 

decreases from 4.7 to 3.4 meters in the presence of cargo.  The highest range of 4.7 metre was 

measured in empty cold storage rooms. Partially filled cold storage rooms and trucks showed 

almost the same range of 3.25 to 4 meter. For densely packed cargo such as bananas in sea 

containers the range dropped to 1.65 or 1.125 meter. 

An important figure of merit is the number of neighbours that lie into the resulting variogram 

range; neighbours lying above the average range have little effect on the interpolation because 

their assigned weights are very low. In a worst-case scenario, if all neighbours are outside the 

variogram range, all neighbours will be assigned with the same weights; the resulting 

interpolation would be equal to the average of the values of the neighbours. 

 

 

 

 

 



 

Table 5.1 Fixed range parameter for groups of experiments

Group 

Empty cold storage room 

Loaded cold storage room 

Trucks 

Container Maersk, inside bananas

Container Dole, inside bananas

 

Figure 4.1 show some representative resulting vario

the case of cold storage rooms the variogram models fit well to the 

some  measurements lie outside the model. The exper

tests turned out to be very sparse which might be c

the variance from the direction of the distance vec

of enough probe points in the container.
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Figure 5.1 Experimental  Variogram and models resulting from d
(a) Spheric for experiment 8(loaded cold storage ro

(experiment 10) and (c) Gauss for sea container loaded with bananas (experi

5.2.5.1 

The robustness of Kriging interpolation

parameters and therefore of the method used to fit 

errors of the resulting variogram parame

Nelder/Cressie search algorithm

Distance-Weighting model.  The results are shown in 
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Fixed range parameter for groups of experiments 

Range Model type Neighbours in range

4.7 metre Spherical 

3.4 metre Spherical 

3.25 metre Gauss 

Container Maersk, inside bananas 1.65 metre Gauss 

Container Dole, inside bananas 1.125 metre Gauss 

Figure 4.1 show some representative resulting variogram models. It can be observed how in 

storage rooms the variogram models fit well to the experimental data, only 

some  measurements lie outside the model. The experimental Variograms for the container 

tests turned out to be very sparse which might be caused by either anisotropic dependencies o

the variance from the direction of the distance vector between the pair of point or by the  lack 

of enough probe points in the container. 

  

(b) 

Experimental  Variogram and models resulting from different estimator algorithms: 
(a) Spheric for experiment 8(loaded cold storage room), (b) Gauss for partly filled truck 

Gauss for sea container loaded with bananas (experiment 11)

riging interpolation is highly dependent of the variogram model and its 

parameters and therefore of the method used to fit it to the experimental data.  The 

ariogram parameter for the grid search, the fixed model and 

Nelder/Cressie search algorithms were compared with the Null-model and the Inverse

.  The results are shown in Figure 5.2. 
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Figure 5.2 Error between prediction and measurements for diffe

estimation. Compared with the Null

A significant improvement using Kriging interpolati

Kriging method brought a 

Deterministic models for the test in cold storage r

the container tests; it brought only little advanta

sometimes even worse than the Inverse

inTable 5.2 

Table 5.2 : List of methods that gave the best relation 

Type Best method

Cold storage 

room 

Nelder/Cressie

Truck Fixed parameters

Container Grid search
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Error between prediction and measurements for different methods for Variogram 

estimation. Compared with the Null- and the IDW-model.   

 

A significant improvement using Kriging interpolation can be observed for the truck tests. 

Kriging method brought a smaller but still remarkable improvement compared w

Deterministic models for the test in cold storage room.  The worst results for Krigin

the container tests; it brought only little advantage compared to the Null

sometimes even worse than the Inverse-Distance-Weighting.  The results are summarized 

List of methods that gave the best relation  for the different types of experiments

 

. 

Best method Model type Improvement 

over Null-model 

Improvement over 

Nelder/Cressie Spherical 35.8 % 

Fixed parameters Gauss 68.5 % 

Grid search Gauss 16.1 % 

 

rent methods for Variogram 

on can be observed for the truck tests. 

smaller but still remarkable improvement compared with 

oom.  The worst results for Kriging was for 

to the Null-model and was 

.  The results are summarized 

for the different types of experiments 

Improvement over 

IDW-model 

16.0 % 

23.4 % 

1.4 % 
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Figure 5.3 Relation between Kriging Variance and actual interpolation err

methods for Variogram estimation.
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container tests, the interpolation error can be reduced by up to 68.5
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A theoretical guaranteed estimation is only given if the relation  between Kriging Variance 

is close to the unity. The results are summarized i

best results were achieved for the tests in the cold storage room where they are almost 

The worse results are for the last two container experiments at Dole

increased to values of up to 3.5; this is explained by the low number of neighbors 

inside the variogram range, with a higher number of sensors the relation should increase. 

tween Kriging Variance and actual interpolation error 

methods for Variogram estimation. 

3, depending on the type of experiment, different methods for 

Variogram estimation gave the best result for the relation . Without taking into account the 

he interpolation error can be reduced by up to 68.5 % if Kriging is used for 

the deterministic models, the Kriging interpolation is in average 

% better except for the container tests. The weighting according to 

because it gave only inaccurate Variogram parameter for two tests in the cold storage room. 

Furthermore, the relation was worse than by all other methods.  

 

between Kriging Variance 

is close to the unity. The results are summarized in Figure 5.3. 

where they are almost 

for the last two container experiments at Dole, the relation  

; this is explained by the low number of neighbors that lie 

 sensors the relation should increase.  

 

or  for different 

experiment, different methods for 
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 % if Kriging is used for 

, the Kriging interpolation is in average 

The weighting according to [65] was rejected 

 for two tests in the cold storage room. 
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The number of neighbours within the variogram range is a good indicator of a good sensor 

similar number of probe points were used for different experiment, however only 

those with many sensor inside the range  gave a good estimation as the

influence on the interpolation result. The cold storage rooms and trucks had an average 

number of neighbours in range between 24 and 30, whereas the sensor setup for the containers 

had only 3.8 or 4 neighbours in range as listed in Table 5.1 

the number of source points was incremented step by step. In order to estimate 

a threshold for the index value, Every time a point was added, the horizontal axis was 

directly display the number of neighbours in range 

. It can be observed that if the number of neighbours in range is 

higher than 10 (dotted line), the Kriging interpolation results in a lower error than the Inve

Weighting. At this index value, Kriging has also a clear benefit compared to the 

Interpolation error as function of the number of neighbours in range for experiment 
oaded cold storage room). Total number of source points marked by diamonds.

Ordinary Kriging is a Best Linear Unbiased Estimator, it is more accurate than deterministic 

methods under two basic conditions: a correct fitting of an experimental variogram to a 

enough number of informative sources.  Assuming a co
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ent experiment, however only 

d estimation as they have the most 
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model of the variogram, one way to improve the accuracy is by finding the optimal positions 

of the sensing points.  

However, repositioning of the sensors is not always possible after deployment; to solve this 

problem, it is proposed to exploit the spatial cross-correlations between the attributes; an 

attribute of interest that is sparsely sampled and a secondary attribute that is densely sampled. 

For instance, instead of deploying 50 humidity sensors, collocated temperature sensors might 

help predict humidity levels for 40 of the positions by using only 10 genuinely acquired 

measurements.  

Cokriging interpolation (CK) can be considered as a method for fusion across attributes and 

sensors. In the context of sensor networks it might bring some interesting advantages: 

according to [69], adding data from a secondary attribute to estimate the primary one, could 

only increase precision; the so-called cokriging variance can only be less than or equal to the 

KV of the same primary attribute; that also means that the certainty of the fusion is improved.  

 

The cross-variogram , that describes the statistical dependency across attributes, U and 

V corresponding to two different attributes viewed as two random processes,  comprises the 

bivariate computation of variograms. Its estimation requires measuring both attributes at each 

lag distance, subtracting the values for each attribute at each pair of points and computing the 

statistical dependency as in the univariate case; unlike the variogram, a cross-variogram might 

be negative. 

(5.11) 

The expected value E can be estimated for one pair of points by the experimental data, which 

are present in the form of a time series.  

                       (5.12) 

Multivariate models might present more varied shapes than the authorised ones and must be 

modelled jointly. One simple way to do this is as a linear combination of the basic ones, the 

so-called linear model of co-regionalisation, that is interpreted as decomposition of 

components; if a particular element of an attribute is not present in the co-regionalisation 

model, the coefficient is set to zero. Suppose we have S number of basic (h) models for the 

two attributes involved, the coregionalisation matrix for that model is: 
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                                    (5.13) 

If we define  as a matrix of simple and cross variograms at lag h and  as the set of 

basic variogram models, equation 4.13 can be written as following: 

                                                                     (5.14) 

In cokriging, the matrix  has to comply with the mentioned restrictions. The conditions 

necessary for the matrix to be positive-definite are: 

                                                (5.15) 

(5.16) 

and the linear model of co-regionalisation given by the following equation is also positive-

definite. 

                                                             (5.17) 

 

In order to understand how cokriging interpolation works, consider two attributes: U and V, 

each of them measured separately on two sets of coordinates of n and m dimensions, 

respectively. The linear estimations for each attribute at point P is given by: 

(5.18) 

                                                   (5.19) 

Similar to ordinary kriging interpolation, cokriging calculates the solution of its weights by 

assuming the following: the mean of the measurement values is independent of space and the 

expected value for the attribute difference between two points depends solely on their spatial 

distance vector. The unbiasedness condition is satisfied by: 

                                     and                 (5.20) 

The weighting factors ai, bi and ci can be calculated by solving a linear matrix equation.  

The solution of the system equation is similar to the uni-attribute case, each element of the 

solver is replaced by a 2-by-2 matrix with the main diagonal containing the values of the two 

single-attribute variograms and the two elements of the minor diagonal containing the cross-

variogram values; matrix elements containing the value of 1 and 0 are replaced by the identity 

and zero matrices, correspondingly.  
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(5.21) 

 

(5.22)

The cokriging variances for the estimation of U and V at point P are giving by: 

                            (5.23) 

For attribute U at destination point P. 

                                      (5.24)  

For attribute V at destination point P. Where are Lagrange multipliers 

5.3.2.1 

In cross-attribute fusion terminology, the completeness can be improved by bringing new 

information where there is lack of it. CK is able to perform such task by supporting the 

primary variable interpolation with measurements of the second one, the so called under-

sampling case. However, several factors regarding the cokriging interpolation procedure have 

to be taken into account; the calculation of experimental cross-variogram pairs can only be 

calculated for those measurement points where both variables are available. If, for example, 

variable V is not present at the measuring point, the elements  in matrix 

 cannot be calculated. 

(5.25) 

The first implication requires only the inclusion of an additional algorithm to group those 

measurements points in which both measurements are available. However, the second 

requires more complex modifications in the cokriging solver and the fitting algorithm.   

Regarding the solver, each non-common measurement reduces the dimensions of the left 

matrix by one row and column and the column dimensions of the other by one column. 

Suppose that there is no measurement for variable V at point P when we have three source 

points, then the solver is as follows: 
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=   (5.26)

5.3.3 Fitting the linear model of coregionalization 

fitting is an important technique in multi-sensor data fusion [42]. It is commonly used 

to fuse across one single attribute. In order be able to perform cross-attribute fusion using 

cokriging interpolation is required to find the set of S positive-definite coregionalisation 

matrices that fits the best the experimental variograms. The followed approach was proposed 

by Goulard and Voltz (GV) [75]; they use an iterative algorithm to fit the S coregionalisation 

matrices B that minimize the following weighted sum of squares (WSS):

(5.27)

The weights are positive and/or proportional to the number of pairs at each lag h. The idea of 

the algorithm is to minimise the weighted sum of squares by optimising each matrix at each 

iteration and stopping when WSS cannot decrease any more. The algorithm converges to a 

unique solution that is always reached [76]. 

The core part of the algorithm lays the decomposition of each matrix  into a scalar product 

between matrices, being V, a positive-definite matrix. 

 with (5.28) 

 is a diagonal matrix containing the eigen values in decreasing order and  is the matrix 

of eigenvectors. The constrained solution is obtained by setting to zero any negative entry in 

 to obtain  and by replacing  with  

                                                                     (5.29) 

The disadvantage of such a method is that the algorithm requires knowledge of all 

measurements, which is impossible in the case of under-sampled sampling. 

Automatic fitting in the presence of under-sampled sampling implies dealing with missing 

values in the sample variogram matrices. An approach to solve this problem is proposed by 

Emery [77]. He solved the heterotopy problem by modifying the Goulard-Voltz algorithm to 



- 53 - 

 

minimise the weighted sum of squares for each one of the elements in matrix B and extending 

the WSS to the double of the lags. 

(5.30) 

Where the lags and weights from the K-th element are set conveniently as: 

 

        and       (5.31)  

Each optimal element of the matrix Bs is found by cancelling out the partial derivative of 

WSS with respect to : 

(5.32) 

 

Firstly, it was decided to find the proper linear co-regionalisation model for each of the 

experiments. As mentioned in [76], in practice, the number of selected structures should not 

exceed three. Combinations of Spherical, Gaussian and Exponential models were tested; 

additionally, the nugget model is always taken into consideration as a contributor. Linear 

combinations of these basic structures will be able to present more complex shapes than 

simple structures [69].  

Through simulations, it was observed that a good fitting is not necessarily an indicator of a 

good variogram model, as the nugget might result to be excessively high. However, it was 

decided to always include a nugget model and use it as an indicator of a correct selection 

model. The rest of the models were included to determine whether they achieve a good fitting 

without increasing the nugget. An Exponential model better characterised the variations inside 

the container for large ranges. It was able to fit a wide interval of range values without 

increasing the nugget value and was taken as the main variogram. The following task was to 

determine the third variogram model with a lower range. The Gaussian model always had bad 

fitting results, whereas the Exponential model with lower ranges often led to a good fitting.  

Table 5.3 and Table 5.4  show the automatic fitting results for both experiments. The average 

relation between the predicted CK standard deviation  and the actual error for each 

destination point is used as a measure of the accuracy of the model as suggested by 

Wackernagel [69]; it should be about 1. 
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Table 5.3 Automatic fitting results for an empty container 

Ranges Predominant 
Model? 

WSS   
Exponential Spherical Min Max Min Max 

5.5 4.7 No .1044 1.7 2.19 1.44 2.46 

5 4 Spherical .099 1.63 1.84 1.6 2.43 

4 2.7 No .098 1.42 1.76 1.42 2.39 

3 2 No .107 1.23 1.74 1.42 2.39 

3 1.7 Exponential .108 1.21 1.77 1.44 2.39 

 

Table 5.4Automatic fitting results for a container with pallets on the floor 

Ranges  WSS   
Exponential Spherical Min Max Min Max 

5.5 4.7 Spherical .30 .34 1.06 .76 2.14 

5 4 Spherical .39 .32 .98 .76 2.12 

4 2.7 Exponential .57 .17 .94 .70 2.18 

3 2 Exponential .71 .15 .94 .69 2.19 

3 1.7 Exponential .71 .15 .94 .69 2.19 

 

They show whether the results sills are predominantly spherical or exponential and also offer 

a quick overview of the maximum and minimum relation and epsilon results after applying 

cokriging interpolation.  

The selected ranges are highlighted in the tables; Table 5.5 shows the numerical values of the 

sills for both experiments using those ranges and Figure 5.5 shows the experimental and co-

regionalisation model for the experiments when pallets are placed on the floor. 

Table 5.5 Resulting sill and range values for the best selected model 

 Empty Container Container with pallets 

T T-H H T T-H H 

Nugget 0 0 0 .01 0 0 

Exponential 0.17/3 -.46/3 1.4/3 0.03/5 .016/5 0/5 

Spherical 0.07/2 -.29/2 1.24/2 1.42/4 -2.86/4 5.75/4 

 



 

(a)   

 

Figure 5.5 Experimental and theoretical variogram and cross

pallets on the floor: (a) Temperature, (b) Temperat

theoretical variogram is calculated as the sum of a

parameters according to Table 3 and nugget = 0.
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(b)  

Experimental and theoretical variogram and cross-variogram for container with 

pallets on the floor: (a) Temperature, (b) Temperature-Humidity and (c) Humidity. The 

theoretical variogram is calculated as the sum of an exponential and a spherical model with

parameters according to Table 3 and nugget = 0. 

In order to determine if CK interpolation brings any advantage over single

when humidity is taken as the primary attribute and temperature as the support attribu

resulting average error was plotted against the number of source humidity sensors used for 

interpolation. Two cokriging cases are plotted on the same graph: when the same number and 

positions of humidity and temperature measurements are used (isotopic case) and when the 

same number of humidity measurements is used but when the complete set of temperature 

measurements is taken as support. Figure 5.6 shows the three mentioned plots for both 

experiments and two important observations can be made. Firstly, CK interpolation does not 

bring any advantage over OK if the temperature and humidity measurements are collocated 

(isotopic case), the plots are superposed, containing practically the same values and making 

hard to visualize the differences between them; secondly, the interpolation error improves 

significantly in the heterotopic case when all temperature measurements are taken as support.

(c)  
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(a) (b) 

Figure 5.6 Comparison of Average Interpolation Errors of single-variable kriging and 
cokriging: (a) Empty Container, (b) Container with pallets on the floor 

For the best case for the container with pallets on the floor, if only four humidity sensors are 

available, the interpolation error improves from about 2.1 to 0.9. For comparison, if OK is 

applied, twelve humidity sensors are required to achieve an interpolation error lower than one. 

Despite the demonstrated significant advantage of using CK to reduce the number of humidity 

sensors while reducing the average error, the previous exemplification was done using all of 

the temperature points as a support. In general, adding either temperature or humidity 

measuring points reduces the average interpolation error and the CK variance.  

Figure 5.7 shows the three-dimensional plots for the CK interpolation error for both 

experiments when both the humidity and temperature measurement points are increased from 

four to twelve. As expected, the higher the number of sensors, the lower the interpolation 

error; the method shows to have submodularity, the rate at which it decreases seems to be 

non-linear. A small decreasing rate is obtained with more than twelve sensors, that is the 

reason why these points are not plotted. The next step is then to determine the minimum 

number of sensors required in order to achieve an interpolation error lower than a selected 

threshold. 

 



 

(a) 

 

Figure 5.7 Average Interpolation Errors of cokriging vs. Numbe

Sensors: (a) Empty Container, (b) Container with pa

5.3.5.1 Certainty of the estimations 

Figure 5.8 shows the three-dimensional plots for the estimation variance in bo

when both the humidity and temperature measurement 

twelve. As Figure 5.7 the higher the number of sensors, the lower varianc

graphs and the estimation graphs are compared, it c

in shapes and values, that is an indicator of a proper fitting of experimental

model of coregionalization and cross

the experimental results.  

(a) 

 

Figure 5.8 Average CK Variance vs. Number of Humidity and Temp

Container, (b) Container with pallets on the floor
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(b) 

Average Interpolation Errors of cokriging vs. Number of Humidity and Temperature 

Sensors: (a) Empty Container, (b) Container with pallets on the floor. 

Certainty of the estimations  

dimensional plots for the estimation variance in bo

when both the humidity and temperature measurement points are increased from four to 

the higher the number of sensors, the lower variance, if the 3D accuracy 

graphs and the estimation graphs are compared, it can be observed that they are very similar 

is an indicator of a proper fitting of experimental

model of coregionalization and cross-validates the theoretical guarantees of the methods

 

(b) 

Average CK Variance vs. Number of Humidity and Temperature Sensors: (a) Empty 

Container, (b) Container with pallets on the floor 

 

r of Humidity and Temperature 

dimensional plots for the estimation variance in both experiments 
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the higher the number of sensors, the lower variance, if the 3D accuracy 
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is an indicator of a proper fitting of experimental data to the linear 

validates the theoretical guarantees of the methods with 
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5.3.6 Accuracy of the estimation under incompleteness 
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Figure 5.9 Average Interpolation Errors lower than the thresho
Container with pallets on the floor.

 

Table 5.6 shows that in the case of the empty container, 

does not bring any advantage in reducing the number

achieve more accurate predictions with the same number of humidity

taking the temperature measurements as support. 
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Accuracy of the estimation under incompleteness  

5.7 and Figure 5.8, CK interpolation does bring more accurate 

interpolation errors over OK. It tends towards the same accuracy value with only a few 

sensors but it does not improve in a significant way the lowest interpolation error achieved by 

ordinary kriging, which is 1.42 and 0.76 for an empty container and a container with pallets, 

respectively. The main advantage is in reducing the required number of humidity sensors.

In order to illustrate the applicability of CK in reducing the number of measuring points

thresholds: 1.55 and 0.85, that correspond to a 10% increase of the interpolation errors 

obtained for both experiments, were selected. The same Matlab scripts that produced the plots 

were run but in this case, with the aim of clarity, all points exceeding the 

respective threshold were set to NaN (Not-a-Number). The plots then were rotated so as to be

Figure 5.9 shows that view: It can be seen that robustnees of 

method to achieve good estimates with low variability, due to the submodula

measurements does not necessarily increase the accuracy of the estimation

achieved are the ones inside the red circles. Only 3 combinations for 

the empty container and 6 of the container with pallets exceeded the established thresholds. 

 

(b) 

Average Interpolation Errors lower than the threshold: (a) Empty Container, (b) 
Container with pallets on the floor.  

shows that in the case of the empty container, that has low variability, the use of CK 

does not bring any advantage in reducing the number of humidity sensors; however, it can 

curate predictions with the same number of humidity measurements when 

taking the temperature measurements as support.  

, CK interpolation does bring more accurate 

same accuracy value with only a few 

st interpolation error achieved by 

ty container and a container with pallets, 

 required number of humidity sensors. 

ty of CK in reducing the number of measuring points, two 

 increase of the interpolation errors 

ame Matlab scripts that produced the plots 

 all points exceeding the 
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Table 5.6 Number of Humidity Sensors required for OK and CK interpolations that comply 

with different thresholds when the container is empty. 

Threshold Number of 

combinations 

Combination with 

minimum sensors for 

humidity 

Number of humidity points 

required for kriging 

 T 

1,43 66 7 9 ----- 

1,44 111 7 9 7 

1,49 201 6 9 6 

1,59 283 5 9 5 

1,71 297 4 9 4 

 

Table 5.7shows that when the variations are higher, cokriging interpolation is able to reduce 

the number of humidity sensors required for OK.  

Table 5.7: Number of Humidity Sensors required for Ok and CK interpolations that comply 

with different thresholds when the container has pallets on the floor. 

Threshold Number of 

combinations 

Combination with 

minimum sensors for 

humidity 

Number of humidity points 

required for kriging 

H T 

0,76 68 8 17 --------- 

0,77 74 7 17 18 

0,8 103 7 17 12 

0,82 143 7 12 8 

0,9 180 4 17 7 

 

5.3.7 Fitting the linear model of co-regionalisation under incompleteness 

As mentioned before, fitting the proper co-regionalisation model is the basis for CK 

interpolation. The theoretical guarantees of the interpolation are void if the model is not 

properly fitted. The main factor affecting this is the lack of sufficient measurements either 

from the primary or secondary attribute. The method developed by Emery takes into account 

the absence of such measurements but still needs to be verified as to whether the method fits 

proper sills under highly heterotopic cases.  



 

In order to do so, the method described 

each combination of number of humidity and temperat

procedure, described in section 

interpolation at that specific point. In order to c

all measurement points are available with those res

absolute value of the difference between them is pl

the difference is close to zero in most of the comb

between the interpolations errors when the point co

are set to Nan. It can be observed that approximate

measurements are required in order to achieve the s

Figure 5.10 Difference between Interpolation Errors when the mo

measurements and when it is fitted in the under
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do so, the method described in section 4.3.5 was run again. However, this time, at 

each combination of number of humidity and temperature points the variogram fitting 

section 4.3.3, is run and the resulting sills are used for the 

interpolation at that specific point. In order to compare the interpolation errors obtained when 

all measurement points are available with those resulting from the heterotopic case, the 

absolute value of the difference between them is plotted. The results are surprisingly good; 

the difference is close to zero in most of the combinations. Figure 5.10 shows the difference 

between the interpolations errors when the point combinations exceeding a threshold of 0.05 

are set to Nan. It can be observed that approximately 8 humidity and 10 temperature 

measurements are required in order to achieve the same results as in the fully

Difference between Interpolation Errors when the model is fitted with all 

measurements and when it is fitted in the under-sampled case for the empty container.

was run again. However, this time, at 

ure points the variogram fitting 

, is run and the resulting sills are used for the CK 

ompare the interpolation errors obtained when 

ulting from the heterotopic case, the 

ts are surprisingly good; 

shows the difference 

mbinations exceeding a threshold of 0.05 

ly 8 humidity and 10 temperature 

ults as in the fully-sampled case. 

 

del is fitted with all 

sampled case for the empty container. 
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One of the inherent constraints in WSN is the impossibility of deploying dense number of 

sensors; to cope with it; spatial interpolation is proposed to estimate the value at the positions 

that  are not covered by a sensor. Deterministic methods exist but their disadvantage is the 

lack of theoretical guarantees.  

The Kriging method is a useful tool to interpolate a physical property for points where no 

sensor is available and provides theoretical guarantees through the use of the so-called 

Kriging variance. It can be used as an offline-tool to estimate to which amount the number of 

sensors can be reduced for a supervision task. The theoretical guarantees are only valid if the 

theoretical model is properly fitted to an experimental variogram and if sufficient number of 

neighbours lie into the variogram range.  

The most suitable method to verify the correctness of the variogram model is based on the 

i/ k  relation.  The best results were achieved either by the Nelder-Mead algorithm combined 

with the weighting according to Cressie or by setting the nugget by known sensor tolerances 

and the range by an average value of previous experiments. If the average number of 

neighboring sensors within the Variogram range is sufficient, the Kriging method provides an 

interpolation, that is in average 20% more accurate than that of the inverse-distance-weighting 

used as the reference method.  

If the attribute of interest is not densely sampled, and only few sources are inside the 

variogram range, Kriging interpolation offers few or no advantage over deterministic 

methods. Fortunately, by fusing the available information with the information a secondary 

correlated attribute is possible to perform accurate and theoretical guaranteed estimations  

Cokriging interpolation, considered as a cross-attribute fusion technique, guarantees 

theoretical performances under the assumptions that the experimental variograms are 

correctly fitted to a theoretical co-regionalisation model, that has to be positive-definite. This 

makes it possible to fuse different attributes to improve spatial coverage of an “expensive” 

attribute with observations at a finite number of locations of a “cheap” one without the 

repositioning of the sensors.  It produces Best Linear Unbiased Estimation (BLUE) and 

estimate corresponding variances.  

The best fitting results in the fully-sampled case are obtained when the weights are set 

directly proportional to the number of pairs and inversely proportional to the distance. The 

Exponential model gives good fitting without increasing the nugget for several sets of ranges; 
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it is preferred if a Spherical model is added. The algorithm developed by Emery has shown to 

be robust against the lack of primary and support attributes.  

The cross-attribute fusion process proved to improve the completeness of the system. In the 

case of under-sampled humidity points, such that all temperature points are used and only 

some humidity ones, both the accuracy and variance are significantly improved, if the number 

of humidity sensors is fixed, adding temperature sensors improves the accuracy.  It can be 

concluded that if high accuracies are required, cokriging interpolation is able to reduce the 

number of humidity sensors. As an example, to achieve an accuracy of 0.76, the number of 

humidity sensors can be reduced from eighteen to seven. 
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6.1 Introduction 

It can be said that ubiquitous applications are inherently heterogeneous. There are three 

common types of heterogeneity in wireless sensor networks: computational heterogeneity, 

link heterogeneity and energy heterogeneity [78].   

Energy heterogeneity: means that some nodes are battery operated and have lifetime 

expectancy, while others are line powered.  

Computational heterogeneity: means that some of the nodes have more computational 

capabilities than others. They may have more powerful microprocessor and biggest memory 

capacity.  

Link heterogeneity: means that some nodes have limited communication ranges and 

bandwidths.  

The Java programming language was developed by Sun Microsystems and was designed to 

offer a programming language, able to support flexible solutions to address diverse hardware 

(heterogenous) devices. In some cases, when the algorithms are so complex to be deployed in 

sensor nodes, the gateway must perform centralized processing.  

 

On one hand, as mentioned in chapter 2, the main issues to consider for flexibility and 

maintenance in WSN are [8]: Integrity checking, version control, heterogeneity management, 

activation mode, and performance. On the other hand, the main characteristics of Java are 

[79]: portability, robustness, security, object orientation, multithreading and synchronization.  

• Version control and Integrity checking, that is, prevention of version mismatch. The 

use of java-based technologies such as OSGi allows version control, high modularity, 

and dynamic programming. 

• Heterogeneity management of sensor nodes. The high acceptance of Java in the 

programming community is mainly due to its portability. It is based on the concept of 

“write once, run anywhere” (WORA). Java applications are capable of executing in 

diverse hardware and operating systems. 
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• How software would be activated. Depending of the Java technology and 

configuration used the activation can be automated after installation or remotely 

activated by an on-line command. 

• Performance. The time required to update nodes as wells as tradeoffs between time 

and energy Being Java an interpreted language, it requires a Java virtual machine 

(JVM) and the required application programming interfaces (APIs) to be installed, 

implying minimum requirements in memory and lower energy performances.  One 

way to make a trade off is by measuring the time required for the algorithms to run in 

the hardware platforms to calculate the total current draw and estimate life 

expectancies. 

 

Java is an interpreted language. The program code is compiled into bytecode that is a code 

that can be executed in a platform-independent way. The bytecode can be interpreted in any 

computer that has a Java virtual machine (JVM) and all required application programming 

interfaces (APIs) installed.  Together the JVM and the APIs form the Java platform.  

Insulation the application from the platform comes with a cost: Java solutions are often 

associated with high costs in terms of resource consumption [80].  Only some devices can 

benefit from the solutions Java environments offers in terms of connectivity, modularity and 

dynamic features. 

Java was split into four core technologies shown in Figure 6.1 [79]. JavaSE is the standard 

platform for programming in the Java language. It consists of a Java virtual machine for 

executing the compiled class-files (the Java program) and a set of libraries that makes it 

possible to access, e.g. the file system, graphical or network interfaces from a Java program. 

We will focus on Java Micro Edition (JavaME ) which was created to be deployed in resource 

constrained devices.  

 



 

Figure 6.1 Java technologies [79]

6.3.1 JavaME 

The Java Micro Edition (JavaME) is aimed at embedde
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- 65 - 

[79] 

The Java Micro Edition (JavaME) is aimed at embedded systems, e.g. mobile phones with 

limited resources. Sun released a cut-down version of the JVM that required less than 10%

the resources required for Java SE. The removed functionalities from JavaSE include

allowing dynamic software updates such as reflection, advanced thread control

defined class loaders; memory management such as automatic object finalization

from and to a native application through the use of the Java Native Interface (JNI).

opted for creating a pluggable architecture to make it more flexible. Java ME consists of:

The Connected Device Configuration (CDC) includes almost the entire scope 

related libraries. The Connected Limited Device Con

(CLDC) only contains the minimum amount of classes necessary to enable the operation of a 

Adds a certain set of API, and optional packages for additional functionality 

A profile can be chosen that fits the desired target application. 

For example, the Mobile Information Device Profile (MIDP) for mobile devices such as 

mobile phones, or the Personal Profile for consumer electronics. Applica

on the former profile are called MIDlets. 

These APIs provide general-purpose functionalities and add extra 
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down version of the JVM that required less than 10% of 
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reflection, advanced thread control and user-

utomatic object finalization and calls 

hrough the use of the Java Native Interface (JNI).They also 

 it more flexible. Java ME consists of: 

lmost the entire scope 
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necessary to enable the operation of a 

r additional functionality in 

fits the desired target application. 

(MIDP) for mobile devices such as 

 electronics. Applications written based 

purpose functionalities and add extra 
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Figure 6.2 Architecture for CLDC and MIDP [79] 

6.3.1.1 

In JavaME, the activation and deactivation of the programs is done by commands. A device 

running a Mobile Information Device Application (MIDlet) has an environment that enables 

the user to choose MIDlets for installing, starting and removing. This so called Application 

Management Software (AMS) to control the life-cycle is responsible for the interaction with 

the user as well as for error handling. MIDlets have three possible states paused, active and 

destroyed.  

In paused state, the application is non-active; this state is entered in one of three ways: after 

the MIDlet has been instantiated, if the AMS calls pauseApp() method, if an exception has 

been thrown. The active state is entered once the AMS invokes the startApp() method. When 

a MIDlet is in paused mode, it can be turned active by calling the startApp() method.  The 

destroyed state can only be entered once and is done when the AMS invokes the destroyApp() 

method, all resources used by the MIDlet are released. 

 

 



 

Figure 6.3 MIDlet Lifecycle [79]

6.3.1.2 Modularity  

Strictly speaking, JavaME is not modular, however b

Management System (RMS)

communication between MIDLETs. 

compromising system security.  It stores binary data in a 

and updates the records.  

Figure 6.4 . Overview of J2ME RMS and MIDlet interfacing 

With RMS, a  MIDlet can access record stores created of other MI

access MIDLETs of other suites if the MIDlet that c

record is like nonvolatile device memory, it stays 

only way to destroy the data is if its progr
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Strictly speaking, JavaME is not modular, however by using the so

Management System (RMS), introduced from MIDP2.0, it is possible to 

communication between MIDLETs. It allows a MIDLET to store persistent data without

ising system security.  It stores binary data in a record: MIDLETS can add, remove, 

 

. Overview of J2ME RMS and MIDlet interfacing [81] 

MIDlet can access record stores created of other MIDlets. It is also possible to 

access MIDLETs of other suites if the MIDlet that created it allows it. The data inside the 

record is like nonvolatile device memory, it stays in the device even if it is switched

only way to destroy the data is if its programmatically removed. 

 

y using the so-called Record 

is possible to establish 

It allows a MIDLET to store persistent data without 

record: MIDLETS can add, remove, 

It is also possible to 

reated it allows it. The data inside the 

in the device even if it is switched-off. The 
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6.3.2 OSGi 

“Java runs everywhere” is not completely true. Java technologies has been divided into Java 

EE, SE and ME to cope with computational heterogeneity. Ubiquitous applications must be 

modular, version-controlled and dynamic. To add such functionalities, the Open Services 

Gateway initiative framework (OSGi) can be used. OSGi enables the update, addition or 

replacement of Java-based applications during runtime, for example over an internet 

connection without being on site and without requiring restarting the devices.  

The OSGi specifications are produced by the OSGi Alliance [82]. There are open source 

frameworks available for the current specification “OSGi Service Platform Release 4“ (R4), 

namely Apache Felix, Eclipse Equinox and Makewave Knoplerfish and commercial OSGi 

frameworks such as ProSyst Software mBedded Server and Makewave Knopflerfish Pro to 

name two of them. 

6.3.2.1 OSGi concept of modularity 

To achieve modularity, the OSGi framework utilizes a so-called Service Registry and the 

concepts of bundles and services. Bundles executing within OSGi are independent of each 

other, yet they communicate. They are basically Java JAR files equipped with a manifest that 

describes their identity, version and dependencies form and to other bundles. Import packages 

states that the bundle depends on the specified bundles, exporting states that bundles are 

required by other bundles. Versions and version ranges can be specified for each package. 

Bundles can be installed started, updated and uninstalled dynamically. Once a bundle is 

successfully installed, it becomes resolved if all dependencies are met.  Once resolved, it can 

be automatically or manually started. At any point the bundles can be stopped, restarted or 

uninstalled.  



 

Figure 6.5  Bundle Lifecycle [83]

Dynamic communication can be done by using 

registers/acquires and unregister/releases the serv

called OSGi service registry.  

6.4 Selected Hardware Platforms
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unit to distributed platforms [84]
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Dynamic communication can be done by using services. A bundle dynamically 

registers/acquires and unregister/releases the services it provides and consumes in the so

 

Platforms 

e of the basics of autonomous control in logistics is to shift processes from a  centralized 

[84]. Regarding ubiquitous systems, shifting the proces

level to the sensor level, if the data is processed locally, radio communication is 

time of the nodes preserved. The high-level programming language Java 

enables platform independent object oriented programming. To verify the 

shifting the process to the sensor level, off-the-shelf gateways and sensor nodes have been 

selected, JVM and OSGI installed if required and time measurements were performed.

elematics units are equipped with extended communications possibilities like 3

generation mobile telecommunications (GSM / UMTS) and wireless LAN. Additionally, it is 

possible to get geodata via the global positioning system (GPS) and hard disk storage allows 

Table 6.1 shows selected characteristics for each hardware pl

The VTC 6100 from Nexcom is used as a reference platform; tt is equipped with an

processor (1.6 GHz) and 2 GB of main memory. The DuraNAV serves as an exemplary 

platform for lower power consumption; it utilizes an ARM architecture CPU (400 MHz) and 

. Both can run different Java VMs and different OSGi implementations

 

A bundle dynamically 

ices it provides and consumes in the so-

is to shift processes from a  centralized 
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level programming language Java 
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Figure 6.6 VTC 6100 Plattform

6.4.2 Sensor Level 

The selection of the sensor nodes

of the required algorithms in terms of 

nodes, the installed Java virtual machine (JVM)

interfaces (APIs) play also a role regarding the memory and CPU requi

affecting the performance metrics can be

• Hardware configuration in terms of processor mod

• The operating systems environm

• The algorithm being tested

• The Java Virtual Machine being used

• The Java libraries being used (if any)
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Table 6.1 Telematic platforms 

 DuraNAV VTC6100 

CPU  

 

(MHz) 

PXA255  

 

(400) 

N270 

 

(1600) 

RAM 64 MB 1 GB 

OS Linux Linux 

Java  

Edition 

SE SE 

 

VTC 6100 Plattform [86] 

sensor nodes is of crucial importance for the analysis of the pe

of the required algorithms in terms of energy consumption. Regarding java

virtual machine (JVM) and the required applic

play also a role regarding the memory and CPU requi

the performance metrics can be: 

Hardware configuration in terms of processor model, clock speed and memory size

The operating systems environment 

algorithm being tested 

The Java Virtual Machine being used 

The Java libraries being used (if any) 

 

is of crucial importance for the analysis of the performance 

energy consumption. Regarding java-enabled sensor 

application programming 

play also a role regarding the memory and CPU requirements. Factors 

el, clock speed and memory size 
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Three sensor nodes platforms were selected. Two of them are Java-enabled and provide a 

virtual machine to execute Java code: The Oracle SunSPOT [87] and Virtenio Preon32 [88] 

that are described below. As a third option, Linux operating system, JamaicaVM [89] and 

JavaSE was installed  an iMote2 sensor from Crossbow [90]. Details can be seen in Table 6.2  

Table 6.2 Sensor Plattforms 

 Imote2 Sun 

SPOT 

Preon3

2 

CPU  

 

(MHz) 

PXA 

271  

(416) 

SAM 

9G20 

(400) 

Cortex-

M3 

(72)  

RAM 32 MB 1 MB 64 kB 

OS Linux None None 

JVM any Squaw

k 

Custom  

Java  

Edition 

SE ME  

CLDC 

1.1 

ME  

almost 

CLDC 

1.1  

 

6.4.2.1 Oracle SunSPOT 

The sensor node “Sun Small Programmable Object Technology” (SunSPOT) ) is a mote 

developed by Sun Microsystems, currently available in an 8
th

 revision. As can be seen in 

Figure 6.7, it has a modular setup with three different layers: processor board, sensor board, 

and a  3.6V Li-Ion Battery that can be charged via USB. The processor board contains as a 

CPU an ARM-architecture AT91SAM9G20 with a clock rate of 400 MHz , 1 MB of RAM  

and  Flash memory of 8 MB.  



 

 

Figure 6.7 Oracle SunSPOT is Squawk

Its proprietary Java Virtual Machine (JVM)

Squawk is a JavaME VM that 

mostly written in Java. Squawk utiliz

represented as an object. This allows common suites

applications that run in the single JVM 

footprint. Furthermore, Java c

but combined in a suite and prelinked to each other

one third of the original size. The omission of dyn

suites significantly decreases the start up time of the ap

communication the CC2420 

consumption in run mode with all processors and radio running betw

[87]  

6.4.2.2 Virtenio Preon32 

The Preon32 developed by the company 

system. The main board can be connected to a sensor board with several ava

temperature, humidity, acceleration, light and many

ARM-CPU at 72 MHz.  The working memory has a size of 64 kB

flash memory of 256 kB. 
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is Squawk sensor node [87] 

Java Virtual Machine (JVM), called Squawk runs without an operating system. 

that is targeted from small resource constrained devices. Its core is 

Squawk utilizes the concept of isolates, where an application ca

represented as an object. This allows common suites to be shared between multiple 

applications that run in the single JVM that  can lead to a significantly reduced memory 

classes are not transferred directly to the executio

but combined in a suite and prelinked to each other, that results in a reduced size of around 

one third of the original size. The omission of dynamic class loading in these immutable 

significantly decreases the start up time of the applications. 

 radio chip is utilized; it supports IPv6.  

run mode with all processors and radio running between 70mA and 120 mA. 

developed by the company Virtenio is depicted in Figure 6.8
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Figure 6.8 Virtenio Preon32 Sensor Node 

Virtenio developed for it a proprietary 

JavaME based and access to native applications is n

allows access to hardware components like the radio 

Java Native Interface (JNI). For wireless communica

Support for IPv6 is currently under development.

model of 28,3mA(at 72 MHz)

6.4.2.3 iMote 

iMote2 sensor node from Crossbow 

XScale processor that can run at a clock speed of up to 416 MHz

and non-volatile memory, a power management IC

and an antenna. Furthermore, it allows stack

additional devices, such as, temperatures

The devices were enabled with JamaicaVM, running ov

of it, OSGi framework was installed 

Linux operating system for the iMote2 does not supp

ARM processor. For the evaluation of power consumption of the iMot

was measured over a 1 Ohm resistor in series with the p

connected in parallel to it.  The CPU of the iMote2 consumes 50 mA r

speed.  
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Virtenio Preon32 Sensor Node [88] 

developed for it a proprietary Java virtual machine. Unlike, 

JavaME based and access to native applications is not possible, Virtenio

ccess to hardware components like the radio that are written in C and 

Java Native Interface (JNI). For wireless communication the ATRF231 radio chip is utilized. 

Support for IPv6 is currently under development.  It has an current consumption in

model of 28,3mA(at 72 MHz).  

iMote2 sensor node from Crossbow [90] is a sensor platform with a powerful

can run at a clock speed of up to 416 MHz , it is integrated with vo

volatile memory, a power management IC to go to deep-sleep mode, a transceiver, 

and an antenna. Furthermore, it allows stack ability of additional modules to interconnect 

additional devices, such as, temperatures sensor cards.  

The devices were enabled with JamaicaVM, running over a Linux operating system

was installed to enable features such as dynamic software

Linux operating system for the iMote2 does not support low-power deep sleep mode

For the evaluation of power consumption of the iMote2 the supply current 

measured over a 1 Ohm resistor in series with the power supply wire, with a test

The CPU of the iMote2 consumes 50 mA running on full clock 

Unlike, SunSPOT, that is 

ot possible, Virtenio’s implementation 

written in C and through the 

tion the ATRF231 radio chip is utilized. 

It has an current consumption in active 

powerful  ARM PXA271 

integrated with volatile 

sleep mode, a transceiver, 

ability of additional modules to interconnect 

Linux operating system. On top 

to enable features such as dynamic software updates. 

power deep sleep modes of the 

e2 the supply current 

ower supply wire, with a test probe 
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Figure 6.9 Crossbow iMote2 sensor node 

6.5 Algorithms for data fusion

Several algorithms have been selected to 

data fusion related algorithms described from chapt

benchmarks such as Dhrystone and Linpack, and cold

calculation of shelf life as function of temperature deviation

temperature profiles. 

6.5.1 Standard Benchmarks

In times when personal computers appeared and these

with today’s ones, “standard” benchmarks were desig

1. Benchmarks specially designed to test performance i

string processing, for example word processors.

2. Benchmarks specially designed to test the speed of 

performance was measured in Mflops (millions of point instruction per 

We have selected one benchmark from each category to test the platfo

numeric applications and Linpack 

6.5.1.1 Dhrystone 

The main characteristics of Dhryston

• It contains no floating point operations

• A considerable percentage of time is spent in string

• It contains hardly any tight loops so in the case of

instruction accesses  will be misse

• Only a small amount of global data is manipulated 
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Crossbow iMote2 sensor node [90] 

fusion, analysis and reduction 

algorithms have been selected to be tested in the platforms. These include not only 

data fusion related algorithms described from chapters three and four, but also “standard” 

benchmarks such as Dhrystone and Linpack, and cold-chain specific algorithms such as 

as function of temperature deviation, and prediction of future 

Standard Benchmarks 

In times when personal computers appeared and these were resource constrained compared 

with today’s ones, “standard” benchmarks were designed; they fall into two categories: 

Benchmarks specially designed to test performance in non numeric applications and 

string processing, for example word processors. 

Benchmarks specially designed to test the speed of floating point operations. The 

sured in Mflops (millions of point instruction per 

one benchmark from each category to test the platforms: 

Linpack for numeric applications.  

of Dhrystone benchmark are [91]: 

t contains no floating point operations 

considerable percentage of time is spent in string operations  

t contains hardly any tight loops so in the case of very small caches the 

instruction accesses  will be missed 
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floating point operations. The 

sured in Mflops (millions of point instruction per second) 

rms: Dhrystone for non-

 very small caches the majority of 
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• There are two versions of the Dhrystone benchmark. We selected version 2.1 that is 

the latest one. 

6.5.1.2 Linpack 

The main characteristics  of the Linpack benchmark are [91]:   

• It has a large percentage of floating point operations (division is not used); 

• It uses no mathematical functions  

• There are no global variables; operations being carried out on local variables results 

are for single or double precision operations  

• The benchmark relies heavily on the libraries being used 

6.5.2 Cold-Chain specific algorithms 

Through this section, it will be demonstrated that if the sensor data is processed locally, the 

radio communication between hop nodes can be drastically reduced, the costs related to 

satellite communication avoided and eventual quality losses due to air flow obstacles 

detected. But what is the relation between the environmental parameter surrounding the 

refrigerated perishable goods and the quality losses? We have to take into account that 

perishable goods, are subject to metabolic processes For example, bananas are “breathing”: 

they ingest oxygen and exhale CO2 and the plant hormone ethylene (C2H4) that generates 

additional heat, furthermore, the final quality of the product depends directly on the severity 

of the temperature deviations  during transportation. Two cold-chain specific benchmarks 

were selected.  The aim of their inclusion is to verify if it is possible to shift the decision 

making to the sensor node layer: temperature prediction and the estimation of bacterial 

growth as effect of the temperature.   

6.5.2.1 

The future temperature values inside a refrigerated container during transportation can be 

made through system identification techniques, that estimate the parameters of a modeled 

system. Specially fitted to resource constrained devices are the recursive representations of 

such algorithms due to their low memory and CPU requirements when compared with the 

offline counterparts.  

In order to model the effect of the thermal energy generated by the ripening of bananas, the 

so-called Feedback-Hammerstein model [26] is used. As can be seen in  
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Figure 6.10, it uses a static pseudo-linear feedback to take the effect of organic heat into 

account. In the case of meat, the cargo does not produce organic heat and the linear feedback 

block of the model is removed, the system is considered to be linear.  

 

 

 

 

 

 

 

 

Figure 6.10 Model of the Feedback-Hammerstein-algorithm [26] 

In the model  is a key parameter that characterizes the heat production in Watts, is a constant, 

that  is fixed for a certain type of fruit and ripening-state,  is a scaling factor, that depends on 

the amount of food and is given in kilograms, b1 is the zero of the first-order linear system 

and  is the pole of an equivalent pseudo-linear system. In total, three parameters for the 

equivalent system are estimated ( ) and are updated after each measurement. 

The model parameters of the FH and linear system have to be estimated by a parameter 

adaptation algorithm. The recursive form of this algorithm is given by the following 

equations:  

ΘΘΘΘ(t+1)=ΘΘΘΘ(t)+ ( 6.1) 

(t-1)                                                ( 6.2) 

( 6.3) 

( 6.4) 

Where   and Θ(t) are the so-called observation and parameter vector correspondingly. 

The arrangement of the elements depends on the considered model, as shown in Table 6.3. 

+ 

+ + 

+ 
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The prediction error is described in equation 5.2,  is an adaptation matrix to perform 

the minimization of using Recursive Least Squares method, and is the observation matrix that 

contains the input and the output data. As can be noted not any matrix inversion is needed. 

Table 6.3 Arrangement of the elements in the algorithm matrices 

System 
Symbol 

Arrangement of the elements 

into the matrices 

Feedback 

Hammerstein 
 

 

  

Linear Order  

2 

 

 

 

  

Linear Order  

1 

 

 

 

  

 

6.5.2.2 

The spoilage process of meat is caused by microbial growth, particularly by the accumulation 

of metabolic products [92].  An indicator for the quality of meat is the presence of bacteria on 

the sample. It is well known that the spoilage is only caused by a small fraction of the initial 

bacteria [93].  An unacceptable level of the bacterial accumulation is accompanied by 

discoloration, changes in texture as well as a specific smell and flavor. 

The so-called shelf life models determine the speed of bacterial growth depend on 

temperature, because it is the main factor influencing it. The resulting remaining shelf life can 

be predicted accordingly to the temperature history. If the shelf life drops below a critical 

threshold a warning message can be sent either to the operator or to  the logistics center.  

In [94] is described a model that combines  Gompertz- and Arrhenius-models. The Gompertz 

part contributes to model the effects of the temperature whereas the Arrhenius equation (5.5) 

gives a description of the relation between the speed of chemical reactions and temperature. 



- 78 - 

 

The reaction constant  can be calculated using the pre-exponential factor , the activation 

energy , the universal gas constant  and the temperature .  

A Gompertz function (equation 5.6) is a type of mathematical model for a time series, with 

slowest growth at the start and end of a time period. The function converges much slower to 

the future value asymptote than to the lower valued asymptote;  is the upper asymptote,  

sets the x displacement and  sets the growth rate. 

                                                  (6.5) 

                                                  (6.6)                      

 

The combined model is given by equation 5.7 

                                                (5.7) 

The reversal point (inflection point of the curve)  has to be adjusted to the new 

temperature, depending on the current microbial counts L0 according to equation 5.8.  

                                                          (5. 8) 

Where  represents the germ concentration at the time of ,  is the initial germ 

concentration,  is a temperature-independent variable and  is a temperature-dependent 

variable. If the temperature remains constant, only few mathematical operations have to be 

executed for each measurement interval.  

 

It is hard to decide whether an in-situ implementation of the algorithms bring advantages over 

a centralized approach, based only in the timing results. It is hardly feasible to compare 

different algorithms because they have different objectives.  

From the best of my knowledge, the developed in-situ data compression and recovery 

algorithms described in chapter 3 are the only ones suited for sensor nodes, therefore, a 

feasibility analysis is not necessary for them. The performance results are presented in three 

sections: standard benchmarks, cold-chain specific algorithms and statistical data-fusion 

related algorithms. Some of the results are reported in [95-97]; the standard benchmarks were 

tested by the first author of these publications whereas cold-chain specific and data-fusion 

algorithms were tested by the author of this thesis. 
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The standard benchmarks are tested for every mentioned hardware platform. The cold-chain 

specific algorithms were tested for every sensor node and for the VTC gateway. The data-

fusion related algorithms were the most difficult to compare;  matrix-inversion, that is 

required for OK and CK interpolation was tested for every platform except from DuraNav, 

cokriging interpolation and Goulard-Voltz fitting was only tested on VTC6100 because they 

are high resource and energy demanding and their implementation was only feasible to 

perform centralized. SunSPOT can perform floating point operations very fast and can 

perform CK interpolation, however it was not tested because its performance is already 

compared with the Matrix inversion. 

Table 6.4 Algorithms tested for every hardware platform. The Goulard-Voltz algorithm[75] and 
CK interpolation required for fitting the linear model of coregionalization and perform cross-
attribute fusion are only tested on the Gateway level.  

  
 

  

 

The VTC 6100 unit is the only hardware platform able to run each selected algorithm and is 

taken as reference point for the performance of the different platforms.  Figure 6.11(a) shows 

the time required to run the Dhrystone algorithm, the VTC require only 523 ms. Figure 

6.11(b) shows the performane in % to the refeence 
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(a) (b) 

Figure 6.11 Results of the Dhrystone 2.1 benchmark: (a) Time, (b) Performance in % to the 

reference 

As can be seen, there is a positive correlation between the processing power and memory of 

the platform and the performance. Although the CPU clock-rate of DuraNav, Imote2 and 

SunSPOT are the same, the best performance is achieved by DuraNav that has twice and 

sixty-four times the memory of Imote2 and SunSPOT respectively.  

Figure 6.12 shows the performance results for the LinPack benchmark. As expected VTC, 

that is the reference surpasses each other platform, it is able to execute more than fifty-four-

thousand Mflops.  

  

(a) (b) 

 

Figure 6.12 Results of the Linpack benchmark: (a) Mflops, (b) Performance in % to the 

reference 

In contrast to Dhrystone, Linpack seems to be less memory-demanding and depend more on 

the effectiveness of the language interpretation made by the installed Java virtual machine 

(JVM). Surprisingly, SunSPOT overcomes all hardware platforms including VTC, this could 



 

be explained by the newer CPU 

power and the lack of operating system. 

 

The results for temperature prediction are shown in

point for the performance of the different platform

were run arranging the elements as described in 

cooperation project with Dole from Costa Rica to An

parameters have to be iterated over three days at a

equivalent to 72 cycles.  

 

Figure 6.13 Performance of Temperature prediction algorithms  

The SunSPOT sensor performs the best

half of the time required by the powerful hardware 

The performance results for the estimation of bacte

algorithm are shown in Figure 

SunSPOT.  Preon32 shows the poorest performance in both cases
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be explained by the newer CPU architecture that has improved floating

power and the lack of operating system.  

The results for temperature prediction are shown in Figure 6.13. VTC is 

point for the performance of the different platforms. The parameter adaptation algorithms 

were run arranging the elements as described in Table 6.3. A dataset recorded within a 

cooperation project with Dole from Costa Rica to Antwerp in 2008 was used. 

parameters have to be iterated over three days at a measurement interval of one hour, 

Performance of Temperature prediction algorithms   

The SunSPOT sensor performs the best. It is three times faster than IMote2. And takes 

half of the time required by the powerful hardware architecture of VTC.  

The performance results for the estimation of bacterial growth model by the Gompertz

Figure 6.14. The Imote2 takes about five times the time requir

Preon32 shows the poorest performance in both cases.  

has improved floating-point processing 

. VTC is taken as reference 

The parameter adaptation algorithms 

. A dataset recorded within a 

twerp in 2008 was used. The model 

rement interval of one hour, 

 

than IMote2. And takes only 

rial growth model by the Gompertz-

. The Imote2 takes about five times the time required by 



 

Figure 6.14 Performance of the Gompertz algorithm

The presented results are important considering ene

required to execute 72 FH iterations requires two s

Considering that overseas transport duration i

transferred data to the gateway may be reduced to a

requires about three to twelve seconds to estimate the bacteria

temperature intervals that is fast in comparison with the sampling rate of the

is in the order of minutes. 

 

To solve the linear system of equations represented

to implement Matrix inversion.

hardware restrictions but also the  JVM being used 

required 20 by 20 matrix inversion in double precis

The JAMA library [98] was used.  

inversion , the performance of the SunSPOT i

clock speed. 
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nce of the Gompertz algorithm 

The presented results are important considering energy consumption. For example, the time 

required to execute 72 FH iterations requires two seconds for the training of three days. 

transport duration is about two weeks, the amount of measured and 

transferred data to the gateway may be reduced to a factor of five. The Gompertz algorithm 

ut three to twelve seconds to estimate the bacterial growth depending of the 

is fast in comparison with the sampling rate of the

To solve the linear system of equations represented by equations 4.8 and 4.22, it is necessary 

inversion. As mentioned before, the performance

hardware restrictions but also the  JVM being used and the Java libraries being used.

required 20 by 20 matrix inversion in double precision was measured for 

was used.  As can be seen in Figure 6.15  Timing results for 

, the performance of the SunSPOT is eight time faster than the Imote2 at the same 

 

rgy consumption. For example, the time 

econds for the training of three days. 

the amount of measured and 

 factor of five. The Gompertz algorithm 

l growth depending of the 

is fast in comparison with the sampling rate of the temperature that 

by equations 4.8 and 4.22, it is necessary 

As mentioned before, the performance depends on the 

being used. The time 

ion was measured for the entire platform. 

Timing results for matrix 

s eight time faster than the Imote2 at the same 



 

 

Figure 6.15  Timing results for 

Finally, a centralized implementation of the

attributes is made on a VTC 6100 

and CK algorithms were compared on the telematic unit. The calculatio

related matrix equations was comp

accuracies given in Table 

implementation and the Jamaica Virtual Machine from

Figure 6.16 shows a comparison 
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Timing results for matrix inversion  

centralized implementation of the required algorithms to perform fusion across 

VTC 6100 gateway from Nexcom. The required CPU times for the OK 

were compared on the telematic unit. The calculation time to solve the 

related matrix equations was compared under the condition that the algorithm achieve

Table 5.7. The tests were performed with the Prosyst OSGi 

implementation and the Jamaica Virtual Machine from Aicas.  

shows a comparison of these measurements in milliseconds for CK and OK; 

 

required algorithms to perform fusion across 

The required CPU times for the OK 

were compared on the telematic unit. The calculation time to solve the 

ared under the condition that the algorithm achieves the 

tests were performed with the Prosyst OSGi 

these measurements in milliseconds for CK and OK;  
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Figure 6.16 Comparison of required CPU time to comply with several thresholds  

 

Figure 6.17 shows the relation CK/OK for each one of the required accuracies. It can be seen 

that in all cases the timing required to perform CK is significantly greater than that required 

for the respective OK cases. However, the greater the accuracy required, the lower the relation  

CK/OK.  For example to comply with a threshold of 0.77, eighteen humidity sensors will be 

required using ordinary Kriging, it can be done by using only seven humidity sensors with 

seventeen temperature measurements as support, however the time required for Cokriging 

interpolation is  about 3.5 times.     
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Figure 6.17 CK/OK Relation to comply with each threshold 

The timing to perform variogram-related algorithms is also measured in two cases: when only 

ten temperature and humidity measurements are applied and when we have the complete fifty 

collocated measurements.Figure 6.18  shows the results of the timing in seconds for building 

the EVs and to perform the GV algorithm. It can be seen that in both cases the timing can be 

reduced significantly without affecting the accuracy of the results. 

 

Figure 6.18 Required time for calculating EV’s and GVz fitting algorithm 



 

 

One of the most important figures of merit of OSGi

to allow software updates or installation of new bu

restart the system. Of special importance is how mu

framework to manage softwar

bundles of different algorithm was tested. 

Hammerstein algorithms were tested  on the gateway 

framework . 

Figure 6.19 shows the results on the iMote2 and DuraNAV. The ex

standard benchmarks is in the order of eight percen

instead of class file. The Feedback

faster than the corresponding Java class. 

 

Figure 6.19 Diffrence in execution time in % between OSGi and c

The use of OSGi framework for

resources is possible with an increased execution s

implementations.  
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One of the most important figures of merit of OSGi is its ability to provide dynamic features 

to allow software updates or installation of new bundles during runtime without requiring

restart the system. Of special importance is how much overhead is created by using the OSGi 

framework to manage software updates. Direct execution times of Java class files and 

of different algorithm was tested. Both standard benchmarks and the Feedback

Hammerstein algorithms were tested  on the gateway devices and iMote2 for 

shows the results on the iMote2 and DuraNAV. The execution time 

standard benchmarks is in the order of eight percent slower when an OSGi bundle is 

instead of class file. The Feedback-Hammerstein OSGi bundle, however, 

faster than the corresponding Java class.  

Diffrence in execution time in % between OSGi and class 

The use of OSGi framework for the dynamic software updates of algorithms requiring few 

resources is possible with an increased execution speed when compared to Java class 

is its ability to provide dynamic features 

ndles during runtime without requiring to 

is created by using the OSGi 

. Direct execution times of Java class files and OSGi 

Both standard benchmarks and the Feedback-

devices and iMote2 for Equinox OSGi 

ecution time of both 

t slower when an OSGi bundle is executed 

, however, was up to ten % 

 

algorithms requiring few 

peed when compared to Java class 
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This chapter has shown that Java is useful to manage hardware heterogeneity. Due to its high 

acceptance and maturity, portability of the code is possible. Sensor nodes that are the pillars 

of ubiquitous applications are their Achilles’ heel as well. If the time required to interpret the 

instructions is too big, or if the memory required for the libraries is high, their implementation 

at the sensor level is unfeasible.  

It was decided to test data fusion, standard benchmarks and cold-chain specific algorithms in 

selected Java-enabled sensor nodes and gateways. The best performance for algorithm 

requiring floating point operations are obtained with SunSPOT that uses JavaME, 

unfortunately, by using it modularity is limited to the use of Record Management System 

(RMS); furthermore neither, versioning nor dynamic programming is possible. 

Versioning, dynamic programming and modularity in sensor nodes is possible even in sensor 

nodes by the installation of Java-based technologies such as OSGi. OSGi was installed on 

Imote2 sensor nodes, and  DuraNAV and VTC telematic units. The time required to install 

OSGi bundles was measured. Only Imote2 has enough resources for making an OSGi-

framework available on a sensor-platform. JavaME implementation of OSGi sounds 

promising, but it is not yet available.  

In this chapter it is also demonstrated that data reduction techniques, that are a good approach 

to reduce energy consumption in the sensor nodes are energy-efficient and easy to implement 

on Java-enabled sensor nodes and therefore the transmission of high volumes of sensor data to 

the gateway is unnecessary.  

The supervision of environmental parameters and quality state are also taken into 

consideration. The combined Gompertz model that calculates the bacterial growth in meat and 

the Feedback-Hammerstein that estimates the parameters of a non-linear model in  fruit 

transport were selected, implemented and tested.  

Statistical data fusion algorithms that are good approach to avoid dense deployment of 

sensors and to reduce communication if the measured data of many sensors is replaced by 

their estimations are only feasible to implement at the gateway level.  The time required to 

achieve the same accuracy for OK by the use of CK interpolation is energy demanding, 

however, it is not important because it is performed in the gateway where there are no energy 

constraints.    



 

 

As mentioned by Iyengar [8],  an ub

level, server level and client level. From the logi

gateways and decision makers. 

possible, for example to describe the current quali

temperature profiles in specific locations of a ref

Internet-connected Gateways 

Internet [1]. Additionally,  GSM

messages via SMS; events can be detected early and directly at thei

transportation [99].  Logistic applications can benefit from 

processing heterogeneities of hardware devices. The

global communication systems to take the proper management action bas

and real-time monitoring; additionally remote software updat

This chapter presents a demonstrator that shows how 

the-shelf hardware devices can be used 

concept of Machine-to-Machine (M2M) communications that is a technology 

communications-enabled remote devices to exchange information auto

human interaction. 

Figure 10.1 Connection via dedicated gateway in container 
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,  an ubiquitous application consists of three categories:

level, server level and client level. From the logistic point of view, they can be named sensors, 

gateways and decision makers. With the sensing, processing and data transmission 

possible, for example to describe the current quality state of the product or predict future 

temperature profiles in specific locations of a refrigerated truck or container. 

  allow real-time monitoring and remote maintenance 

GSM-enabled gateways  allow to send qu

; events can be detected early and directly at their point of origin during 

.  Logistic applications can benefit from sensing, communication and 

processing heterogeneities of hardware devices. The decision maker can make use of existing 

on systems to take the proper management action based on alarm events 

time monitoring; additionally remote software updates across the Internet is feasible. 

presents a demonstrator that shows how advances in Java-technologies

shelf hardware devices can be used to cope with these challenges; it makes use of the 

Machine (M2M) communications that is a technology 

enabled remote devices to exchange information auto

Connection via dedicated gateway in container [99] 

iquitous application consists of three categories: sensor 

they can be named sensors, 

With the sensing, processing and data transmission of WSN is 

he product or predict future 

rigerated truck or container. The use of 

and remote maintenance across the 

allow to send quality-related alarm 

r point of origin during 

sensing, communication and 

can make use of existing 

on systems to take the proper management action based on alarm events 

across the Internet is feasible. 

technologies on off-

it makes use of the 

Machine (M2M) communications that is a technology that allows 

enabled remote devices to exchange information automatically without 
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A differentiation between wireless M2M and WSN is not exact.  According to Webb [100],  

the key requirements for  M2M communications are:  

• Support a large number of terminals 

• Long battery life 

• Mobility 

• Low cost equipment 

• Low cost service 

• Global availability 

• Ubiquity  

The critical requirements  for the design of M2M area networks are [101]:   

• Low CPU processing power 

• Limited memory 

• Low data rate 

• Battery operated 

• Low cost  

• Small size 

Based on the previous descriptions, it can be said that both technologies can utilize sensors to 

perform remote monitoring and communicate with each other through wireless 

communication. Knowing the subtle differences will help to understand the implications of 

their combined use in logistics.   

M2M are deployed when power consumption is not critical, the size/weight of the devices is 

not an important factor and a range of kilometres is required. Additional features may include 

for example bidirectional communication. Wireless M2M covers applications involving 

longer range and the node will typically be powered from the machine itself. 

Wireless Sensor Networks (WSN) on the other hand is an emerging technology to monitor 

ambient conditions. They are commonly considered to be stand-alone; the sensor nodes 

communicate with other sensors and the gateway, but are in principle unable to communicate 

with the outside world; they have only short/medium range communication.  

 



 

Figure 10.2 Wireless Sensor Networks compared to RFID and M2M

Wireless M2M can be classified according to the com

cellular (for example 3G or 4G), or short range technologies s

[103].  

All of them have advantages and disadvantages

used, but they are expensive 

802.15.4 and Dash7 using ISO/IEC 18000

low distances and low data-rates

Table 10.1 Wireless M2M techno

Criteria 3G

Architecture Infra

Data Rates High

Distance High

Power Consumption Medium

Cost High

Nodes density High

Maturity High

 

 

Figure 10.3 displays the concept of the demonstrator. It consis

and a human decision maker
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Wireless Sensor Networks compared to RFID and M2M(modified from

Wireless M2M can be classified according to the communication technology it uses: It can be 

or example 3G or 4G), or short range technologies such as Zigbee

All of them have advantages and disadvantages: to bridge large distances 3G or 4G can be 

 to maintain.  Wireless sensor protocols such as Zigbee using 

802.15.4 and Dash7 using ISO/IEC 18000-7 are cheap and Ad-hoc but they can only cover 

rates (See Table 10.1Table 10.1)  

technologies (modified from [104]) 

3G 4G ZigBee 

Infra Infra Ad hoc 

High Very High Low 

High High Low 

Medium Medium Low 

High High Low 

High High High 

High Low Medium 

displays the concept of the demonstrator. It consists of sensor 

decision maker that has either mobile phone or access to Internet throu

 

(modified from [2]) 

munication technology it uses: It can be 

uch as Zigbee [102] or Dash7 

nces 3G or 4G can be 

.  Wireless sensor protocols such as Zigbee using 

hoc but they can only cover 

Dash7 

Ad hoc 

Low 

Low 

Very Low 

Low 

High 

Low 

 nodes, the gateway 

has either mobile phone or access to Internet through a 



- 91 - 

 

personal computer. All hardware platforms are Java-enabled, only open software is used. The 

M2M communications are represented by dashed lines.  

The sensor nodes can be programmed as the conventional way: to perform a continuous 

monitoring of the goods; they would transfer the readings periodically to be visualized by the 

decision maker, the gateway processes the data and send and alarm when a temperature 

threshold is exceeded. However, the costs of such a solution is highly nonfeasible regarding 

service costs for the use of 3G or 4G infrastructure and on the current draw of the sensor 

nodes. Unnecessary data transmission must be avoided; the sensor must be able to process 

data in-situ and transmit only warning messages or summaries instead of full raw data.   

 

 

Figure 10.3 Concept of the demonstrator (M2M communications represented by dashed lines) 

If the sensor data is processed locally, the radio communication between hop nodes can be 

drastically reduced, the costs related to the use of infrastructure avoided and eventual quality 

losses due to air flow obstacles detected.  

Our implementation differs to that in running algorithms on the sensor boards to predict the 

temperature change. The task of the WSN is the gathering of environmental data – here 

temperature values – and local data-processing. The processed data is transferred wirelessly 

and can be received by the base station – the juncture between the WSN and the gateway.  

The gateway can for example send an e-mail or SMS to the decision maker.  

The decision maker, can for example inform the logistic centre to perform a carefully 

inspection of the goods once arrival, but also require further information about the product 
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quality; the system must have the ability to deploy new software such as the Gompertz model 

to a chosen sensor node. 

 

The Feedback-Hammerstein algorithm for temperature prediction was selected to demonstrate 

the concept of the use of local processing of data to support decision making at affordable 

costs. Regarding hardware devices, VTC6100 and SunSPOTs are selected.   

For the Gateway, the Equinox OSGi-framework is installed on top of the Linux OS, that 

enables a high degree of dynamics by allowing the installing or updating of software modules 

remotely during runtime.  

The demonstrator integrates existing M2M and  WSN with Information and communication 

technologies (ICT) for a logistic application, the goal is to demonstrate the use common 

infrastructure for multiple application domains using heterogeneous devices [105].  The 

concept was published in [106], the contribution of the author of this thesis is on the program 

of the sensor node, the communication of the resulting system parameters to the gateway and 

the prediction of temperature at the gateway level. 

 

As can be seen in Figure 10.3Figure 10.4, a SunSPOT sensor node is located near the cold-

air-supply samples the local temperature periodically and broadcasts it to the rest of the 

sensors located inside the boxes. These sample the local temperature in the boxes every time a 

measurement from the air-supply sensor arrives. For demonstration purposes, the reading 

from the sensors is replaced by reading an array of floating values containing the resulting 

datasets from an experiment during a shipment of bananas from Costa Rica to Antwerp in 

May 2008  



 

Figure 10.4 Implementation of the platforms in a refrigerated c
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using system identification techniques. 

involved in the physical system including the effec

and vegetables. An online recursive method was chosen, as it require
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prediction, the model parameters have to be iterate

of one hour, equivalent to 72 cycles.
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The gateway is OSGi-enabled. 
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transport duration – typically two weeks. Base
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Implementation of the platforms in a refrigerated container 

The parameters of the Feedback-Hammerstein model shown in  Figure 5.10 

using system identification techniques. It provides a meaningful descrip

involved in the physical system including the effect of transporting living goods such as fruits 

n online recursive method was chosen, as it requires much lower resources 

in terms of memory and CPU power than offline counterparts.  In order to give an accurate 

prediction, the model parameters have to be iterated over three days at a measurement interval 

of one hour, equivalent to 72 cycles. After the data processing in each SunSPOT is perfor

parameters and the last supply and output parameter

station that is connected to the gateway.  

enabled. Different software modules are installed in this en

OSGi programms were implemented by the second autho

One bundle receives data from the base station and also runs a prediction algorithm, 

is able to calculate each point of the output temperature profile for the remaining 

typically two weeks. Based on the calculations in correspondence 

with a defined threshold value, an event can be triggered in the OSGi

software bundle is added to the environment, it send notifications via SMS or e

mail when receiving an event. For sending these notifications, an uplink to a mobile 

service provider is necessary.  

Another bundle contains an application, that can be connected to the environment, is a 

interface for displaying data in form of a table or graph. It can also be used for 

 

Figure 5.10 are calculated by 

It provides a meaningful description of the factors 

t of transporting living goods such as fruits 

s much lower resources 

unterparts.  In order to give an accurate 

d over three days at a measurement interval 

After the data processing in each SunSPOT is performed, 

parameters and the last supply and output parameters are forwarded 

Different software modules are installed in this environment in 

OSGi programms were implemented by the second author in [106]. 

station and also runs a prediction algorithm, 

rature profile for the remaining 

d on the calculations in correspondence 

ggered in the OSGi-context.  

send notifications via SMS or e-

tifications, an uplink to a mobile 

can be connected to the environment, is a 

 graph. It can also be used for 
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remote configuration, e.g. to change the threshold value for notifications.  It contains a 

web-server and servlets for generating dynamic web-pages – this is for displaying data 

and altering of software on the sensors. 

 

Ubiquitous access to the container measurements is provided by existent infrastructure via a 

web-interface, to allow remote software updates, bidirectional communication needs to be 

established. Due to the fact that mobile service providers only assign IPs in the private 

network address range like 10.x.x.x, a connection to the gateway device can’t be established. 

An extra service is needed to allow that. Here, we choose the gateway provider mdex, that 

represents the juncture between the two ends: Gateway and decision-maker. Both ends join a 

virtual private network at the service and are so able to communicate with each other. 

 

To provide software updates from the decision-maker to the sensor nodes, a mechanism for 

the deployment is necessary. With the implementation of such mechanism, the WSN will be 

able to react to environment changes and failures that were unknown at the time of their initial 

deployment. Our solution consists of four steps.  

1. Firstly, the new Java code has to be compiled and linked that results in a jar-archive, 

which is then used to create a MIDlet suite.  

2. The MIDlet suite is transferred to the OSGi-enabled gateway device, which is 

connected to the base station. This can be done via an upload dialogue provided by the 

web-interface.  

3. A deployment script which is accessible via the web-frontend has to be executed. The 

script contains information about an application descriptor and a provisioning server.  

4. The SunSPOT sensor, which is a JavaME enabled device, can automatically download 

the application from the specified provisioning server. Since MIDP2, the Application 

Management Software (AMS) is also responsible for the downloading of applications; 

it is possible to perform over-the-air (OTA) provisioning. The term describes the 

ability to download and install content over a wireless network [107]. The OTA 

specification defines the expected device functionality, the OTA provisioning life-

cycles, the installation process and the interactions between the AMS and the 

provisioning server. 
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This chapter has presented the use of off-the-shelf hardware devices and CIT technologies to 

enable ubiquitous monitoring of perishable goods. The approach is simple and affordable. It 

was implemented using only free software. Linux and the OSGi-framework Equinox, with the 

additional bundles needed in this context, were installed on the Gateway, and Java ME used 

for the SunSPOTs.  

Ubiquitousness is achieved by exploiting the long range communication capabilities of the 

gateway which is the connection point to the outer world, M2M, WSN and communications 

and existing infrastructure.  

Furthermore, a more intelligent cargo is possible. Environmental parameters are sensed, 

intelligent algorithms run on the sensor node using this acquired data and the result is 

transmitted wirelessly to a gateway. This leads to the ability to create autonomous decision 

making or supporting functionality or inform a (human) decision maker who can then deliver 

the products by the quality state or inform the logistic center for detailed inspections. The 

software needed to handle the dynamics of the application can be remotely installed or 

updated.  

The dynamic updates are supported by JavaME on sensor nodes and OSGi in the gateway. 

JavaME on the sensor nodes is useful, because the communication volume for updating 

software bundles is lower than in the case of monolithic software. However, JavaME running 

on sensor nodes does not yet allow the communication between MIDlets therefore the 

modularity is limited due to missing communication between different modules. Furthermore, 

dynamic updating is not possible, old-versioned MIDlets must be first uninstalled. The first 

OSGi ME might be soon on the market, it would be interesting to see if it will keep core 

features of the OSGi technology and the Java ME CLDC compliances. 
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Wireless sensor networks are a technology that will have an impact in the future due to their 

broad range of applications. It is a technology that has not been benefited from Moore’s Law; 

the processors have become more powerful, faster and smaller, but due to the fact that sensor 

nodes are operated by batteries, the hardware is designed to consume the less energy as 

possible. The challenges in hardware design are numerous, and they include low-power 

communication and low-power microcontrollers. MEMS-based sensors and actuators and 

energy-scavenging [108]. As Feherenbacher [109]  mentioned : 

“Yes, batteries will come down in price and become smaller, but at nowhere near the same 

speed — and with a lot less progress — as to be able to be compared to Moore’s Law” 

Regarding information technology, solutions designed for devices with no energy-constraints 

are not suitable for sensor nodes. For example, TinyOS [110] is a component-based operating 

system and platform designed specifically for wireless sensor networks and 6LoWPAN [111] 

is an Internet Protocol aimed to be applied to low-power devices with limited processing 

capabilities such as sensor nodes.  

This thesis describes the research of various interdisciplinary methods to cope with the main 

technical, logistical and economical issues of applying WSN to ubiquitously monitor 

perishable goods during transportation, namely low-energy consumption, large area of 

coverage and flexibility.  Throughout this thesis novel approaches to cope with these have 

been developed and tested.   

To increase the life expectancy of the WSN, it was selected to compress data by reducing the 

data rates at the sensor level. Traditional information theory techniques have failed to the 

computational resources required to compress and uncompress the data. The information 

theories such as Slepian-Wolf [20] were developed in the seventies when every algorithm was 

a computational burden and their  real-world implementation of them was not under research. 

With the increasing power of computers, it seems that every algorithm is feasible to be 

implemented; unfortunately WSN did not profit from this trend.  

In chapter 3, it was  demonstrated the drawbacks of DSC. The main problem lies in the model 

itself; the environment is modeled as a noisy channel when in reality it is a stochastic process. 

A novel method for distributed data compression was developed. It exploits the concepts of 

semivariance and pair correlation that belong to the field of spatial statistics. In situ 

compression and recovery are possible but requires knowledge of the mean value.  We 
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believe that this approach constitutes a fundamentally different way of compressing correlated 

data that can have an enormous impact in environmental sensor networks and other related 

research fields. 

A novel solution to increase coverage in environmental WSN by using single and cross-

attribute information fusion is explained in chapter four. It surpasses existing techniques in 

the sense that it does not require mobility of the nodes and provides a measure of the 

uncertainty.  It is a powerful and mature information fusion method that has been applied in 

geostatistics but not on WSN. The so-called Kriging and Co-kriging interpolation methods are 

Best Linear Unbiased Estimations (BLUE). The single attribute fusion brings advantages 

when it is compared with deterministic models; cross-attribute fusion reduces the number of 

sensors drastically  in an accurate and robust way. The tested statistical fusion methods are 

not limited to the scenarios of refrigerated containers considered in this work, but they are 

applicable to other case scenarios. 

Through feasibility tests and a demonstrator it is proposed the combination of features of 

diverse existing technologies that include M2M, WSN and UMTS to cope with the 

requirements of ubiquitous applications. The use of heterogeneous hardware platforms, 

comprising of  devices with different computational capabilities can be managed by the use of 

Java technologies. The tests performed in this thesis show that today’s Java solutions can 

scale to a wide range of devices. Software updates are possible thanks of the maturity of 

standardized Java and OSGi technologies; as an example, SunSPOT [87] sensor nodes 

already support Over-the-Air provisioning and IPv6 connections.  

 

Table 7.1 and figure 7.1 summarize the results. The desired figures of merit can be improved 

by shifting between different levels of the ubiquitous application. The energy consumption 

due to radio communication can now be reduced by compressing and decompressing the data 

at the sensor node; previously only the gateway had the computational capabilities to decode 

(decompress) the data. 

The area of coverage can be increased by performing Kriging and Co-kriging interpolation at 

the gateway level. Previously, it was only possible by deploying additional nodes or by 

repositioning the existing ones. The profitability of the application can be increased if in-situ 

data processing is performed and only some model parameters are transmitted to the decision 

maker instead of the complete raw data. Finally, flexibility and maintenance is increased if the 



 

maturity of Java technologies is exploited

intelligent algorithms in the sensor nodes can be m

node was not programmed with the required algorithm

Table 11.1: Summary of the results

 

 

(a) 

 

Figure 11.1:  Shifting of levels to improve the figures of merit
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a technologies is exploited. The decisions regarding remote deployment of 

intelligent algorithms in the sensor nodes can be made by the decision maker if the sensor 

node was not programmed with the required algorithm at the time of deployment.

Summary of the results 

 

(b) 

to improve the figures of merit 

he decisions regarding remote deployment of 

ade by the decision maker if the sensor 

 at the time of deployment. 
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There are many opportunities for future research, especially in the presented statistical data 

fusion methods. It is desirable to calculate the experimental variogram (EV) in a distributed 

and energy efficient way. Previous research work has been made to calculate the EV based on  

aggregation trees that recursively partitions the space into quadrants; the problem with this 

approach is that it requires broadcasting to create the trees that are complicated to implement 

and energy consuming, and the variogram is only calculated for one fixed distance.  

It is also necessary for the development and implementation of a distributed method for the 

detection of statistical outliers. It can for example, to compare the amount of sent bits by the 

source node with the difference between the mean value and the side information at the 

sinking node.  The robustness of the approach against dynamic changes in the environment is 

also required; the variances and the mean value might change in time. Therefore, the sensor 

network must be able to detect if the correlation model is valid at all times.  

The presented compression methods must be compared with the existing approaches. The 

effect of the network size on its lifetime must also be estimated. 

Regarding Java technologies, further research on the nodes energy consumption is required. It 

will be interesting to measure the energy and computational performance of the upcoming 

OSGi-ME implementations and to test the dynamic updates at the sensor level. Dedicated 

Java Virtual Machines and OSGi implementations will be required for  more automated and 

efficient dynamic updates at the three levels of the ubiquitous applications. 
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