88 research outputs found

    Wide-Angle Foveation for All-Purpose Use

    Get PDF
    This paper proposes a model of a wide-angle space-variant image that provides a guide for designing a fovea sensor. First, an advanced wide-angle foveated (AdWAF) model is formulated, taking all-purpose use into account. This proposed model uses both Cartesian (linear) coordinates and logarithmic coordinates in both planar projection and spherical projection. Thus, this model divides its wide-angle field of view into four areas, such that it can represent an image by various types of lenses, flexibly. The first simulation compares with other lens models, in terms of image height and resolution. The result shows that the AdWAF model can reduce image data by 13.5%, compared to a log-polar lens model, both having the same resolution in the central field of view. The AdWAF image is remapped from an actual input image by the prototype fovea lens, a wide-angle foveated (WAF) lens, using the proposed model. The second simulation compares with other foveation models used for the existing log-polar chip and vision system. The third simulation estimates a scale-invariant property by comparing with the existing fovea lens and the log-polar lens. The AdWAF model gives its planar logarithmic part a complete scale-invariant property, while the fovea lens has 7.6% error at most in its spherical logarithmic part. The fourth simulation computes optical flow in order to examine the unidirectional property when the fovea sensor by the AdWAF model moves, compared to the pinhole camera. The result obtained by using a concept of a virtual cylindrical screen indicates that the proposed model has advantages in terms of computation and application of the optical flow when the fovea sensor moves forward

    Machine Vision System to Induct Binocular Wide-Angle Foveated Information into Both the Human and Computers - Feature Generation Algorithm based on DFT for Binocular Fixation

    Get PDF
    This paper introduces a machine vision system, which is suitable for cooperative works between the human and computer. This system provides images inputted from a stereo camera head not only to the processor but also to the user’s sight as binocular wide-angle foveated (WAF) information, thus it is applicable for Virtual Reality (VR) systems such as tele-existence or training experts. The stereo camera head plays a role to get required input images foveated by special wide-angle optics under camera view direction control and 3D head mount display (HMD) displays fused 3D images to the user. Moreover, an analog video signal processing device much inspired from a structure of the human visual system realizes a unique way to provide WAF information to plural processors and the user. Therefore, this developed vision system is also much expected to be applicable for the human brain and vision research, because the design concept is to mimic the human visual system. Further, an algorithm to generate features using Discrete Fourier Transform (DFT) for binocular fixation in order to provide well-fused 3D images to 3D HMD is proposed. This paper examines influences of applying this algorithm to space variant images such as WAF images, based on experimental results

    Eccentricity estimator for wide-angle fovea sensor by FMI descriptor approach

    Get PDF
    This paper proposes a method for estimating eccentricity that corresponds to an incident angle to a fovea sensor. The proposed method applies Fourier-Mellin Invariant descriptor for estimating rotation, scale, and translation, by taking both geometrical distortion and non-uniform resolution of a space-variant image by the fovea sensor into account. The following 2 points are focused in this paper. One is to use multi-resolution images computed by discrete wavelet transform for reducing noise caused by foveation properly. Another is to use a variable window function (although the window function is generally used for reducing DFT leakage caused by both ends of a signal.) for changing an effective field of view (FOV) in order not to sacrifice high accuracy. The simulation compares the root mean square (RMS) of the foveation noise between uniform and non-uniform resolutions, when a resolution level and a FOV level are changed, respectively. Experimental results show that the proposed method is consistent with the wide-angle space-variant image by the fovea sensor, i.e., it does not sacrifice high accuracy in the central FOV

    Image Extraction by Wide Angle Foveated Lens for Overt-Attention

    Get PDF
    This paper defines Wide Angle Foveated (WAF) imaging. A proposed model combines Cartesian coordinate system, a log-polar coordinate system, and a unique camera model composed of planar projection and spherical projection for all-purpose use of a single imaging device. The central field-of-view (FOV) and intermediate FOV are given translation-invariance and, rotation and scale-invariance for pattern recognition, respectively. Further, the peripheral FOV is more useful for camera’s view direction control, because its image height is linear to an incident angle to the camera model’s optical center point. Thus, this imaging model improves its usability especially when a camera is dynamically moved, that is, overt-attention. Moreover, simulation results of image extraction show advantages of the proposed model, in view of its magnification factor of the central FOV, accuracy of scale-invariance and flexibility to describe other WAF vision sensors

    Perception-driven approaches to real-time remote immersive visualization

    Get PDF
    In remote immersive visualization systems, real-time 3D perception through RGB-D cameras, combined with modern Virtual Reality (VR) interfaces, enhances the user’s sense of presence in a remote scene through 3D reconstruction rendered in a remote immersive visualization system. Particularly, in situations when there is a need to visualize, explore and perform tasks in inaccessible environments, too hazardous or distant. However, a remote visualization system requires the entire pipeline from 3D data acquisition to VR rendering satisfies the speed, throughput, and high visual realism. Mainly when using point-cloud, there is a fundamental quality difference between the acquired data of the physical world and the displayed data because of network latency and throughput limitations that negatively impact the sense of presence and provoke cybersickness. This thesis presents state-of-the-art research to address these problems by taking the human visual system as inspiration, from sensor data acquisition to VR rendering. The human visual system does not have a uniform vision across the field of view; It has the sharpest visual acuity at the center of the field of view. The acuity falls off towards the periphery. The peripheral vision provides lower resolution to guide the eye movements so that the central vision visits all the interesting crucial parts. As a first contribution, the thesis developed remote visualization strategies that utilize the acuity fall-off to facilitate the processing, transmission, buffering, and rendering in VR of 3D reconstructed scenes while simultaneously reducing throughput requirements and latency. As a second contribution, the thesis looked into attentional mechanisms to select and draw user engagement to specific information from the dynamic spatio-temporal environment. It proposed a strategy to analyze the remote scene concerning the 3D structure of the scene, its layout, and the spatial, functional, and semantic relationships between objects in the scene. The strategy primarily focuses on analyzing the scene with models the human visual perception uses. It sets a more significant proportion of computational resources on objects of interest and creates a more realistic visualization. As a supplementary contribution, A new volumetric point-cloud density-based Peak Signal-to-Noise Ratio (PSNR) metric is proposed to evaluate the introduced techniques. An in-depth evaluation of the presented systems, comparative examination of the proposed point cloud metric, user studies, and experiments demonstrated that the methods introduced in this thesis are visually superior while significantly reducing latency and throughput

    Eccentricity estimator for wide-angle fovea sensor by FMI descriptor approach

    Get PDF
    This paper proposes a method for estimating eccentricity that corresponds to an incident angle to a fovea sensor. The proposed method applies Fourier-Mellin Invariant descriptor for estimating rotation, scale, and translation, by taking both geometrical distortion and non-uniform resolution of a space-variant image by the fovea sensor into account. The following 2 points are focused in this paper. One is to use multi-resolution images computed by discrete wavelet transform for reducing noise caused by foveation properly. Another is to use a variable window function (although the window function is generally used for reducing DFT leakage caused by both ends of a signal.) for changing an effective field of view (FOV) in order not to sacrifice high accuracy. The simulation compares the root mean square (RMS) of the foveation noise between uniform and non-uniform resolutions, when a resolution level and a FOV level are changed, respectively. Experimental results show that the proposed method is consistent with the wide-angle space-variant image by the fovea sensor, i.e., it does not sacrifice high accuracy in the central FOV

    Humanoid Robots

    Get PDF
    For many years, the human being has been trying, in all ways, to recreate the complex mechanisms that form the human body. Such task is extremely complicated and the results are not totally satisfactory. However, with increasing technological advances based on theoretical and experimental researches, man gets, in a way, to copy or to imitate some systems of the human body. These researches not only intended to create humanoid robots, great part of them constituting autonomous systems, but also, in some way, to offer a higher knowledge of the systems that form the human body, objectifying possible applications in the technology of rehabilitation of human beings, gathering in a whole studies related not only to Robotics, but also to Biomechanics, Biomimmetics, Cybernetics, among other areas. This book presents a series of researches inspired by this ideal, carried through by various researchers worldwide, looking for to analyze and to discuss diverse subjects related to humanoid robots. The presented contributions explore aspects about robotic hands, learning, language, vision and locomotion
    corecore