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Abstract—Understanding the impact of soft errors on ap-
plications can be expensive. Often, it requires an extensive
error injection campaign involving numerous runs of the full
application in the presence of errors. In this paper, we present a
novel approach to arrive at the ground truth–the true impact of
an error on the final output–for iterative methods by observing
a small number of iterations to learn deviations between normal
and error-impacted execution. We develop a machine learning
based predictor for three iterative methods to generate ground-
truth results without running them to completion for every
error injected. We demonstrate that this approach achieves
greater accuracy than alternative prediction strategies, including
three existing soft error detection strategies. We demonstrate the
effectiveness of the ground truth prediction model in evaluating
vulnerability and the effectiveness of soft error detection strate-
gies in the context of iterative methods.

I. INTRODUCTION

Soft errors are transient errors caused by environmental
conditions, typically manifesting in the form of bit flips. With
semiconductor device scaling and the need to limit power
consumption to achieve exascale efficiency, soft errors are
becoming a significant concern. Specifically, undetected soft
errors can lead to application/system crash or even to silent
data corruption [1].

Several techniques have been proposed to understand, pre-
vent, and mitigate the effects of soft errors. A typically used
technique involves injecting errors into applications runs and
observing the outcomes. This approach does not rely on
application-specific properties, enabling an understanding of
application level error masking and data-dependent compu-
tations. However, these error injection campaigns can incur
considerable overheads as they require a large number of
application runs.

In this paper, we present a novel approach to reduce the cost
of such error injection campaigns, without sacrificing their
benefits. We present a machine learning based approach to
observe a small window of execution past the point at which
an error is injected to predict the ground truth–impact of the
error on the output at the end of the application’s execution.
While being inherently less precise as compared to actual
execution, we demonstrate that the machine learning based

predictor is sufficiently accurate to enable meaningful analysis
of application vulnerability and detection strategies.

We design our soft error impact strategy in the context of
iterative methods used to solve systems of linear equations.
These methods can mathematically converge to the correct
result from an arbitrary initial guess, lending themselves to
significantly application-level error tolerance. However, soft
error impact analysis has demonstrated that errors can have a
wide variety of outcomes [2]. This has motivated the continued
development of novel strategies that observe the execution
progress of iterative methods to identify anomalies in their
execution [1].

Error detection strategies need to identify the absence of
soft errors and the impact of soft errors. The need to correctly
identify the more common scenario–the absence of errors or
errors that masked at a lower-level–biases existing strategies
to focus more on this scenario. We observe that vulnerability
analysis, unlike error detection, involves understanding ap-
plication behavior in the presence of errors. We empirically
demonstrate that common soft error detection strategies for
iterative methods are not equally adept at predicting the
ground truth. We develop a prediction strategy that exploits
the knowledge of the presence of the error injection (and its
magnitude) to produce improved ground truth predictors.

We develop and empirically evaluate our approach in the
context of three iterative methods (CG, BiCG, and CGS)
and 15 datasets from the University of Florida Sparse Matrix
Collection [3]. The primary contributions of this paper are:

• The observation that the error injection information and
the execution deviation in a small window of iterations
can be used to predict the ground truth for iterative solvers

• A novel machine learning based ground-truth predictor
for iterative methods

• Empirical demonstration that the novel ground-truth pre-
dictor outperforms alternative strategies, including those
based on existing soft error detection strategies

• Analysis of the feature selection and training set require-
ments for the ground-truth predictor
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• An analysis of the cost savings for error injection cam-
paigns in terms of number of iterations of the iterative
methods

The rest of the paper is organized as follows. Section 2
describes the iterative methods and datasets, and Section 3
details the proposed methodology along with the machine
learning methods used in the study. Section 4 discusses the
performance of the method. Section 5 summarizes the related
work. Section 6 concludes the paper.

II. BACKGROUND

A. Iterative Methods

Iterative methods are widely used to solve the linear system
of equations:

A · ~x = ~b, (1)

where A is a sparse matrix, ~x and~b are vectors. These methods
solve the system of equations in an iterative manner. Each
iteration computes a guess of the solution ~x that approximates
the true solution. An evaluation of the error in the guess is used
to determine the next guess. The method returns the computed
~x when the solution error, the residual norm, calculated as
|~r| = |~b − A · ~x|, is within a predefined error threshold.
The methods differ in their approach to exploring the solution
space. Importantly, the residual norm does not monotonically
decrease and the solution vector (and other vectors used in
their algorithms) can vary widely between iterations.

We selected three widely used iterative solvers for this study.
Below are some details for each method [4]:
• CG: Conjugate gradient method utilizing the LU precon-

ditioner
• BICG: BIConjugate gradient method that does not use a

preconditioner
• CGS: Conjugate gradient squared method
Conjugate gradient method can only solve symmetric

positive-definite matrices. BICG method is a modified version
of CG method to make it handle non-symmetric and non-
definite systems. CGS method has better performance com-
pared to BICG with more stability. These methods belong to
the class of non-stationary iterative methods. Each considered
method differs from other methods in a small yet significant
way and testing them would give us insight into how these
differences affect error behavior and error prediction. We use
the implementations of the methods available as part of the
Iterative Methods Library (IML++) v1.2a [5].

B. Datasets

The three iterative methods (discussed in Section II-A) are
evaluated using real life matrices taken from the SuiteSparse
matrix collection of University of Florida [3]. We select
symmetric and positive definite matrices for A so that we can
evaluate all iterative solvers considered for this study.

This matrix collection currently has more than 200 symmet-
ric positive definite matrices. After a preliminary analysis, we
discard matrices that are not representative—ones that either
converge too quickly (in under a second) or do not converge

Matrix Rows NZ% Number of Iterations
CG BICG CGS

bcsstk13 2003 2.1 928 928 1185
bcsstk14 1806 1.95 195 195 108
bcsstk15 3948 0.8 453 453 207
bcsstk24 3562 1.3 451 451 374
bcsstk28 4410 1.12 4344 4344 7381
bcsstk38 8032 0.55 426 426 1218
ex13 2568 1.15 146 146 104
ex15 6867 0.21 96 96 82
Pres Poisson 14822 0.33 662 662 669
s1rmq4m1 5489 0.87 612 612 639
s1rmt3m1 5489 0.72 695 695 683
s2rmt3m1 5489 0.72 1787 1787 2085
s3rmq4m1 5489 0.87 2969 2969 2530
s3rmt3m1 5489 0.72 4497 4497 4514
s3rmt3m3 5357 0.72 8538 8538 12097

TABLE I
CHARACTERISTICS OF THE MATRICES SELECTED FROM SUITESPARSE
AND THE NUMBER OF ITERATIONS PERFORMED BY SOLVER FOR THAT

DATASET

after 35000 number of iterations. After we eliminate those
datasets, we randomly select fifteen of the remaining datasets
for this study. Table I details the size of the matrices (Rows),
non-zero percentage (NZ%) and the number of iterations each
solver needed to converge to an acceptable ~x.

Vector ~b in equation 1 is calculated as A · ~1, making the
expected value of ~x is a vector of all ones. This practice is
similar to one used in other prior studies [6], [2]. We run the
iterative methods until residual norm converges to within 10−6

error threshold.

C. Detectors vs Ground Truth for Error Injection Experiments

The execution of the iterative methods is data-dependent
with a wide variation in the number of iterations taken and
changes in the solution space explored. Therefore, barring
some work on numerical analysis of the algorithms, error
detection strategies for these methods have focused more
on observing dynamic program information rather than static
analysis. In particular, several soft error detectors have been
developed for iterative methods. Each of these detectors
attempts to observe specific characteristics of an iterative
method’s execution to distinguish error-free or error-masking
executions from those that can lead to silent data corruption.
Given errors are rare, detectors place significant emphasis on
reducing false positives, i.e., ensuring that the normal execu-
tion is not erroneously flagged as leading to data corruption.

Ground truth predictors to determine the outcome of an error
injection can potentially exploit the knowledge of the error
injection and a guaranteed non-erroneous execution to achieve
improved accuracy.

III. GROUND TRUTH PREDICTION

In this section, we describe our approach to ground truth
prediction. The approach involves comparing the values en-
countered in variables used in the iterative solvers (specific
vectors) between error-injected and error-free runs. Detectors
based on redundant execution involve duplicated executions



Fig. 1. Our overall approach to construct a ground-truth predictor using machine learning

that can be compared for deviations. These approaches typ-
ically identify errors that escape a particular architecture or
abstraction level (e.g., errors that escape micro-architecture
state or registers) rather than the final application output. We
employ a strategy similar, in spirit, to redundant execution
where an execution with no error injection is compared with
one with error injections to predict outcomes. However, only
one error-free execution is used to check numerous error-
injected executions. In addition, we focus on predicting ground
truth rather than just errors escaping architecture state.

A. Machine-learning based Prediction

Figure 1 illustrates our approach to construct the machine
learning based predictor. The training data is constructed using
a small number of error injection experiments. For each error
injection, we monitor the execution for a small number of
iterations. In this work, we limited ourselves to 20 iterations
past the error injection to observe the error propagate and
manifest itself in the variables monitored. During these 20
iterations after injection, we extract our feature data from the
execution. We use ~x, ~p, and ~r vectors’ value at the 5th, 10th,
and 20th iterations after the injections. We also observe the
magnitude of introduced error and the injection point relative
to the execution duration (calculated as injection iteration over
the expected number of iterations). So the features we collect
from the execution are:

• ~x, ~p, and ~r vectors’ value at the 5th iteration after injection
• ~x, ~p, and ~r vectors’ value at the 10th iteration after

injection
• ~x, ~p, and ~r vectors’ value at the 20th iteration after

injection
• Iteration percentage, calculated as

Injected Iteration
Expected # of Iterations

(2)

• Magnitude of introduced error, calculated as the `1 norm
between the injected ~v′ and the original ~v at the moment
of injection

Features: Once the features are extracted, the error-
injected run is allowed to proceed to completion unimpeded
to determine the outcome. We classify the outcome into two
categories. We label each error injection run MASKED or
NON-MASKED:

• MASKED: When the solver returns a correct value for ~x,
and the number of iterations it takes to find a solution
is within 5% of the expected number of iterations (i.e.,
number of iterations it takes when no error was intro-
duced).

• NON-MASKED: When the solver either converges to a
wrong solution, or takes an unexpected amount of itera-
tions to find the solution.

To learn the deviations from error-free execution that result
in a non-masked outcome, we evaluated various machine
learning (ML) techniques available in the SciKit Learn pack-
age [7]. Specifically, we explored decision tree, support-
vector machine, AdaBoost, Random Forest, Naive Bayes,
and AdaBoost regression with Decision Trees. Preliminary
analysis demonstrated that AdaBoost regression achieved the
best results for the methods considered. Therefore, we build
our predictor and present results with this ML technique.

For each vector value observed from a fault injected execu-
tion, we compare it to the error-free execution to understand
how much the injected execution diverged from the expected
values. For each iteration, we compare the observed value
to a range of iteration values of the correct execution. That
is, for the nth iteration, we compare the injected vector value
with the vectors at the {n-20 .. n+20} iterations. We compare
the injected vector with the corresponding healthy vector’s
values over the course of the iteration window, as any change
introduced by the error can hinder the convergence, but also,



by chance, it can help moving the execution in the right
direction [2]. We calculated `1 norms between each vector
and the correct execution’s corresponding vector range. We
used the minimum `1 value as the difference of the vector at
the given iteration.

Figure 1 depicts our overall workflow to construct the
ground truth prediction model using machine learning. We
train separate models for each solver. For each model, 20%
of the datasets are randomly selected to be used as a test set,
and the rest of the datasets form the training set. Rather than
build a model on the entire training set, we randomly select
subsets of datasets to build models. These models are tested
on the remaining datasets (ones not used to build the model).
We build 20 models for each configuration—the number of
datasets used to build the model and the number of samples.
Among the many models built, we pick the model that best
generalizes to handling datasets not used in building them.
This way, we train the model using the most representative
subset of datasets and test the final model on previously unseen
data.

B. Error Injection Mechanism

There are several injection methods that can be considered
for an error injection study, from low circuit level to high
software level injections. Each error injection has its short-
comings and strengths. Lower level injection campaigns can
provide low overhead injections with precision, but provide
less control over temporal aspects of the error. On the other
end of the spectrum, higher level injection mechanisms provide
the user with more control over the error manifestation being
less accurate in emulating the natural occurrence of the error
(hardware bit flip.)

To understand and model the soft error behavior of iter-
ative solvers, we lean on the side of increased control over
the injection procedure. We follow an application-level error
injection methodology that enables us to control the temporal
and spatial aspects of the error. We instrument the iterative
method implementation so that errors can be injected during
the execution to any of the vectors, at any statement of the
algorithm, during any of the iterations.

Iterative methods use vectors, two-dimensional matrices,
and scalars for their calculations. Matrices in the algorithm
are read-only and can be protected from soft errors with ease
using established techniques [8], [9]. Scalars in the algorithm
are relatively small compared to other data structures in the
algorithm. Hence they are less likely to be impacted by an
error and less likely to impact the program state even if they
are hit. Therefore we focus our injection strategy on the vectors
in the algorithm.

As all these iterative solvers solve the same equation, and as
they are part of the same class of algorithms, they share some
vectors in their algorithms. We selected 3 vectors (~x, ~p, ~r)
crucial to all three solvers. Other vectors in the algorithms are
either temporary variables or they are calculated using these
three vectors. Therefore, we can limit our injections to these

1 struct ErrorConfing {
int eiteration;

3 ErrorInfo einfo;
};

5 auto ErrorCampaign(Solver solver, vector<
ErrorConfing> configs) {
int it=0;

7 solver.init();
vector<Outcome> outcomes; //masked or non-
masked outcomes

9 for(auto ec: configs){
while(!converged and it++ < ec.eiteration) {

11 solver.iteration_no_error();
}

13 if (converged) break;
auto ckpt = solver.checkpoint();

15 solver.iteration_with_error(ec.einfo);
vector<Feature> features;

17 for(int i=0; i<20 and !terminated; i++) {
solver.iteration_no_error();

19 features.push_back(solver.get_features());
}

21 auto pred_ground_truth = classify(features);
outcomes.push_back(pred_ground_truth);

23 solver.restore(ckpt);
}

25 return outcomes;
}

Fig. 2. Algorithm for an error-injection campaign based on ground truth
prediction. The algorithm is executed for a given iterative solver, data set,
and ordered list of error injection configurations.

vectors and still accomplish a meaningful coverage of the error
behavior for the iterative solver.

Our error injection framework instruments the source code
to simulate an error. The framework decides on where to inject
the error based on the inputs provided by the user (similar
to our previous works [1], [2]). These inputs are: iteration
number, statement number, vector name, position in the vector,
list of bit positions to flip in the vector element. We don’t
assume any previous knowledge on different vulnerabilities of
the iterations and vectors. Therefore, we select the iteration
number and vector position in which we inject an error
uniformly at random.

We run random injections for each vector-statement pair,
for our selected vectors, on the statements that use them. This
way, we make sure our injection won’t be overwritten and
can have a chance to affect the program state. Error behavior
including such overwriting can be calculated mathematically
from this set of experiments without additional experiments
as shown in prior work [2]. We inject uniform random 1-bit,
2-bit, and 4-bit errors. We collected more than 450 data points
for each solver-dataset pair, a total of more than 32500 runs.

C. Overall Algorithm: Error Injection with Ground Truth
Prediction

Figure 2 shows the overall algorithm for error injection
campaigns based on the ground predictor built as described
in the preceding sections. The algorithm takes as input a list
of error injection points (configs) ordered in time. Until an
injection point, execution proceeds without any error injection



(denoted by solver.iteration_no_error()). Before an error
is injected, the solver state is checkpointed (line 14). This
is followed by an iteration in which the error is injected
(lined 15). The details of the actual error injection—bit flips in
vectors at specific statements—are not shown for simplicity.
After the error-injected iteration, execution proceeds for 20
more iterations (or termination if it happens sooner) without
further errors (line 18). During these iterations, the key fea-
tures described in the preceding section are captured (line 19).
These features are used to predict ground truth using the ML
model and the outcome is saved. Once predicted, execution
is rolled back to the last saved checkpoint. The execution
proceeds error-free until the next iteration in which an error
is to be injected.

Note that even though multiple errors are injected into the
single execution of the iterative method, the checkpoint-restart
enables us to treat each error injection in isolation. In other
words, each error injection scenario only analyzes the impact
of one single-bit or multi-bit error impacting the execution.
Depending on the number of error injection samples and their
desired distribution, an initial error-free execution might be
performed to compute the number of iterations in the absence
of errors. This procedure is repeated for every pair of iterative
method and data set of interest in the error injection campaign.

IV. EVALUATION

In this section, we explain our experimental setup and
evaluate our proposed method. We first evaluate the accuracy
of the model in predicting a soft error profile for a subject
program. Later we demonstrate the usage of the prediction
model by leveraging the prediction to accelerate SDC detector
analysis. We also show the method is cost effective compared
to exhaustive fault injection studies.

We evaluate the performance of the method using precision,
recall, F-score, and masked instance ratio. To recap, precision
is the number of MASKED instances correctly labeled, divided
by the total number of instances labeled MASKED. precision
gives us a measure of the fraction of instances MASKED
labels that are indeed MASKED. recall is calculated as the
number of MASKED instances correctly labeled, divided by
the number of instances that are in fact MASKED. This
metric gives us the sensitivity of the prediction in maximally
capturing the MASKED instances. F-score combines precision
and recall as:

F-score = 2× precision · recall
precision+ recall

(3)

A. Ground Truth Predictor: Model Building and Selection

In building the predictor, we use 80% of the datasets (12)
for training and use the remaining (3) for testing. We are
interested in building a model that can effectively generalize
to the test dataset. To this end, we perform our training in two
stages. We observe that some data sets might better capture
features from a larger data set than others. Also, to avoid just
fitting the model to the training set, we build models using

different subsets of the training data. The models are then
used to predict the ground truth for the rest of the data sets.
We illustrate the approach using an example.

Illustration: Consider the building of a model based on
three data sets and 100 error injection experiments among a
training data from five data sets. We randomly select 3 of
the 12 datasets. Two samples from this selection are {1,3,5}
and {1,5,6}. For the first sample, among all error injections
involving data sets 1, 3, and 5, 100 are chosen. A model is built
using these error injections and is tested using error injections
involving datasets 2 and 4 to compute its F-score. This process
is repeated for the second sample {1,5,6} and other samples.
The sample and model that gives the best F-score is selected as
the final model for the configuration involving three datasets
and 100 error injections.

This procedure is repeated for different numbers of data
sets used for model building and the total number of error
injections used for training. Table II shows the results of our
model building analysis. We build a model using 3, 6, 9, and
11 of the training datasets. Total number of error injections
used to build the model are varied between 100, 200, 400,
1000, and all samples involved the dataset. This procedure
is repeated for each solver. For all three solvers considered,
we observe that the best model constructed using 400 error
injection experiments chosen from 3 data sets achieves among
the greatest F-scores with a relatively small number of error
injection experiments. We use these models for the subsequent
evaluation using the test set.

B. Evaluating Solver Vulnerability

We use the ground truth predictor model described above
for each solver (best model involving 3 data and 400 points) in
terms of its ability to predict application vulnerability. Vulner-
ability is measured as the average fraction of error injections
that result in a non-masked outcome. To be consistent in the
rest of the section, we equivalently looked at the masked
ratio, which is the fraction of error injections that result in
a masked outcome. Note that these are complementary and
one can directly derive one from the other1.

Figure 3 plots the masked ratio computed using ground
truth (y-axis) versus the masked ratio computed using various
prediction strategies. We present one data point for each com-
bination of solver and data set, for a total of 9 data points for
each prediction method. For each predictor, we also present a
linear fit trendline to the data points and associated R2 values.
An ideal predictor would result in a fitted trendline from (0,0)
to (1,1), indicating an exact match between vulnerabilities
from actual and predicted ground truths.

We consider several candidates. The approach based on
predicted ground truths are labeled ML. We also consider three
detectors as potential predictors:
• Adaptive Impact-driven Detection (AID) [10] introduces

an “impact error bound” that is used to pinpoint influen-

1Computing vulnerability from our injection data involves injecting at all
candidate sites. However, this can be directly derived from the injection on
“live” sites we consider as shown in prior work [2]



(a) CG (b) BICG (c) CGS
TABLE II

DESIGN SPACE EXPLORATION TO TRAIN THE GROUND-TRUTH PREDICTOR FOR (A) CG, (B) BICG, AND (C) CGS. THE ROWS CORRESPOND TO 100, 200,
400, 1000, AND ALL AVAILABLE ERROR INJECTION EXPERIMENTS USED FOR TRAINING. THE COLUMNS CORRESPOND TO 3, 6, 9, AND 11 DATA SETS

USED TO BUILD THE MODEL. IN EACH INSTANCE, THE DATA SETS NOT USED TO BUILD THE MODEL ARE USED TO EVALUATE THE MODEL’S
EFFECTIVENESS. EACH CELL SHOWS THE BEST F-SCORE ACHIEVED AMONG THE MODELS GENERATED FROM 20 RANDOM SAMPLES.

Fig. 3. Predicted MASKED ratio plotted against actual MASKED ratio. x-axis:
MASKED ratio predicted from each candidate predictor. y-axis: MASKED ratio
computed using ground truth from error injection experiments. ML denotes
our approach. Each dot represents a solver-dataset pair. Trendlines for each
detection method is also provided, R2 values for each trendline is AID: 0.0729,
MAD:0.3428, NEWSUM: 0.0022, and ML: 0.7073. An R2 value closer to 1
denotes less error closer match between the trendline and the fitted data.

tial soft errors. They use dynamic curve fitting to detect
an influential soft error.

• Checksums for matrix-vector multiplication (NEWSUM)
Tao et al. [11] proposes a checksum encoding approach
to detect soft errors in matrix-vector and vector-linear
operations.

• Moving Average Detector (MAD) observes that residual
norms in an iterative method shows a decreasing trend
over time. They proposed a moving average schema to
detect irregular increases in consecutive time periods,
which points to an unexpected behavior, hence detection
of a soft error [12].

We used these detectors with their suggested threshold
values, AID was run with 0.00078125, NEWSUM with 10−10

and MAD with 0.1.
We observe that using detectors as ground truth predictors

does not result in a consistent match with the masked ratio
computed using the ground truth. All three detectors suffer
from both over-estimation and under-estimation of the masked
ratio. We observe a strong linear relationship (with a high R2

fit) between the masked ratio computed using the ground truth
and our approach. This shows that the actual masked ratio can
be easily determined from the predicted masked ratio using our
approach.

A predictor might miss out on matching the actual ground
truth on a large number of samples but accidentally predict the
overall masked ratio. This might be a challenge from only a
subset of the scenarios considered are of interest (say to design
a detector for a subset of the error injection points). Table III
evaluates this per-prediction accuracy in terms of precision and
recall of candidate prediction strategies. This includes three
soft error detectors from prior work (AID, MAD, NEWSUM)
and our approach (ML). In addition, we consider two random
detectors to ensure that the candidate predictors do not succeed
by chance. The FAIR COIN detector predicts the outcome
to be masked or non-masked with equal probability at every
prediction. The BIASED COIN predictor makes the same
decisions in ration proportional to the masked ratio in the
training data used by our approach.

We observe that our approach achieves the best or near-
best precision and recall. Unlike the alternatives, it is always
significantly better than the two random predictors. While
NEWSUM achieves the best precision and recall for BICG,
our approach is not far behind. Also, NEWSUM exhibits
significantly lower accuracy for the other two solvers.

C. Evaluation of Detector Accuracy

Another important use of error injection experiments and
their outcomes is to evaluate the design and evaluation of soft
error detection strategies. Here, we evaluate the effectiveness
of our approach to aid in such an evaluation. Table IV shows
the precision and recall evaluated for the three detectors
described earlier (AID, MAS, and NEWSUM) using actual



ground truths, ground truth predicted by our model, and two
random (coin-toss) baseline strategies explained above. We
observe that precision and recall determined for the detectors
using our approach closely match those computed using the ac-
tual ground truth from error injection experiments. The largest
deviation between the two is 0.04, clearly demonstrating the
usefulness of our approach in evaluating soft error detectors
for iterative solves.

In some of the scenarios considered, the random solutions
seem to perform quite well as compared to the ground truth.
This is just an artifact of the actual ground truth matching
the metrics resulting from the random strategies, which are
usually around 0.5.

D. Right Answers for the Right Reasons

Detectors often attempt to identify specific portions of an
application state or computation space that can be efficiently
protected. Depending on the detection strategy being explored,
different portions of the error injection space might be of
interest. Figure 4 shows the classification of the outcomes into
cases where a detector and the predictor agree and where they
don’t. The decisions made in these cases will only be valid if
the predictor matches the actual ground truth. Without such a
match, the classification might be correct, but it will not be
for the right reasons. We observe that, in this specific case,
the predictor is nearly equally effective in identifying, for the
right reasons, when the NEWSUM detector performs a correct
versus incorrect determination.

Figure 5 shows a scatter plot depicting the fraction of the
scenarios in which our approach correctly labels the detector
behavior across solver-dataset pairs. x-axis denotes fraction
represented by the left green node out of its parent node in
the binary tree in Figure 4, across solver-dataset pairs. In this
scenario, using our predictor results in the correct decision.
Along the y-axis, we depict the fraction represented by the
right green node out of its parent node in the binary tree
in Figure 4, across solver-dataset pairs. Here the detector is
flagged as being in error, and correctly so. With an ideal
predictor, all data points plotted will be at (1,1), denoting
a perfect match between prediction and actual ground truth
for both positive and negative evaluation of the detector.
In general, we observe good clustering of the data points
around (1,1). We observe a bias in the positive versus negative
detector evaluation, with correct detector behavior identified
more accurately than incorrect detector behavior.

E. Reduction in Error Injection Campaign Costs

To assess the gain our model will provide against a tradi-
tional fault injection campaign for detection performance, we
calculated the number of iterations our approach would save
the user. In a traditional approach, one will let the execution
run to the end, or will stop it when the expected number
of iterations/time exceeded deciding there is an anomalous
effect of the injection and labels the run accordingly. For our
calculations, we assumed the user decides on an anomalous
run after 105% of the expected iterations (5% flexibility

Method CG BICG CGS
Prec. Recall Prec. Recall Prec. Recall

AID 0.50 0.50 0.64 0.54 0.41 0.49
MAD 0.47 0.47 0.68 0.62 0.29 0.50
NEWSUM 0.69 0.66 0.82 0.81 0.29 0.50
ML 0.90 0.89 0.81 0.78 0.80 0.80
FAIR COIN 0.50 0.50 0.50 0.50 0.49 0.49
BIASED COIN 0.51 0.51 0.51 0.51 0.51 0.51

TABLE III
PRECISION AND RECALL OF ESTIMATION OF MASKED RATIO USING

VARIOUS CANDIDATE PREDICTORS. ML DENOTES OUR APPROACH. AN
IDEAL DETECTOR WILL HAVE PRECISION AND RECALL CLOSE TO 1. THE

BEST CANDIDATE FOR EACH SOLVER IS SHOWN IN BOLD.

Fig. 4. Classification of scenarios for the CG solver with the NEWSUM
detector. The labels are of the form a-b-c, where a is the prediction outcome,
b is the detector’s judgement, and c is the ground truth. Ideally, the red circles
(where we judge a detector based on the wrong prediction) will be 0.

on the number of iterations of an error-less run). On the
other hand, our approach can stop the execution whenever
a detection flag is raised by a detector (after a minimum
of 20 iterations from injection). We injected errors uniform
randomly on the iteration space and counted the number of
iterations we avoided for the experiments.

For the detection results reported, we saved 240 iterations
per CG run, 653 iterations on average per BICG run and
697 iterations on average per CGS run. This corresponds to
21% of the average expected execution for CG, 25% of the
average expected execution for BICG and 53% for CGS. The
changes in the amount we saved can be explained by the
number of masked instances and false positives. As in our
method, a detection is awaited to halt the execution, when
there is no detection, both the prediction method and the
traditional method waits for the end of execution. So when a
detector (correctly or not) does not detect any anomalies, our
provided gain is on the smaller side. However, when detectors
have many detection flags raised, the benefit of our approach
magnifies.

F. Overhead Analysis

The cost of the method can be broken down to storing 9
vectors, calculating the `1 norms for each vector, and calling
the model to get the prediction. This method cuts the cost
of the injection study by stopping the execution 20 iterations
after the injection, not waiting until the end of the execution.

When solvers are run with our method, with the predictor
running total time is around 160% of normal run time. As we
leveraged Python libraries and C++ to Python connection



AID MAD NEWSUM
Against Precision Recall Precision Recall Precision Recall

GT 0.50 0.50 0.47 0.47 0.69 0.66
CG Prediction 0.54 0.51 0.49 0.49 0.67 0.65

Fair Coin 0.56 0.51 0.50 0.50 0.52 0.52
Biased Coin 0.52 0.50 0.52 0.52 0.52 0.51

GT 0.41 0.49 0.29 0.50 0.29 0.50
BICG Prediction 0.39 0.49 0.25 0.50 0.25 0.50

Fair Coin 0.51 0.50 0.58 0.50 0.41 0.50
Biased Coin 0.52 0.50 0.44 0.50 0.77 0.50

GT 0.64 0.54 0.68 0.62 0.82 0.81
CGS Prediction 0.64 0.54 0.66 0.60 0.85 0.83

Fair Coin 0.48 0.50 0.50 0.50 0.52 0.52
Biased Coin 0.48 0.49 0.50 0.50 0.51 0.51

TABLE IV
DETECTOR PRECISION AND RECALL WHEN CALCULATED WITH ACTUAL GROUND TRUTH OF THE EXECUTIONS, AND COMPARED WITH PREDICTED

GROUND TRUTHS USING OUR APPROACH.

Fig. 5. Predictor accuracy is evaluating positive and negative detector
outcomes. x-axis: fraction of all cases where predictor and detector match
(marking the detector as being correct), where the ground truth also matches.
y-axis: fraction of all cases where predictor and detector differ (flagging the
detector as being incorrect), where the detector differs from the ground-truth.

in our tests, the majority of the time is consumed during
the Python connection, which is known to be slower when
handling files. This is not by any means a crucial part of our
method. One can easily substitute Python with C++ machine
learning approaches to bypass this cost easily.

Even with Python costs, there is still an argument to be
made for the effectiveness of this method. When an injection
is introduced to the solver, the majority of the time, the effect
is longer execution times (more iterations). We calculated
average total iterations after an error injection from Iterative
Method Injection Collection (IMIC) [2], for CG 13.9 times the
expected iterations, for BICG 25, and for CGS 16.9 times the
expected iterations were performed on average when under the
effect of a soft error. These numbers possibly can go higher

as in that work, executions are stopped after 35000 iterations,
and labeled as 35000.

So, once a model is trained for a solver; for a fault injection
study where

• N : Number of fault injections
• I : Number of iterations in normal application run
• I ′: Number of iterations in fault injected application run
• IP : Average iteration before injection in proposed method
• Imntr: Number of monitoring iterations after the injection
• P : Overhead cost for the proposed technique

COSTproposed

COSTtraditional
=

N × (IP + Imntr) + P

N × I ′
(4)

We set our monitoring iteration to 20 which corresponds to
1% of the average iteration count:

Imntr ≈ 0.01× I. (5)

We set I ′ as 15 times I–based on the average iteration times
from the IMIC database:

I ′ = 15× I (6)

(they in fact range from 13.9 × I to 25 × I for our set of
solvers). With uniform random distribution of injections, we
can say on average half of the iterations will be performed
before an injection, so proposed iteration cost is:

COSTproposed = (N × (I/2 + (0.01× I))) (7)

Therefore our approach’s iteration cost is around 3.5% of the
traditional cost of iterations:

N × (I/2 + (0.01× I))

N × 15× I
(8)

Assuming, we collect all the data and call the model/predic-
tion once in the end for efficiency; when the constant model
call and prediction costs are added, the overall COSTproposed

would be around 10% of COSTtraditional; provided P is 1×I
(around 60% for one run and more than 95% of that cost comes
from model load).



Method CG BICG CGS
Prec. Recall Prec. Recall Prec. Recall

CG Model 0.90 0.89 0.74 0.65 0.78 0.73
BICG Model 0.69 0.71 0.81 0.78 0.63 0.62
CGS Model 0.76 0.80 0.75 0.75 0.80 0.80

TABLE V
PRECISION (PREC.) AND RECALL OF ESTIMATION OF MASKED RATIO

USING THE MODELS THAT WERE TRAINED USING ANOTHER SOLVER’S
DATA. AN IDEAL DETECTOR WILL HAVE PRECISION AND RECALL CLOSE

TO 1 FOR ALL SOLVERS.

G. Transferability of the Models

While developing ground truth prediction models trained on
the error injections from each solver will give us most accurate
predictions, quick evaluation of a novel scenario (e.g., another
iterative method) using pre-built models can help identify
promising strategies and generate hypothesis before detailing
analysis and evaluation. To determine the potential for such a
transferability of the models we build in a new context, we
determine the effectiveness of the model built using data from
one solver in determining the error-impacted behavior of other
two solvers. Table V shows the results of this evaluation. We
observe that, while predicting outcomes for an iterative method
using the model developed for that method performs best,
models developed for other solvers are still useful in practice
and perform better than alternatives evaluated in Table III.

H. Alternative Training Configurations

In our analysis and evaluation, we considered an injection
MASKED when the solver returns a correct value for ~x, and the
number of iterations it takes to find a solution is within 5%
of the expected number of iterations. In Figure 6 and Tables
VI, VII, and VIII we analyzed how the scenery would change
when we change this tolerance amount. We demonstrated the
results where no tolerance (0%), 10% tolerance, and 20%
tolerance is applied to the injection experiments.

Figure 6 shows slight differences compared to Figure 3,
but in all tolerance configurations, we can still observe the
machine learning approach showing the strongest linear rela-
tionship (R2 closest to 1) between the masked ratio computed
using the ground truth and our approach.

We also evaluated the per-prediction accuracy in terms of
precision and recall of candidate prediction strategies when
our definition of MASKED changed using different tolerance
levels for the number of iterations taken. Tables VI, VII, and
VIII shows that adjusting the MASKED has slightly affected the
performance, nevertheless machine learning approach shows
best precision and recall. In some cases even better than our
selected configuration.

We also demonstrated the effect of splitting the data dif-
ferently. For our main strategy, we considered a traditional
80%-20% split of the datasets (12 datasets - 3 datasets) into
training and testing. Then we used a subset of the 80% (12
dataset) to find a representative subset to train a model. To
further analyze the effects of configuration deviations, we
also evaluated different train-test splitting methods for our

Method CG BICG CGS
Prec. Recall Prec. Recall Prec. Recall

AID 0.46 0.49 0.54 0.53 0.51 0.50
MAD 0.50 0.51 0.69 0.82 0.44 0.50
NEWSUM 0.70 0.68 0.61 0.80 0.44 0.50
ML 0.82 0.82 0.71 0.84 0.81 0.83
FAIR COIN 0.50 0.50 0.50 0.50 0.49 0.49
BIASED COIN 0.51 0.51 0.51 0.51 0.51 0.51

TABLE VI
PRECISION AND RECALL OF ESTIMATION OF MASKED INSTANCES (0 %
TOLERANCE) USING VARIOUS CANDIDATE PREDICTORS. ML DENOTES

OUR APPROACH. AN IDEAL DETECTOR WILL HAVE PRECISION AND
RECALL CLOSE TO 1. THE BEST CANDIDATE FOR EACH SOLVER IS SHOWN

IN BOLD.

Method CG BICG CGS
Prec. Recall Prec. Recall Prec. Recall

AID 0.46 0.49 0.54 0.54 0.51 0.50
MAD 0.51 0.51 0.68 0.83 0.44 0.50
NEWSUM 0.70 0.69 0.61 0.80 0.44 0.50
ML 0.86 0.88 0.81 0.81 0.78 0.78
FAIR COIN 0.50 0.50 0.50 0.50 0.49 0.49
BIASED COIN 0.51 0.51 0.51 0.51 0.51 0.51

TABLE VII
PRECISION AND RECALL OF ESTIMATION OF MASKED INSTANCES (10 %
TOLERANCE) USING VARIOUS CANDIDATE PREDICTORS. ML DENOTES

OUR APPROACH. AN IDEAL DETECTOR WILL HAVE PRECISION AND
RECALL CLOSE TO 1. THE BEST CANDIDATE FOR EACH SOLVER IS SHOWN

IN BOLD.

Method CG BICG CGS
Prec. Recall Prec. Recall Prec. Recall

AID 0.46 0.49 0.54 0.53 0.51 0.50
MAD 0.51 0.51 0.68 0.83 0.44 0.50
NEWSUM 0.70 0.68 0.61 0.80 0.44 0.50
ML 0.85 0.87 0.79 0.80 0.81 0.81
FAIR COIN 0.50 0.50 0.50 0.50 0.49 0.49
BIASED COIN 0.51 0.51 0.51 0.51 0.51 0.51

TABLE VIII
PRECISION AND RECALL OF ESTIMATION OF MASKED INSTANCES (20 %
TOLERANCE) USING VARIOUS CANDIDATE PREDICTORS. ML DENOTES

OUR APPROACH. AN IDEAL DETECTOR WILL HAVE PRECISION AND
RECALL CLOSE TO 1. THE BEST CANDIDATE FOR EACH SOLVER IS SHOWN

IN BOLD.

approach. Figure 7 gives F-score distribution box-plots for
each configuration considered for each solver. The first box
in each figure is our selected approach. The variations we
observe tells us there is not one golden train-test split that
will work for every solver. Our selected configuration worked
best for some settings, whereas it was outperformed for some.
We deduce that even though most split methods show good
performance, achieving optimal split for best performance
requires a comprehensive study of several configurations.

V. RELATED WORK

Many resilience studies based on fault injection campaigns
use random fault injection [13], [14], [15], [16], [17]. Random
fault injection enables statistical coverage of an ample space
with a relatively smaller number of experiments and is em-
ployed when the user cannot or does not make assumptions
about architecture or application vulnerability. We employ
random fault injection on a subset of the application state—the



(a) Tolerance: 0% (b) Tolerance: 10% (c) Tolerance: 20%

Fig. 6. x-axis: MASKED ratio predicted from each candidate predictor. y-axis: MASKED ratio computed using ground truth from error injection experiments
(20% flexibility on iteration amount). ML denotes our approach. Each dot represents a solver-dataset pair. Trendlines for each detection method is also
provided. R2 values for each trendline in (a) are AID: 0.0666, MAD:0.2288, NEWSUM: 0.0004, and ML: 0.7579. R2 values for each trendline in (b) are
AID: 0.0147, MAD:0.3371, NEWSUM: 0.1462, and ML: 0.6064. R2 values for each trendline in (c) are AID: 0.2103, MAD:0.3085, NEWSUM: 0.0220, and
ML: 0.4852. An R2 value closer to 1 denotes less error and closer match between the trendline and the fitted data.
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Fig. 7. F-score performance using different train/test cutoffs for each solver. Label X/Y shows, Y datasets used for testing, from the remaining (15-Y) datasets,
random X of them were used for training a model. For each X/Y pair, 20 different random splits were performed and their F-score box plots are shown.
On each box, the red line indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles respectively. The whiskers
extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the red ’+’ symbol.

vectors—to focus our efforts on the key data structures that
are modified in iterative methods.

Fault injection studies can be performed at many levels
from lower-level to higher-level injection studies [18], [19].
Lower level injections like Register Transfer Level (RTL)
fault injection [17] and architecture level injections [20], [21],
[22], [23] tend to be more accurate [15], but the detailed
characterization is more challenging.

Software-based error injection can be performed using bi-
nary instrumentation [16], compile-time transformations [24],
[25], [26], [27], or operating system level injection [28]. There
are also studies using emulation and virtualization to provide
an injection set-up that requires minimal modification to the
system or application [29], [30].

Each technique stresses distinct aspects of an application’s
footprint (e.g., architectural registers vs. intermediate represen-

tation, the specific compiler passes, etc.). We use application-
level injection to understand application vulnerability in terms
of program elements, analogous to program or data vulner-
ability factors [31], [32] (as compared to the architecture
vulnerability factor [33]). Our injection approach complements
the one presented by Xu and Li [34] and can be used in
conjunction when an iterative method is used in the context
of a larger application.

Recently, there have been many efforts to utilize machine
learning [13], [35], [36], [37] to address resilience problems.
IPAS [37] uses machine learning to decide on instructions that
will likely to lead to corruption and duplicates them. Desh [35]
uses systems logs and neural networks to predict node failures.

On [38], the authors present a Machine Learning approach
to predict innocuous cases (minimal or no change in con-
vergence behavior) of certain applications in the presence of



silent data corruption. The paper uses NWChem, LULESH,
and SVM as their cases. Authors of [39] employed support
vector machines to create an online soft error vulnerability
prediction mechanism for memory arrays.

Farahani et al. leverages the architecture vulnerability fac-
tor to create an online reliability prediction mechanism for
transient faults [40]. Several efforts focused on vulnerability
factors for modeling error resilience of programs. In [31],
authors practice fault modeling on program level. They suggest
Program Vulnerability Factor for assessing the vulnerability
of a software resource. Yu et al proposes Data Vulnerability
Factor [41] which models the vulnerability of individual
data structures in an application relying on access patterns.
Architecture Vulnerability Factor [42] on the other hand,
models the probability of an error happening when a fault
happens in that hardware component.

Machine learning techniques have been used in the past
to detect soft errors (e.g., [43] and [44]). These approaches
attempt to identify executions impacted by soft errors and
heading toward anomalous outcomes as compared to benign
errors and runs that have not been affected by errors. To
improve their accuracy, these methods have to correctly clas-
sify not just error-impacted runs but also error-free runs.
Because error-free execution is the more common scenario,
false positives can overwhelm any benefits from accurate error
detection. We bring a novel perspective to soft error impact
analysis by observing that this problem begins with an injected
error. We observe that machine learning leads to a very
accurate classification of benign versus harmful errors when
we are given that the computation has been impacted by an
error. We believe we are the first to explore machine learning
based outcome classification with this prior knowledge. Also,
we believe this is the first work to use machine learning
techniques to accelerate analysis of the impact of soft errors.

VI. CONCLUSIONS AND DISCUSSION

In this work, we proposed a method to predict a program’s
resiliency against soft errors. We evaluated our method on
iterative solvers and showed by monitoring only a portion of
the execution we can have an acceptable fault profile of the
subject program.

We show that not running the execution to completion
gives us efficiency in fault injection tests. We demonstrate
the use of the method by using it to assess SDC detectors’
performances. Our tests reveal that this trained model is
successful in assessing detector performance and significantly
cuts costs depending on the solver and detector characteristics.

We will open source the data and framework used in this
paper to enable reproduction of the results and the design
of novel soft error detection strategies. Specifically, we will
release the following:

• The framework to train the models from error injection
data

• Runtime feature collection framework to predict ground
truths

• Database of ground truths predicted by the model and
detector estimates.

The database will be released as an extension to the IMIC
database [45].

Future work: We demonstrated the effectiveness of ma-
chine learning in soft error impact analysis for iterative meth-
ods. However, as evidenced in Section IV-H, these models can
be further improved. We consider devising the most effective
training strategy to improve accuracy as future work. We
have observed that the notion of evaluating the impact of soft
errors as being distinct from designing a soft error detector.
While our work has focused on iterative methods, we believe
this observation can benefit other applications. Demonstrating
the effectiveness of this approach in the context of other
applications constitutes future research.
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