7,388 research outputs found

    Proximity as a Service via Cellular Network-Assisted Mobile Device-to-Device

    Get PDF
    PhD ThesisThe research progress of communication has brought a lot of novel technologies to meet the multi-dimensional demands such as pervasive connection, low delay and high bandwidth. Device-to-Device (D2D) communication is a way to no longer treat the User Equipment (UEs) as a terminal, but rather as a part of the network for service provisioning. This thesis decouples UEs into service providers (helpers) and service requesters. By collaboration among proximal devices, with the coordination of cellular networks, some local tasks can be achieved, such as coverage extension, computation o oading, mobile crowdsourcing and mobile crowdsensing. This thesis proposes a generic framework Proximity as a Service (PaaS) for increasing the coverage with demands of service continuity. As one of the use cases, the optimal helper selection algorithm of PaaS for increasing the service coverage with demands of service continuity is called ContAct based Proximity (CAP). Mainly, fruitful contact information (e.g., contact duration, frequency, and interval) is captured, and is used to handle ubiquitous proximal services through the optimal selection of helpers. The nature of PaaS is evaluated under the Helsinki city scenario, with movement model of Points Of Interest (POI) and with critical factors in uencing the service demands (e.g., success ratio, disruption duration and frequency). Simulation results show the advantage of CAP, in both success ratio and continuity of the service (outputs). Based on this perspective, metrics such as service success ratio and continuity as a service evaluation of the PaaS are evaluated using the statistical theory of the Design Of Experiments (DOE). DOE is used as there are many dimensions to the state space (access tolerance, selected helper number, helper access limit, and transmit range) that can in uence the results. A key contribution of this work is that it brings rigorous statistical experiment design methods into the research into mobile computing. Results further reveal the influence of four factors (inputs), e.g., service tolerance, number of helpers allocated, the number of concurrent devices supported by each helper and transmit range. Based on this perspective, metrics such as service success ratio and continuity are evaluated using DOE. The results show that transmit range is the most dominant factor. The number of selected helpers is the second most dominant factor. Since di erent factors have di erent regression levels, a uni ed 4 level full factorial experiment and a cubic multiple regression analysis have been carried out. All the interactions and the corresponding coe cients have been found. This work is the rst one to evaluate LTE-Direct and WiFi-Direct in an opportunistic proximity service. The contribution of the results for industry is to guide how many users need to cooperate to enable mobile computing and for academia. This reveals the facts that: 1, in some cases, the improvement of spectrum e ciency brought by D2D is not important; 2, nodal density and the resources used in D2D air-interfaces are important in the eld of mobile computing. This work built a methodology to study the D2D networks with a di erent perspective (PaaS)

    A Case for Time Slotted Channel Hopping for ICN in the IoT

    Full text link
    Recent proposals to simplify the operation of the IoT include the use of Information Centric Networking (ICN) paradigms. While this is promising, several challenges remain. In this paper, our core contributions (a) leverage ICN communication patterns to dynamically optimize the use of TSCH (Time Slotted Channel Hopping), a wireless link layer technology increasingly popular in the IoT, and (b) make IoT-style routing adaptive to names, resources, and traffic patterns throughout the network--both without cross-layering. Through a series of experiments on the FIT IoT-LAB interconnecting typical IoT hardware, we find that our approach is fully robust against wireless interference, and almost halves the energy consumed for transmission when compared to CSMA. Most importantly, our adaptive scheduling prevents the time-slotted MAC layer from sacrificing throughput and delay

    Enabling Scalable and Sustainable Softwarized 5G Environments

    Get PDF
    The fifth generation of telecommunication systems (5G) is foreseen to play a fundamental role in our socio-economic growth by supporting various and radically new vertical applications (such as Industry 4.0, eHealth, Smart Cities/Electrical Grids, to name a few), as a one-fits-all technology that is enabled by emerging softwarization solutions \u2013 specifically, the Fog, Multi-access Edge Computing (MEC), Network Functions Virtualization (NFV) and Software-Defined Networking (SDN) paradigms. Notwithstanding the notable potential of the aforementioned technologies, a number of open issues still need to be addressed to ensure their complete rollout. This thesis is particularly developed towards addressing the scalability and sustainability issues in softwarized 5G environments through contributions in three research axes: a) Infrastructure Modeling and Analytics, b) Network Slicing and Mobility Management, and c) Network/Services Management and Control. The main contributions include a model-based analytics approach for real-time workload profiling and estimation of network key performance indicators (KPIs) in NFV infrastructures (NFVIs), as well as a SDN-based multi-clustering approach to scale geo-distributed virtual tenant networks (VTNs) and to support seamless user/service mobility; building on these, solutions to the problems of resource consolidation, service migration, and load balancing are also developed in the context of 5G. All in all, this generally entails the adoption of Stochastic Models, Mathematical Programming, Queueing Theory, Graph Theory and Team Theory principles, in the context of Green Networking, NFV and SDN

    NILM techniques for intelligent home energy management and ambient assisted living: a review

    Get PDF
    The ongoing deployment of smart meters and different commercial devices has made electricity disaggregation feasible in buildings and households, based on a single measure of the current and, sometimes, of the voltage. Energy disaggregation is intended to separate the total power consumption into specific appliance loads, which can be achieved by applying Non-Intrusive Load Monitoring (NILM) techniques with a minimum invasion of privacy. NILM techniques are becoming more and more widespread in recent years, as a consequence of the interest companies and consumers have in efficient energy consumption and management. This work presents a detailed review of NILM methods, focusing particularly on recent proposals and their applications, particularly in the areas of Home Energy Management Systems (HEMS) and Ambient Assisted Living (AAL), where the ability to determine the on/off status of certain devices can provide key information for making further decisions. As well as complementing previous reviews on the NILM field and providing a discussion of the applications of NILM in HEMS and AAL, this paper provides guidelines for future research in these topics.Agência financiadora: Programa Operacional Portugal 2020 and Programa Operacional Regional do Algarve 01/SAICT/2018/39578 Fundação para a Ciência e Tecnologia through IDMEC, under LAETA: SFRH/BSAB/142998/2018 SFRH/BSAB/142997/2018 UID/EMS/50022/2019 Junta de Comunidades de Castilla-La-Mancha, Spain: SBPLY/17/180501/000392 Spanish Ministry of Economy, Industry and Competitiveness (SOC-PLC project): TEC2015-64835-C3-2-R MINECO/FEDERinfo:eu-repo/semantics/publishedVersio

    Energy efficient cooperative computing in mobile wireless sensor networks

    Get PDF
    Advances in future computing to support emerging sensor applications are becoming more important as the need to better utilize computation and communication resources and make them energy efficient. As a result, it is predicted that intelligent devices and networks, including mobile wireless sensor networks (MWSN), will become the new interfaces to support future applications. In this paper, we propose a novel approach to minimize energy consumption of processing an application in MWSN while satisfying a certain completion time requirement. Specifically, by introducing the concept of cooperation, the logics and related computation tasks can be optimally partitioned, offloaded and executed with the help of peer sensor nodes, thus the proposed solution can be treated as a joint optimization of computing and networking resources. Moreover, for a network with multiple mobile wireless sensor nodes, we propose energy efficient cooperation node selection strategies to offer a tradeoff between fairness and energy consumption. Our performance analysis is supplemented by simulation results to show the significant energy saving of the proposed solution
    • …
    corecore