435 research outputs found

    An Improved Multi-Hop-Enabled Energy Efficient MAC Protocol for Underwater Acoustic Sensor Networks

    Get PDF
    Packet collisions occurred by hidden and local nodes in multi-hop enabled underwater acoustic sensor networks (UWASNs) have effect on throughput, energy efficiency and end-to-end delay. Existing Multi-HopEnabled Energy Efficient MAC Protocol for Underwater Acoustic Sensor Networks (MHEE MAC) utilized a double-phase contention resolution mechanism, which causes visit multiple time slot and energy overhead. In this paper, we propose a MAC protocol that use contention resolution mechanism with unique priority to provide energy efficiency. First, local nodes are eliminated comparing their priority and later, hidden nodes are mitigated. A simulation of proposed protocol is also developed to analyze the performance. Results obtained through simulation show that the proposed protocol achieves significantly lower energy consumption, reserve more energy and more stable throughput compared to MHEE-MAC, T-Lohi and slotted floor acquisition multiple access (S-FAMA)

    Receiver-Initiated Handshaking MAC Based On Traffic Estimation for Underwater Sensor Networks

    Get PDF
    In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However, the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-based receiver-initiated MAC (TERI-MAC) to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications

    Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks

    Full text link
    In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However,the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-basedreceiver-initiated MAC(TERI-MAC)to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications

    Routing Protocols for Underwater Acoustic Sensor Networks: A Survey from an Application Perspective

    Get PDF
    Underwater acoustic communications are different from terrestrial radio communications; acoustic channel is asymmetric and has large and variable end‐to‐end propagation delays, distance‐dependent limited bandwidth, high bit error rates, and multi‐path fading. Besides, nodes’ mobility and limited battery power also cause problems for networking protocol design. Among them, routing in underwater acoustic networks is a challenging task, and many protocols have been proposed. In this chapter, we first classify the routing protocols according to application scenarios, which are classified according to the number of sinks that an underwater acoustic sensor network (UASN) may use, namely single‐sink, multi‐sink, and no‐sink. We review some typical routing strategies proposed for these application scenarios, such as cross‐layer and reinforcement learning as well as opportunistic routing. Finally, some remaining key issues are highlighted

    IMPLEMENTATION OF A CHANNEL-AWARE ROUTING PROTOCOL IN THE NETWORK SIMULATOR FOR UNDERWATER ACOUSTIC COMMUNICATION NETWORKING

    Get PDF
    Over two-thirds of the earth surface are occupied by water, however the level of research in the field of Underwater Wireless Sensor Networking (UWSN) does not necessarily commensurate with the size and potentials. Importantly, the underwater acoustic channel is susceptible to signal degradation as a result of the dynamic and harsh state of the environment such as high propagation delay and limited channel bandwidth. The above challenges are the motivation behind the Implementation of The Channel-aware Routing Protocol (CARP) for the routing performance optimization in UWSN. CARP [1] is a cross-layer routing paradigm which collaboratively leverages the link quality estimation between neighboring sensor nodes and the hop counts from the sink to determine the next relay node for packet forwarding. In this work, CARP was implemented in Aqua-Sim-NG, an ns-3 based underwater wireless sensor network simulator that simulates underwater acoustic channels with high fidelity

    Cross Layer Based Cooperative Communication Protocol for Improving Network Performance in Underwater Sensor Networks

    Get PDF
    For underwater sensor networks (USNs), cooperative communications have been introduced to improve network performance with the help of relay nodes. The previous cooperative communications select the best relay node on a hop-by-hop basis. Therefore, they have limitations in improving performance. In order to get better performance, a cooperative communication protocol based on  the cross layer is proposed in this paper. The proposed protocol uses the information provided by a routing protocol at the network layer for the erroneous data packet delivery. It selects one with the minimum routing cost among relay candidate nodes. The routing protocol in the selected relay node provides the MAC layer with the address of the next hop node on the path to the sink node. Then, the MAC layer in the selected relay node forwards the erroneous data packet to the next hop node rather than a receiver node. Performance studies are carried out through simulation. Simulation results show that the proposed protocol has about 21.8% lower average delay and about 14.4% lower average number of nodes passed than the previous protocol, regardless of the maximum transmission range

    Energy Efficient Reconfigurable MAC Protocol for Underwater Acoustic Sensor Network

    Get PDF
    In a multi-hop Underwater Acoustic Sensor Network~(UWASN) the challenges of the medium access control~(MAC) are different than that of single hop fully connected network. Existing MAC solutions try to solve the challenges of MAC control by channel reservation or contention elimination techniques. These techniques heavily depend on the transmissions of control packets that result in large overhead specially in terms of energy consumptions. In this thesis, a multi-hop enabled energy efficient MAC protocol for UWASN is proposed by exploiting a novel 2-phase contention resolution technique that minimizes the usage of control packets by utilizing short duration tones.~A probabilistic model of the proposed protocol is also developed to analyze the performance of the protocol analytically. A network simulation framework has been designed to simulate MAC and a physical layer for UWASN.~The proposed MAC protocol has been evaluated through quantitative analysis and simulation. By evaluating this proposed protocol through quantitative analysis and simulation, this research found that the proposed protocol outperforms in terms of energy efficiency, channel utilization and end-to-end delay. The proposed protocol achieves stable throughput and a maximum 30\% of theoretical maximum channel utilization in high traffic load in comparison to the existing protocol that becomes unstable and does not perform well. Additionally, the proposed protocol achieves better energy efficiency and lower end-to-end delay

    EFFICIENT DYNAMIC ADDRESSING BASED ROUTING FOR UNDERWATER WIRELESS SENSOR NETWORKS

    Get PDF
    This thesis presents a study about the problem of data gathering in the inhospitable underwater environment. Besides long propagation delays and high error probability, continuous node movement also makes it difficult to manage the routing information during the process of data forwarding. In order to overcome the problem of large propagation delays and unreliable link quality, many algorithms have been proposed and some of them provide good solutions for these issues, yet continuous node movements still need attention. Considering the node mobility as a challenging task, a distributed routing scheme called Hop-by-Hop Dynamic Addressing Based (H2- DAB) routing protocol is proposed where every node in the network will be assigned a routable address quickly and efficiently without any explicit configuration or any dimensional location information. According to our best knowledge, H2-DAB is first addressing based routing approach for underwater wireless sensor networks (UWSNs) and not only has it helped to choose the routing path faster but also efficiently enables a recovery procedure in case of smooth forwarding failure. The proposed scheme provides an option where nodes is able to communicate without any centralized infrastructure, and a mechanism furthermore is available where nodes can come and leave the network without having any serious effect on the rest of the network. Moreover, another serious issue in UWSNs is that acoustic links are subject to high transmission power with high channel impairments that result in higher error rates and temporary path losses, which accordingly restrict the efficiency of these networks. The limited resources have made it difficult to design a protocol which is capable of maximizing the reliability of these networks. For this purpose, a Two-Hop Acknowledgement (2H-ACK) reliability model where two copies of the same data packet are maintained in the network without extra burden on the available resources is proposed. Simulation results show that H2-DAB can easily manage during the quick routing changes where node movements are very frequent yet it requires little or no overhead to efficiently complete its tasks

    Short-Range Underwater Acoustic Communication Networks

    Get PDF
    This chapter discusses the development of a short range acoustic communication channel model and its properties for the design and evaluation of MAC (Medium Access Control) and routing protocols, to support network enabled Autonomous Underwater Vehicles (AUV). The growth of underwater operations has required data communication between various heterogeneous underwater and surface based communication nodes. AUVs are one such node, however, in the future, AUV’s will be expected to be deployed in a swarm fashion operating as an ad-hoc sensor network. In this case, the swarm network itself will be developed with homogeneous nodes, that is each being identical, as shown in Figure 1, with the swarm network then interfacing with other fixed underwater communication nodes. The focus of this chapter is on the reliable data communication between AUVs that is essential to exploit the collective behaviour of a swarm network
    corecore