
  

  

Abstract— This paper proposes a method for estimating 
eccentricity that corresponds to an incident angle to a fovea 
sensor.  The proposed method applies Fourier-Mellin Invariant 
descriptor for estimating rotation, scale, and translation, by 
taking both geometrical distortion and non-uniform resolution 
of a space-variant image by the fovea sensor into account.  The 
following 2 points are focused in this paper.  One is to use 
multi-resolution images computed by Discrete Wavelet 
Transform for reducing noise caused by foveation properly.  
Another is to use a variable window function (although the 
window function is generally used for reducing DFT leakage 
caused by both ends of a signal.) for changing an effective field 
of view (FOV) in order not to sacrifice high accuracy.  The 
simulation compares the root mean square (RMS) of the 
foveation noise between uniform and non-uniform resolutions, 
when a resolution level and a FOV level are changed, 
respectively.  Experimental results show that the proposed 
method is consistent with the wide-angle space-variant image by 
the fovea sensor, i.e., it does not sacrifice high accuracy in the 
central FOV. 

I. INTRODUCTION 
OG-POLAR mapping, biologically-inspired by analytic 
formulation of cortical mapping of the primate visual 

system [1], is well-known as a method that does not only 
reduces image data size drastically but also gives rotation- 
and scale-invariant (RS-invariant) property. In order to 
acquire the log-polar image, not only by software methods [2] 
but also by 2 kinds of hardware methods have been proposed 
and developed.  One is a method by a special-made 
CCD/CMOS chip, i.e., a retina-like sensor, where united size 
of photosensitive elements increases logarithmically as going 
to periphery [3]-[5].  The other is a method by special-made 
optical lens where projected image is highly distorted 
geometrically, i.e., a wide-angle foveated (WAF) lens [6]-[8].  
In the latter case, the special-made lens is usually combined 
with a commercially-available Cartesian (i.e., 
linear-coordinate) vision chip, i.e., where the size of 
photosensitive elements is uniform (on the other hand, the 
former is combined with a commercially-available 
conventional lens).  The authors have been doing research on 
fovea vision in terms of foveation modeling and its 
applications by using an actual WAF lens [9]-[11].  It is 
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well-known that a conventional Cartesian vision sensor 
acquires an input image with uniform-resolution and gives it 
translation-invariant property.  However, the resolution by 
the fovea sensors is not uniform in the entire field of view 
(FOV), it is the highest in the central FOV, and it decreases 
rapidly as going to periphery.  That is, the input image by the 
fovea sensor has no longer a translation-invariant property in 
Discrete Fourier Transform (DFT), even if it is transformed 
into linear coordinates.  On the other hand, as introduced in 
the opening sentence, the fovea sensor has an advantage that 
it can give us the log-polar image that is RS-invariant around 
the optical axis of the fovea sensor. 

Figure 1(a) shows a linear-coordinate Target image I of 
512x512 [pixels].  Figures 1(b) and (c) are a distorted 
foveated image DF, computed from the image I by Advanced 
Wide-Angle Foveated (AdWAF) model [8], and an 
undistorted foveated image UDF, remapped from the image 
DF into a linear-coordinate space, in 3 cases of eccentricity, 
that corresponds to an incident angle to the sensor (both 
images have 128x128 [pixels] as their size).  Watermark-like 
arias seen in the image UDF of Fig.1(c) increases as the 
eccentricity gets larger.  Such alias occurs when the image is 
up-sampled from low resolution to high resolution.  Figure 
1(d) is the original log-polar image OLP that is transformed 
from a part of the image DF into polar coordinates.  In order 
to keep the RS-invariant property mentioned above, we need 
to compensate deformation in the image OLP (this 
deformation increases highly as the eccentricity gets larger).  
Figure 1(e) is the compensated log-polar image CLP where 
the deformation is corrected from the image OLP by the 
eccentricity compensator (EC) [9].  It is noted that the image 
quality decreases as the eccentricity gets larger. 

A log-polar mapping of DFT magnitude of an input image 
is well-known as Fourier-Mellin Invariant (FMI) descriptor 
[12]-[14].  The input image by the fovea sensor is 
space-variant, originally.  This means there are 2 factors, i.e., 
one is geometrical distortion of the image and the other is 
non-uniform resolution.  Thus, we need to take the 
non-uniform resolution into account in order to apply FMI 
descriptor for the space-variant image, even if the geometrical 
distortion is removed.  Section II of this paper proposes 
eccentricity estimator (EE) that estimates the eccentricity by 
applying FMI descriptor for multi-resolution images by 
Discrete Wavelet Transform.  In addition, a variable window 
function is introduced in order not to sacrifice high accuracy 
in the central FOV.  Section III examines the proposed 
method by a simulation of foveation noise from white 
Gaussian noise images and experiments. 

Eccentricity Estimator for Wide-Angle Fovea Sensor 
by FMI Descriptor Approach 

Sota SHIMIZU, Member, IEEE and J. W. BURDICK, Member, IEEE 

L

Proceedings of the 2008 IEEE
International Conference on Robotics and Biomimetics
Bangkok, Thailand, February 21 - 26, 2009

978-1-4244-2679-9/08/$25.00 ©2008 IEEE 1377

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/216306716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


  

 
(a)Linear-coordainate target image (I) (of 512x512 [pixels]) 

   
(b)distorted foveated image (DF) (of 128x128) 

   
(c)undistorted foveated image (UDF) (of 128x128) 

   
(d)original log-polar image (OLP) (of 128x64) 

   
(e)compensated log-polar image (CLP) (of 128x64) 

Fig. 1  Target image I, distorted foveated image (DF), undistorted foveated 
image (UDF), original log-polar image (OLP) and compensated log-polar 
image (CLP) in each eccentricity θε  (=0, 18.69 and 34.08[°] from the left) 

II. ECCENTRICITY ESTIMATOR 

A. Linear-coordinate Image with Space-variant Resolution 
As shown in Fig. 1(b), an input image acquired from the 

fovea sensor is distorted highly because the image height 
from the image center (corresponding to its optical axis) is not 
linear to the object height.  This paper applies Advanced 
Wide Angle Foveated (AdWAF) model [8] for a concrete 
foveation model of the fovea sensor.  The AdWAF model 
combines planar and spherical projections with linear 
coordinates and logarithmic coordinates, respectively.  Thus, 
the FOV is divided into 4 regions: fovea ( 00 θθ ≤≤ ), 

para-fovea ( 10 θθθ ≤≤ ), near-periphery ( 21 θθθ ≤≤ ), and 
periphery ( max2 θθθ ≤≤ ).  Figure 2 compares an AdWAF 
image and a linear-coordinate image by pinhole camera 
(PHC) lens model.  In this simulation, image intensity is 
changed in order to make it easy to distinguish boundaries of 
the FOV, i.e., θ0= 9.826[°], θ 1=19.107[°], θ 2= 34.715[°], and 
θ max= 60.0[°].  The AdWAF model and the PHC lens model 
are defined in the following. 

AdWAF model: 
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where f1 and  f2 are focal lengths for planar projection and 
spherical projection, basis a and basis b are given by 

)tan/1exp( 01 θfa =  and  by )/1exp( 22θfb = , respectively. 
The rmax is the maximum image height when θ =θmax,  ci (i=0, 
1, 2, 3) is a scale modification factor for adjusting image 
height partly in each region, and di (i=1,2,3) is determined  
from continuity of the image height and its magnification. 

PHC lens model: 

θtanLr =         )0( maxθθ ≤≤ .    (2) 
where L is a distance from the optical center Oc to the object 

plane, 

max
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rL =  .                (3) 

 
(a)AdWAF image      (b)linear-coordinate image 

Fig. 2  Comparison of AdWAF image and linear-coordinate image 

Assume that a target image I is in the direction of 
eccentricity θε and its rotation φε on the object plane.  That is, 
the eccentricity is an incident angle to the fovea sensor, as 
shown in Fig.3. 

The incident direction, (θ, φ), from a point (x, y) on the 
image I to the optical center of the fovea sensor is expressed, 
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where ε is positional eccentricity on the object plane. 

εθε tanL=  .                (5) 
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Fig. 3  Coordinate systems of eccentricity estimator (EE) and eccentricity compensator (EC) 

Coordinates (x’, y’), of a distorted foveated image DF that 
corresponds to the input image by the fovea sensor, are given 
by eq. (6). 
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where r(θ) is the image height of the fovea sensor in terns 
of incident angle θ, and α1 is magnification of the image DF. 

Coordinates (x’’, y’’), of an undistorted foveated image 
UDF with linear-coordinates, are expressed in eq. (7). 
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where α2 is magnification of the image UDF. 

Both the image DF and the image UDF have space-variant 
resolution.  Both images are mapped using mappings fDF and 
fUDF of an image warping technique, respectively. 

fDF  : DFI →  ,               (8) 

fUDF : UDFDF →  ,             (9) 

B. Fourier-Mellin Invariant descriptor 
Figure 4(a) shows the image f and the image g transformed 

from the f with rotation φ 0 [rad], scale μ, translation (x0, y0 ). 
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Fourier-Mellin Invariant (FMI) descriptor based on Fourier 
Mellin Transform is well-known for extracting rotation-, 
scale-, and translation-invariant feature [12]-[14].  FMI 
descriptor is equivalent with a log-polar mapping of DFT 
magnitude of the input image, around the DC component.  
This paper refers to this method for realistic implementation 
[13][14] in order to compute rotation, scale, and translation 
between the 2 images.  FMI descriptor is derived simply in 
the following. 

Denote DFTs of the image f and the image g as F (m, n) and 
G (m, n), and their log-polar mappings as flp and glp. 

),(),( 0
2 σλφφμλφ −−= −

lplp fg  ,       (11) 

where 22log nm +=λ  and σ =log(μ).  Note that the 
log-polar mapping transforms rotation and scale to translation.  
DFTs of the log-polar mappings flp and glp are expressed as 
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This equation means translation (φ0, σ) can be determined 
from the flp and glp using phase correlation method [13][15].  
Rotation and scale are computed from this translation. 

Now, another image f’ is mapped from the image f using 
computed rotation φ0 and scale μ. 
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Translation (x0, y0) between the image g and the image f’ is 
computed using the phase correlation method, again. 
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Eccentricity and its rotation are denoted as, 
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When FMI descriptor is applied for the images f, f, and g, a 
window function is used.  In addition, the following 
high-pass filter is used for DFTs F and G [13]. 
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where 5.0,5.0 ≤≤− mn . 

  
(a)uniform-resolution images f and g 

  
(b)undistorted foveated images fUDF and gUDF 

Fig.4  An image and a transformed image 
using rotation, scale and translation 

C. Applying to Space-variant Image UDF 
FMI descriptor assumes to be applied for a 

linear-coordinate (Cartesian) image.  However, even if the 
image DF by the fovea sensor is transformed into the 

linear-coordinate image UDF by removing distortion, we 
need to take non-uniform resolution into account.  
Multi-resolution images fj and  gj (where  j is resolution level), 
computed from the images f and g by using Discrete Wavelet 
Transform (DWT), are shown in Fig.5.  Haar wavelet is used 
for this computation as a mother wavelet.  The proposed 
method applies FMI descriptor for the multi-resolution image 
from low level to high level, and estimates eccentricity on a 
reliable level jm using phase correlation peak as criterion.  In 
addition, the proposed method also defines a variable window 
function with FOV level λ in order not to sacrifice high 
accuracy in the central FOV.  That is, the higher-level 
eccentricity is estimated by changing an effective FOV 
smaller, based on the eccentricity estimated when the window 
size is the largest.  This paper applies Hanning window for 
the variable window function. 

Hanning window: 
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Figure 6 shows the image f after applying the window 
function with different FOV level λ.  Figure 7 is a block 
diagram of the proposed method. 

   
Fig.5  Multi-resolution images f,j , gj by Haar wavelet 

   
(a)λ=0         (b) λ =1         (c) λ =2 

Fig. 6  Image f when using different size of a window function 
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Fig. 7  Block diagram of the proposed method 

  
(a)a white Gaussian noise (WGN) image w and its UDF-image wUDF 

  
(b)DFTs W and WUDF , after high-pass filtering 

 
(c)Foveation noise image wfn 

Fig.8  Comparison of a WGN image w and its UDF image wUDF 

III. EXAMINATION 

A. Foveation Noise 
The proposed method uses high frequency components 

emphasized by high-pass filter for the phase correlation 
method.  However, it is obvious that many of high frequency 
components in the image of Fig.4(a) are lost in the 
corresponding image UDF of Fig.4(b).  This loss causes a 

risk of wrong estimation by the phase correlation.  Thus, in 
order to reduce this risk, the proposed method estimates the 
eccentricity by applying FMI descriptor for the 
multi-resolution image from a lower-level image where 
resolution is less space-variant. 

Figure 8(a) compares a white Gaussian noise image w and 
its UDF image wUDF.  Figure 8(b) shows that magnitude of 
their DFTs W and WUDF (where the high-pass filter is applied) 
is influenced by foveation mainly in high frequencies.  Figure 
8(c) is a foveation noise image wfn that shows absolute value 
of difference between Invert DFTs of W and WUDF.  Root 
Mean Square (RMS) of image intensity is used for estimating 
the foveation noise. 

yNxN
fnw

RMS
⋅

=

2

,              (18) 

where NxxNy is an image size of the image wfn. 
Figure 9 shows the resolution level versus average of RMS 

of the foveation noise image computed from 100 white 
Gaussian noise images in each level.  This simulation uses 
AdWAF model in conditions of θ0= 9.826[°], θ1=19.107[°], 
θ2= 34.715[°], and θ max= 60.0[°] for foveation. In addition, 3 
cases of the variable window function with a different FOV 
level (where a basis l is 0.7) are compared with a case without 
the window function.  Consistency between the proposed 
method and properties of wide-angle fovea sensor (i.e., 
wide-angle FOV and high resolution in the central FOV) are 
examined as follows. 

1) RMS of the foveation noise is zero when the resolution 
level j is less than 4, and increases as the level j gets 
larger.  This indicates that the resolution level should 
be decreased as the eccentricity is estimated in a 
wider-angle FOV. 

2) As the FOV level λ of the variable window function 
gets larger (i.e., the FOV gets narrower), RMS gets 
smaller.  This indicates that the FOV level should be 
increased as the eccentricity is estimated in the higher 
resolution. 
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Fig.9  RMS of foveation noise image 
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(a) when μ =0.8 

 
(b) when μ =1.0 

 
(c) when μ =1.2 

Fig.10  Experimental results 

B. Experiments 
Figure 10 shows experimental results.  Being given the 

translation x0, logarithms of phase correlation peak 
determined automatically by the proposed estimation method 
are compared between the uniform-resolution Lenna image 

and its UDF image, in 3 cases of the scale μ =0.8, 1.0, and 1.2 
(where y0=0 and φ0=0[°]).  In these results, all cases except 
when μ =1.2 and x0=20 (shown as a black square) have 
succeeded in estimating the translation x0 by an error less than 
1 [pixel] (Also, the scale and rotation are estimated 
accurately).  The wrong estimation case mentioned above 
occurs when the highest FOV level λ=2 (i.e., the narrowest 
FOV).  A local maximal value seems to be selected wrongly 
because the foveation noise reduces the determined phase 
correlation peak largely.  We note that the higher FOV level 
gives us the higher value of the phase correlation peak.  This 
means that the high resolution in the central FOV can be 
preserved by the variable window function, although the high 
FOV level has a weakness of the translation. 
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