4,337 research outputs found

    The effect of noise correlations on randomized benchmarking

    Get PDF
    Among the most popular and well studied quantum characterization, verification and validation techniques is randomized benchmarking (RB), an important statistical tool used to characterize the performance of physical logic operations useful in quantum information processing. In this work we provide a detailed mathematical treatment of the effect of temporal noise correlations on the outcomes of RB protocols. We provide a fully analytic framework capturing the accumulation of error in RB expressed in terms of a three-dimensional random walk in "Pauli space." Using this framework we derive the probability density function describing RB outcomes (averaged over noise) for both Markovian and correlated errors, which we show is generally described by a gamma distribution with shape and scale parameters depending on the correlation structure. Long temporal correlations impart large nonvanishing variance and skew in the distribution towards high-fidelity outcomes -- consistent with existing experimental data -- highlighting potential finite-sampling pitfalls and the divergence of the mean RB outcome from worst-case errors in the presence of noise correlations. We use the Filter-transfer function formalism to reveal the underlying reason for these differences in terms of effective coherent averaging of correlated errors in certain random sequences. We conclude by commenting on the impact of these calculations on the utility of single-metric approaches to quantum characterization, verification, and validation.Comment: Updated and expanded to include full derivation. Related papers available from http://www.physics.usyd.edu.au/~mbiercuk/Publications.htm

    Sparse visual models for biologically inspired sensorimotor control

    Get PDF
    Given the importance of using resources efficiently in the competition for survival, it is reasonable to think that natural evolution has discovered efficient cortical coding strategies for representing natural visual information. Sparse representations have intrinsic advantages in terms of fault-tolerance and low-power consumption potential, and can therefore be attractive for robot sensorimotor control with powerful dispositions for decision-making. Inspired by the mammalian brain and its visual ventral pathway, we present in this paper a hierarchical sparse coding network architecture that extracts visual features for use in sensorimotor control. Testing with natural images demonstrates that this sparse coding facilitates processing and learning in subsequent layers. Previous studies have shown how the responses of complex cells could be sparsely represented by a higher-order neural layer. Here we extend sparse coding in each network layer, showing that detailed modeling of earlier stages in the visual pathway enhances the characteristics of the receptive fields developed in subsequent stages. The yield network is more dynamic with richer and more biologically plausible input and output representation

    Simulating chemistry efficiently on fault-tolerant quantum computers

    Get PDF
    Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. Here we consider methods to make proposed chemical simulation algorithms computationally fast on fault-tolerant quantum computers in the circuit model. Fault tolerance constrains the choice of available gates, so that arbitrary gates required for a simulation algorithm must be constructed from sequences of fundamental operations. We examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay-Kitaev algorithm [C.M. Dawson and M.A. Nielsen, \emph{Quantum Inf. Comput.}, \textbf{6}:81, 2006]. For a given approximation error ϵ\epsilon, arbitrary single-qubit gates can be produced fault-tolerantly and using a limited set of gates in time which is O(logϵ)O(\log \epsilon) or O(loglogϵ)O(\log \log \epsilon); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for Lithium hydride.Comment: 33 pages, 18 figure

    Ground-truth prediction to accelerate soft-error impact analysis for iterative methods

    Get PDF
    Understanding the impact of soft errors on applications can be expensive. Often, it requires an extensive error injection campaign involving numerous runs of the full application in the presence of errors. In this paper, we present a novel approach to arriving at the ground truth-the true impact of an error on the final output-for iterative methods by observing a small number of iterations to learn deviations between normal and error-impacted execution. We develop a machine learning based predictor for three iterative methods to generate ground-truth results without running them to completion for every error injected. We demonstrate that this approach achieves greater accuracy than alternative prediction strategies, including three existing soft error detection strategies. We demonstrate the effectiveness of the ground truth prediction model in evaluating vulnerability and the effectiveness of soft error detection strategies in the context of iterative methods.This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research under Award Number 66905, program manager Lucy Nowell. Pacific Northwest National Laboratory is operated by Battelle for DOE under Contract DE-AC05-76RL01830.Peer ReviewedPostprint (author's final draft

    Treasure hunt : a framework for cooperative, distributed parallel optimization

    Get PDF
    Orientador: Prof. Dr. Daniel WeingaertnerCoorientadora: Profa. Dra. Myriam Regattieri DelgadoTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 27/05/2019Inclui referências: p. 18-20Área de concentração: Ciência da ComputaçãoResumo: Este trabalho propõe um framework multinível chamado Treasure Hunt, que é capaz de distribuir algoritmos de busca independentes para um grande número de nós de processamento. Com o objetivo de obter uma convergência conjunta entre os nós, este framework propõe um mecanismo de direcionamento que controla suavemente a cooperação entre múltiplas instâncias independentes do Treasure Hunt. A topologia em árvore proposta pelo Treasure Hunt garante a rápida propagação da informação pelos nós, ao mesmo tempo em que provê simutaneamente explorações (pelos nós-pai) e intensificações (pelos nós-filho), em vários níveis de granularidade, independentemente do número de nós na árvore. O Treasure Hunt tem boa tolerância à falhas e está parcialmente preparado para uma total tolerância à falhas. Como parte dos métodos desenvolvidos durante este trabalho, um método automatizado de Particionamento Iterativo foi proposto para controlar o balanceamento entre explorações e intensificações ao longo da busca. Uma Modelagem de Estabilização de Convergência para operar em modo Online também foi proposto, com o objetivo de encontrar pontos de parada com bom custo/benefício para os algoritmos de otimização que executam dentro das instâncias do Treasure Hunt. Experimentos em benchmarks clássicos, aleatórios e de competição, de vários tamanhos e complexidades, usando os algoritmos de busca PSO, DE e CCPSO2, mostram que o Treasure Hunt melhora as características inerentes destes algoritmos de busca. O Treasure Hunt faz com que os algoritmos de baixa performance se tornem comparáveis aos de boa performance, e os algoritmos de boa performance possam estender seus limites até problemas maiores. Experimentos distribuindo instâncias do Treasure Hunt, em uma rede cooperativa de até 160 processos, demonstram a escalabilidade robusta do framework, apresentando melhoras nos resultados mesmo quando o tempo de processamento é fixado (wall-clock) para todas as instâncias distribuídas do Treasure Hunt. Resultados demonstram que o mecanismo de amostragem fornecido pelo Treasure Hunt, aliado à maior cooperação entre as múltiplas populações em evolução, reduzem a necessidade de grandes populações e de algoritmos de busca complexos. Isto é especialmente importante em problemas de mundo real que possuem funções de fitness muito custosas. Palavras-chave: Inteligência artificial. Métodos de otimização. Algoritmos distribuídos. Modelagem de convergência. Alta dimensionalidade.Abstract: This work proposes a multilevel framework called Treasure Hunt, which is capable of distributing independent search algorithms to a large number of processing nodes. Aiming to obtain joint convergences between working nodes, Treasure Hunt proposes a driving mechanism that smoothly controls the cooperation between the multiple independent Treasure Hunt instances. The tree topology proposed by Treasure Hunt ensures quick propagation of information, while providing simultaneous explorations (by parents) and exploitations (by children), on several levels of granularity, regardless the number of nodes in the tree. Treasure Hunt has good fault tolerance and is partially prepared to full fault tolerance. As part of the methods developed during this work, an automated Iterative Partitioning method is proposed to control the balance between exploration and exploitation as the search progress. A Convergence Stabilization Modeling to operate in Online mode is also proposed, aiming to find good cost/benefit stopping points for the optimization algorithms running within the Treasure Hunt instances. Experiments on classic, random and competition benchmarks of various sizes and complexities, using the search algorithms PSO, DE and CCPSO2, show that Treasure Hunt boosts the inherent characteristics of these search algorithms. Treasure Hunt makes algorithms with poor performances to become comparable to good ones, and algorithms with good performances to be capable of extending their limits to larger problems. Experiments distributing Treasure Hunt instances in a cooperative network up to 160 processes show the robust scaling of the framework, presenting improved results even when fixing a wall-clock time for the instances. Results show that the sampling mechanism provided by Treasure Hunt, allied to the increased cooperation between multiple evolving populations, reduce the need for large population sizes and complex search algorithms. This is specially important on real-world problems with time-consuming fitness functions. Keywords: Artificial intelligence. Optimization methods. Distributed algorithms. Convergence modeling. High dimensionality
    corecore